首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nitric oxide (NO) is a toxic gas encountered by bacteria as a product of their own metabolism or as a result of a host immune response. Non-toxic concentrations of NO have been shown to initiate changes in bacterial behaviors such as the transition between planktonic and biofilm-associated lifestyles. The heme nitric oxide/oxygen binding proteins (H-NOX) are a widespread family of bacterial heme-based NO sensors that regulate biofilm formation in response to NO. The presence of H-NOX in several human pathogens combined with the importance of planktonic–biofilm transitions to virulence suggests that H-NOX sensing may be an important virulence factor in these organisms. Here we review the recent data on H-NOX NO signaling pathways with an emphasis on H-NOX homologs from pathogens and commensal organisms. The current state of the field is somewhat ambiguous regarding the role of H-NOX in pathogenesis. However, it is clear that H-NOX regulates biofilm in response to environmental factors and may promote persistence in the environments that serve as reservoirs for these pathogens. Finally, the evidence that large subgroups of H-NOX proteins may sense environmental signals besides NO is discussed within the context of a phylogenetic analysis of this large and diverse family.  相似文献   

2.
Salmonella pathogenesis is dependent on its ability to invade and replicate within host cells. Following invasion the bacteria remain within a modified phagosome known as the Salmonella-containing vacuole (SCV), within which they will survive and replicate. Invasion and SCV biogenesis are dependent on two Type III secretion systems, T3SS1 and T3SS2, which are used to translocate distinct cohorts of bacterial effector proteins into the host cell. Elucidating the roles of individual effector proteins in SCV biogenesis has proven difficult but several distinct themes are now emerging and it is apparent that SCV biogenesis is an extremely dynamic process involving; extensive membrane remodeling, interactions with the endolysosomal pathway, actin rearrangements and microtubule-based movement and tubule extension.  相似文献   

3.
Salmonella typhimurium invades mammalian cells and replicates within a vacuole that protects it from the host's microbicidal weapons. The Salmonella-containing vacuole (SCV) undergoes a remodelling akin to that of the host cell's endocytic pathway, but SCV progression is arrested prior to fusion with lysosomes. We studied the role of phosphatidylinositol 3-kinase (PI3-K) in SCV maturation within HeLa cells. Phosphatidylinositol 3-phosphate (PI3P), monitored in situ using fluorescent conjugates of FYVE or PX domains, was found to accumulate transiently on the SCV. Wortmannin prevented PI3P accumulation and the recruitment of EEA1 but did not affect the association of Rab5 with the SCV. Importantly, inhibition of PI3-K also impaired fusion of the SCV with vesicles containing LAMP-1. Rab7, which is thought to be required for association of LAMP-1 with the SCV, still associated with SCV in wortmannin-treated cells. We have therefore concluded that a 3-phosphoinositide-dependent step exists following recruitment of Rab7 to the SCV. The data also imply that 3-phosphoinositide-dependent effectors of Rab5 are not an absolute requirement for recruitment of Rab7. Despite failure to acquire LAMP-1, the SCV persists and allows effective replication of Salmonella within wortmannin-treated host cells. These findings imply that PI3-K is involved in the development of the SCV but is not essential for intracellular survival and proliferation of Salmonella.  相似文献   

4.
5.
Salmonella enterica is an intracellular bacterial pathogen that inhabits membrane-bound vacuoles of eukaryotic cells. Coined as the 'Salmonella-containing vacuole' (SCV), this compartment has been studied for two decades as a replicative niche. Recent findings reveal, however, marked differences in the lifestyle of bacteria enclosed in the SCV of varied host cell types. In fibroblasts, the emerging view supports a model of bacteria facing in the SCV a 'to grow' or 'not to grow' dilemma, which is solved by entering in a dormancy-like state. Fine-tuning of host cell defense/survival routes, drastic metabolic shift down, adaptation to hypoxia conditions, and attenuation of own virulence systems emerge as strategies used by Salmonella to intentionally reduce the growth rate inside the SCV.  相似文献   

6.
The GacS/GacA two-component regulatory system in pseudomonads regulates genes involved in virulence, secondary metabolism and biofilm formation. Despite these regulatory functions, some Pseudomonas species are prone to spontaneous inactivating mutations in gacA and gacS. A gacS(-) strain of Pseudomonas aeruginosa PA14 was constructed to study the physiological role of this sensor histidine kinase. This loss-of-function mutation was associated with hypermotility, reduced production of acylhomoserine lactones, impaired biofilm maturation, and decreased antimicrobial resistance. Biofilms of the gacS(-) mutant gave rise to phenotypically stable small colony variants (SCVs) with increasing frequency when exposed to silver cations, hydrogen peroxide, human serum, or certain antibiotics (tobramicin, amikacin, azetronam, ceftrioxone, oxacilin, piperacillin or rifampicin). When cultured, the SCV produced thicker biofilms with greater cell density and greater antimicrobial resistance than did the wild-type or parental gacS(-) strains. Similar to other colony morphology variants described in the literature, this SCV was less motile than the wild-type strain and autoaggregated in broth culture. Complementation with gacS in trans restored the ability of the SCV to revert to a normal colony morphotype. These findings indicate that mutation of gacS is associated with the occurrence of stress-resistant SCV cells in P. aeruginosa biofilms and suggests that in some instances GacS may be necessary for reversion of these variants to a wild-type state.  相似文献   

7.
Salmonella invades epithelial cells and survives within a membrane‐bound compartment, the Salmonella‐containing vacuole (SCV). We isolated and determined the host protein composition of the SCV at 30 min and 3 h of infection to identify and characterize novel regulators of intracellular bacterial localization and growth. Quantitation of the SCV protein content revealed 392 host proteins specifically enriched at SCVs, out of which 173 associated exclusively with early SCVs, 124 with maturing SCV and 95 proteins during both time‐points. Vacuole interactions with endoplasmic reticulum‐derived coat protein complex II vesicles modulate early steps of SCV maturation, promoting SCV rupture and bacterial hyper‐replication within the host cytosol. On the other hand, SCV interactions with VAMP7‐positive lysosome‐like vesicles promote Salmonella‐induced filament formation and bacterial growth within the late SCV. Our results reveal that the dynamic communication between the SCV and distinct host organelles affects both intracellular Salmonella localization and growth at successive steps of host cell invasion.  相似文献   

8.
Intracellular pathogens need to establish specialised niches for survival and proliferation in host cells. The enteropathogen Salmonella enterica accomplishes this by extensive reorganisation of the host endosomal system deploying the SPI2‐encoded type III secretion system (SPI2‐T3SS). Fusion events of endosomal compartments with the Salmonella‐containing vacuole (SCV) form elaborate membrane networks within host cells enabling intracellular nutrition. However, which host compartments exactly are involved in this process and how the integrity of Salmonella‐modified membranes is accomplished are not fully resolved. An RNA interference knockdown screen of host factors involved in cellular logistics identified the ESCRT (endosomal sorting complex required for transport) system as important for proper formation and integrity of the SCV in infected epithelial cells. We demonstrate that subunits of the ESCRT‐III complex are specifically recruited to the SCV and membrane network. To investigate the role of ESCRT‐III for the intracellular lifestyle of Salmonella, a CHMP3 knockout cell line was generated. Infected CHMP3 knockout cells formed amorphous, bulky SCV. Salmonella within these amorphous SCV were in contact with host cell cytosol, and the attenuation of an SPI2‐T3SS‐deficient mutant strain was partially abrogated. ESCRT‐dependent endolysosomal repair mechanisms have recently been described for other intracellular pathogens, and we hypothesise that minor damages of the SCV during bacterial proliferation are repaired by the action of ESCRT‐III recruitment in Salmonella‐infected host cells.  相似文献   

9.
Following invasion of non-phagocytic host cells, Salmonella enterica survives and replicates within a phagosome-like compartment known as the Salmonella-containing vacuole (SCV). It is now well established that SCV biogenesis, like phagosome biogenesis, involves sequential interactions with the endocytic pathway. However, Salmonella is believed to limit these interactions and, in particular, to avoid fusion of terminal lysosomes with the SCV. In this study, we reassessed this process using a high-resolution live-cell imaging approach and found an unanticipated level of interaction between the SCV and the endocytic pathway. Direct interactions, in which late endosomal/lysosomal content was transferred to SCVs, were detected within 30 min of invasion and continued for several hours. Mechanistically, these interactions were very similar to phagosome-lysosome fusion because they were accompanied by rapid acidification of the SCV, could be blocked by chemical perturbation of microtubules or vacuolar acidification and involved the smallGTPase Rab7. In comparison with vacuoles containing internalized Escherichia coli or heat-killed Salmonella, SCVs did show some delay of fusion and acidification, although, this appeared to be independent of either type III secretion system. These results provide compelling evidence that inhibition of SCV-lysosome fusion is not the major determinant in establishment of the Salmonella replicative niche in epithelial cells.  相似文献   

10.
Intracellular, pathogenic Salmonella typhimurium avoids phago-lysosome fusion, and exists within a unique vacuolar niche that resembles a late endosome. This model has emerged from studying the trafficking of host proteins to the Salmonella-containing vacuole (SCV). Very little is known about the role of major host lipids during infection. Here, we show using biochemical analyses as well as fluorescence microscopy, that intracellular infection perturbs the host sterol biosynthetic pathway and induces cholesterol accumulation in the SCV. Cholesterol accumulation is seen in both macrophages and epithelial cells: at the terminal stages of infection, as much as 30% of the total cellular cholesterol resides in the SCV. We find that accumulation of cholesterol in the SCV is linked to intracellular bacterial replication and may be dependent on Salmonella pathogenicity island 2 (SPI-2). Furthermore, the construction of a three-dimensional space-filling model yields novel insights into the structure of the SCV: bacteria embedded in cholesterol-rich membranes. Finally, we show that the glycosylphosphatidylinositol (GPI)-anchored protein CD55 is recruited to the SCV. These data suggest that, in contrast to prevailing models, the SCV accumulates components of cholesterol-rich early endocytic pathways during intracellular bacterial replication.  相似文献   

11.
12.
13.
Salmonella enterica uses two functionally distinct type III secretion systems encoded on the pathogenicity islands SPI-1 and SPI-2 to transfer effector proteins into host cells. A major function of the SPI-1 secretion system is to enable bacterial invasion of epithelial cells and the principal role of SPI-2 is to facilitate the replication of intracellular bacteria within membrane-bound Salmonella-containing vacuoles (SCVs). Studies of mutant bacteria defective for SPI-2-dependent secretion have revealed a variety of functions that can be attributed to this secretion system. These include an inhibition of various aspects of endocytic trafficking, an avoidance of NADPH oxidase-dependent killing, the induction of a delayed apoptosis-like host cell death, the control of SCV membrane dynamics, the assembly of a meshwork of F-actin around the SCV, an accumulation of cholesterol around the SCV and interference with the localization of inducible nitric oxide synthase to the SCV. Several effector proteins that are translocated across the vacuolar membrane in a SPI-2-dependent manner have now been identified. These are encoded both within and outside SPI-2. The characteristics of these effectors, and their relationship to the physiological functions listed above, are the subject of this review. The emerging picture is of a multifunctional system, whose activities are explained in part by effectors that control interactions between the SCV and intracellular membrane compartments.  相似文献   

14.
Pseudomonas aeruginosa is a gram-negative pathogenic bacterium with a high adaptive potential that allows proliferation in a broad range of hosts or niches. It is also the causative agent of both acute and chronic biofilm-related infections in humans. Three cup gene clusters (cupA-C), involved in the assembly of cell surface fimbriae, have been shown to be involved in biofilm formation by the P. aeruginosa strains PAO1 or PAK. In PA14 isolates, a fourth cluster, named cupD, was identified within a pathogenicity island, PAPI-I, and may contribute to the higher virulence of this strain. Expression of the cupA genes is controlled by the HNS-like protein MvaT, whereas the cupB and cupC genes are under the control of the RocS1A1R two-component system. In this study, we show that cupD gene expression is positively controlled by the response regulator RcsB. As a consequence, CupD fimbriae are assembled on the cell surface, which results in a number of phenotypes such as a small colony morphotype, increased biofilm formation and decreased motility. These behaviors are compatible with the sessile bacterial lifestyle. The balance between planktonic and sessile lifestyles is known to be linked to the intracellular levels of c-di-GMP with high levels favoring biofilm formation. We showed that the EAL domain-containing PvrR response regulator counteracts the activity of RcsB on cupD gene expression. The action of PvrR is likely to involve c-di-GMP degradation through phosphodiesterase activity, confirming the key role of this second messenger in the balance between bacterial lifestyles. The regulatory network between RcsB and PvrR remains to be elucidated, but it stands as a potential model system to study how the equilibrium between the two lifestyles could be influenced by therapeutic agents that favor the planktonic lifestyle. This would render the pathogen accessible for the immune system or conventional antibiotic treatment.  相似文献   

15.
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a facultative intracellular pathogen that causes disease in a variety of hosts. S. Typhimurium actively invade host cells and typically reside within a membrane-bound compartment called the Salmonella-containing vacuole (SCV). The bacteria modify the fate of the SCV using two independent type III secretion systems (TTSS). TTSS are known to damage eukaryotic cell membranes and S. Typhimurium has been suggested to damage the SCV using its Salmonella pathogenicity island (SPI)-1 encoded TTSS. Here we show that this damage gives rise to an intracellular bacterial population targeted by the autophagy system during in vitro infection. Approximately 20% of intracellular S. Typhimurium colocalized with the autophagy marker GFP-LC3 at 1 h postinfection. Autophagy of S. Typhimurium was dependent upon the SPI-1 TTSS and bacterial protein synthesis. Bacteria targeted by the autophagy system were often associated with ubiquitinated proteins, indicating their exposure to the cytosol. Surprisingly, these bacteria also colocalized with SCV markers. Autophagy-deficient (atg5-/-) cells were more permissive for intracellular growth by S. Typhimurium than normal cells, allowing increased bacterial growth in the cytosol. We propose a model in which the host autophagy system targets bacteria in SCVs damaged by the SPI-1 TTSS. This serves to retain intracellular S. Typhimurium within vacuoles early after infection to protect the cytosol from bacterial colonization. Our findings support a role for autophagy in innate immunity and demonstrate that Salmonella infection is a powerful model to study the autophagy process.  相似文献   

16.
Salmonella enterica serovar Typhimurium (STM) is an invasive, facultative intracellular pathogen that has evolved sophisticated molecular mechanisms to establish an intracellular niche within a specialised vesicular compartment, the Salmonella‐containing vacuole (SCV). The loss of the SCV and release of STM into the cytosol of infected host cells was observed, and a bimodal intracellular lifestyle of STM in the SCV versus life in the cytosol is currently discussed. We set out to investigate the parameters affecting SCV integrity and cytosolic release. A fluorescent protein‐based cytosolic reporter approach was established to quantify, time‐resolved, and on a single cell level, the release of STM into the cytosol of host cells. We observed that the extent of SCV damage and cytosolic release is highly dependent on experimental conditions such as multiplicity of infection, type of host cell line, and STM strain background. Trigger invasion mediated by the Salmonella Pathogenicity Island 1‐encoded type III secretion system (SPI1‐T3SS) and its effector proteins promoted cytosolic release, whereas cytosolic bacteria were rarely observed if entry was mediated by zipper invasion. Presence of SPI1‐T3SS effector SopE was identified as major factor for damage of the SCV in the early phase after STM invasion and sopE‐expressing strains showed higher levels of cytosolic release.  相似文献   

17.
Biofilms are complex communities of bacteria encased in a matrix composed primarily of polysaccharides, extracellular DNA, and protein. Staphylococcus aureus can form biofilm infections, which are often debilitating due to their chronicity and recalcitrance to antibiotic therapy. Currently, the immune mechanisms elicited during biofilm growth and their impact on bacterial clearance remain to be defined. We used a mouse model of catheter-associated biofilm infection to assess the functional importance of TLR2 and TLR9 in the host immune response during biofilm formation, because ligands for both receptors are present within the biofilm. Interestingly, neither TLR2 nor TLR9 impacted bacterial density or inflammatory mediator secretion during biofilm growth in vivo, suggesting that S. aureus biofilms circumvent these traditional bacterial recognition pathways. Several potential mechanisms were identified to account for biofilm evasion of innate immunity, including significant reductions in IL-1β, TNF-α, CXCL2, and CCL2 expression during biofilm infection compared with the wound healing response elicited by sterile catheters, limited macrophage invasion into biofilms in vivo, and a skewing of the immune response away from a microbicidal phenotype as evidenced by decreases in inducible NO synthase expression concomitant with robust arginase-1 induction. Coculture studies of macrophages with S. aureus biofilms in vitro revealed that macrophages successful at biofilm invasion displayed limited phagocytosis and gene expression patterns reminiscent of alternatively activated M2 macrophages. Collectively, these findings demonstrate that S. aureus biofilms are capable of attenuating traditional host proinflammatory responses, which may explain why biofilm infections persist in an immunocompetent host.  相似文献   

18.
Nasopharyngeal colonization provides bacteria with a place of residence, a platform for person-to-person transmission and for many opportunistic pathogens it is a prerequisite event towards the development of invasive disease. Therefore, how host factors within the nasopharynx contribute to, inhibit or otherwise shape biofilm formation, the primary mode of existence for colonizing bacteria, and how biofilm bacteria subvert the acute inflammatory response that facilitates clearance, are important topics for future microbiological research. This review proposes the examination of host components as bridging molecules for bacterial interactions during biofilm formation, altered virulence determinant production and cell wall modification as a mechanism for immunoquiescence, and the role of host factors as signals and co-opted mechanisms for bacterial dissemination, together providing an opportunity for disease.  相似文献   

19.
A current question in biofilm research is whether biofilm-specific genetic processes can lead to differentiation in physiology and function among biofilm cells. In Pseudomonas aeruginosa, phenotypic variants which exhibit a small-colony phenotype on agar media and a markedly accelerated pattern of biofilm development compared to that of the parental strain are often isolated from biofilms. We grew P. aeruginosa biofilms in glass flow cell reactors and observed that the emergence of small-colony variants (SCVs) in the effluent runoff from the biofilms correlated with the emergence of plaque-forming Pf1-like filamentous phage (designated Pf4) from the biofilm. Because several recent studies have shown that bacteriophage genes are among the most highly upregulated groups of genes during biofilm development, we investigated whether Pf4 plays a role in SCV formation during P. aeruginosa biofilm development. We carried out immunoelectron microscopy using anti-Pf4 antibodies and observed that SCV cells, but not parental-type cells, exhibited high densities of Pf4 filaments on the cell surface and that these filaments were often tightly interwoven into complex latticeworks surrounding the cells. Moreover, infection of P. aeruginosa planktonic cultures with Pf4 caused the emergence of SCVs within the culture. These SCVs exhibited enhanced attachment, accelerated biofilm development, and large regions of dead and lysed cells inside microcolonies in a manner identical to that of SCVs obtained from biofilms. We concluded that Pf4 can mediate phenotypic variation in P. aeruginosa biofilms. We also performed partial sequencing and analysis of the Pf4 replicative form and identified a number of open reading frames not previously recognized in the genome of P. aeruginosa, including a putative postsegregational killing operon.  相似文献   

20.
细菌依其生存的环境不同能够在生物薄膜和浮游细菌两种生存形式之间转换。细菌生物薄膜的形成导致对抗生素治疗的低敏感性,是慢性感染过程中的重要因素。细菌生物薄膜形成过程涉及多种因素,相当部分已被证实为抑制生物薄膜形成的潜在靶点。本文主要就近几年抑制生物薄膜形成的靶点筛选作一介绍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号