共查询到20条相似文献,搜索用时 15 毫秒
1.
The in situ degradation of the washout fraction of starch in six feed ingredients (i.e. barley, faba beans, maize, oats, peas and wheat) was studied by using a modified in situ protocol and in vitro measurements. In comparison with the washing machine method, the modified protocol comprises a milder rinsing method to reduce particulate loss during rinsing. The modified method markedly reduced the average washout fraction of starch in these products from 0.333 to 0.042 g/g. Applying the modified rinsing method, the fractional degradation rate ( k d) of starch in barley, oats and wheat decreased from on average 0.327 to 0.144 h −1 whereas for faba beans, peas and maize no differences in k d were observed compared with the traditional washing machine rinsing. For barley, maize and wheat, the difference in non-fermented starch in the residue between both rinsing methods during the first 4 h of incubation increased, which indicates secondary particle loss. The average effective degradation of starch decreased from 0.761 to 0.572 g/g when using the new rinsing method and to 0.494 g/g when applying a correction for particulate matter loss during incubation. The in vitro k d of starch in the non-washout fraction did not differ from that in the total product. The calculated ratio between the k d of starch in the washout and non-washout fraction was on average 1.59 and varied between 0.96 for oats and 2.39 for maize. The fractional rate of gas production was significantly different between the total product and the non-washout fraction. For all products, except oats, this rate of gas production was larger for the total product compared with the non-washout fraction whereas for oats the opposite was observed. The rate of increase in gas production was, especially for grains, strongly correlated with the in vitro k d of starch. The results of the present study do not support the assumption used in several feed evaluation systems that the degradation of the washout fraction of starch in the rumen is much faster than that of the non-washout fraction. 相似文献
2.
土壤氮库对生态系统的养分循环至关重要。目前多数研究主要关注氮沉降对土壤总氮的影响, 而对土壤不同有机质组分的氮库对氮沉降响应的研究较为缺乏。该研究基于内蒙古典型草地的长期多水平施氮(0、8、32、64 g·m -2·a -1)实验平台, 利用土壤密度分级方法, 探究氮添加处理13年后典型草地中两种土壤有机质组分(颗粒态有机质(POM), 矿质结合态有机质(MAOM))氮含量的变化及调控机制。结果显示: 土壤总碳含量、POM和MAOM的碳含量在施氮处理间均没有显著差异。土壤总氮含量则随着施氮水平增加呈显著增加的趋势, 同时施氮处理下POM的氮含量显著上升, 而MAOM的氮含量没有变化。进一步分析发现, 施氮促进植物地上生物量积累, 增加了凋落物量及其氮含量, 从而导致POM的氮含量增加。由于MAOM主要通过黏土矿物等吸附土壤中小分子有机质形成, 其氮含量受土壤中黏粒与粉粒含量影响, 而与氮添加水平无显著相关关系。该研究结果表明长期氮添加促进土壤氮库积累, 但增加的氮主要分布在稳定性较低的POM中, 受干扰后容易从生态系统中流失。为了更准确地评估和预测氮沉降对陆地生态系统的氮循环过程的影响, 应考虑土壤中不同有机质组分的差异响应。 相似文献
3.
The aim of the study was to generate a database of ruminal degradability of dry matter (DM), and organic matter (OM) of different sources of concentrate ingredients (classified as protein, energy or protein+energy feeds) commonly offered to ruminants in European countries. The ruminal disappearance of DM and OM was measured using the in situ nylon bag technique, where the test feedstuffs were subject to ruminal incubation in four Friesian steers offered grass silage and concentrate. Disappearance of DM and OM from the test feeds from the rumen was measured at 0, 2, 4, 8, 14, 24 and 48 h. The exponential model of Ørskov and McDonald (1979) was used to calculate degradation kinetics. Test protein feeds were sunflower meal (SUN), rapeseed meal (RAP), soyabean meal (SBM) and cottonseed meal (CSM). Test energy feeds were palm kernel meal (PK), pollard (PO), barley (BA) and beet pulp (BP). Test protein+energy feeds were maize distillers grains (MDG), maize gluten feed (MGF), copra meal (CO) and malt combings (MC). The effective degradability (degradability of feed, whilst considering rate of flow of feed from rumen to small intestine) of DM (EDDM) and OM (EDOM) in the protein feed SBM, where outflow rate k=0.02, was not influenced (P>0.05) by the sample of feed used. For the feeds classified as protein+energy feeds, the EDDM in MGF and MC were not affected (P>0.05) by the sample of feed for k=0.02. For the remainder of the concentrate feedstuffs used in this study, the sample of feed used had a pronounced effect on in situ degradability values. These data have shown that for the majority of feeds examined in this study, the different sources of any one feed are not equal in nutritive value and it is necessary to screen feeds for nutritive value before using them in ration formulation systems. 相似文献
4.
为了解影响流溪河水库颗粒有机物(POM)碳和氮稳定同位素(δ 13C和δ 15N)变化的主要因素,及其与浮游动物δ 13C和δ 15N之间的关系,于2008年5月至12月份对POM及浮游动物的δ 13C和δ 15N进行了研究。颗粒有机物碳稳定同位素(δ 13C POM)和氮稳定同位素(δ 15N POM)的季节性变化幅度分别为5.1‰和2.2‰,5月和7月份δ 13C POM较高,而在10月和12月份降低,这主要与降雨将大量外源有机物带入水库而引起的外源及内源有机物在POM组成上发生变化有关。δ 15N POM总体呈上升趋势,可能是由降雨引起的外源负荷、初级生产力、生物固氮等因素共同作用的结果。浮游动物的δ 13C及δ 15N总的变化趋势与POM的相似,也具有明显的季节性变化,食物来源的季节变化可能是造成其变化的主要原因。在5月份,浮游动物的食物来源为POM中δ 13C较高的部分,也就是外源有机物,而在10月及12月份,其食物则可能主要为浮游植物。 相似文献
5.
氮素平衡对干物质积累与分配的影响是农业生态系统研究的重要内容,在保障产量前提下减少氮肥施用量可减少环境污染与温室气体排放。以晚播冬小麦为研究对象,设置4个施氮量水平:0 kg/hm2(N0)、168.75 kg/hm2(N1)、225 kg/hm2(N2)、281.25 kg/hm2(N3),每个施氮量水平下设置2个追氮时期处理:拔节期(S1)、拔节期+开花期(S2),研究了氮肥运筹对晚播冬小麦氮素和干物质积累与转运及氮肥利用率的影响。结果表明:拔节期追施氮肥(S1)条件下,在225 kg/hm2(N2)基础上增施25%氮肥(N3)对开花期氮素积累总量和营养器官氮素转运量无显著影响;拔节期+开花期追施氮肥(S2)条件下,随施氮量增加,开花期氮素积累总量和花后营养器官氮素转运量升高;S2较S1显著提高成熟期籽粒及营养器官氮素积累量、花后籽粒氮素积累量及其对籽粒氮素积累的贡献率。同一施氮量条件下,S2较S1提高了成熟期的干物质积累量、开花至成熟阶段干物质积累强度和花后籽粒干物质积累量。同一追氮时期条件下,籽粒产量N2与N3无显著差异,氮肥偏生产力随施氮量增加而降低;同一施氮量条件下,S2较S1提高了晚播冬小麦的籽粒产量和氮肥吸收利用率。拔节期+开花期追施氮肥,总施氮量225kg/hm2为有利于实现晚播冬小麦高产和高效的最优氮肥运筹模式。 相似文献
6.
Wheat and maize were grown in a growth chamber with the atmospheric CO 2 continuously labelled with 14C to study the translocation of assimilated carbon to the rhizosphere. Two different N levels in soil were applied. In maize 26–34% of the net assimilated 14C was translocated below ground, while in wheat higher values (40–58%) were found. However, due to the much higher shoot production in maize the total amount of carbon translocated below ground was similar to that of wheat. At high N relatively more of the C that was translocated to the root, was released into the soil due to increased root respiration and/or root exudation and subsequent microbial utilization and respiration. The evolution rate of unlabelled CO 2 from the native soil organic matter decreased after about 25 days when wheat was grown at high N as compared to low N. This negative effect of high N in soil was not observed with maize. 相似文献
7.
于2015—2017年小麦生长季在山东省泰安市农业科学研究院肥城试验基地进行田间试验,供试材料为‘泰山28',在150(A 1)、300(A 2)、450(A 3)、600 m 3·hm -2(A 4)4个灌水量和90(B 1)、135(B 2)、180(B 3)、225 kg·hm -2(B 4)4个施氮水平下,研究水氮组合对小麦生长发育过程中干物质积累、氮素积累、水分消耗利用、光合特性、籽粒产量等的影响。结果表明: A 3B 3条件下各生育阶段的干物质积累量和氮素积累量,成熟期籽粒干物质和氮素积累量均为最大,花前花后营养器官生产储藏干物质及氮素向籽粒的运输量最高,且与其他水氮组合处理差异显著。各氮素处理下,60~200 cm土层土壤耗水量均为A 3>A 4>A 2>A 1;A 3B 3处理下的水分利用效率和氮素利用效率高于A 3B 4、A 4B 3和A 4B 4。A 3B 3处理显著提高了开花后7~28 d的旗叶净光合速率、气孔导度和蒸腾速率,有利于小麦进行光合作用合成碳水化合物。水氮组合效应显著影响籽粒产量和产量构成,且A 3B 3处理下小麦产量最高,达到9400 kg·hm -2。综上,450 m 3·hm -2和180 kg·hm -2的水氮组合处理可以显著提高小麦干物质和氮素积累量,并促进干物质和氮素向籽粒运输,与高水肥处理相比,可以有效提高水分利用效率和氮素利用效率,有利于增强小麦旗叶的光合能力,产生更多的碳水化合物,增加籽粒产量。 相似文献
8.
A glasshouse experiment was conducted to study the effect of Ni on the growth and nutrients concentration in wheat ( Triticum aestivum Cv. WH 291) in the presence and absence of applied N as urea. Responses to N application were observed up to 120 g N g –1 soil. No response to Ni was observed in the dry matter yield of wheat tops (leaves + stem) in the absence of applied N while in the presence of applied N, significant yield increases were obtained at 12.5g Ni g –1 soil. Nickel was not toxic to wheat up to 50g Ni g –1 soil in the presence of 120g N g –1 soil. Nitrogen and Ni concentration in wheat tops and roots increased with increasing levels of applied N and Ni, respectively. Applied Ni had an antagonistic effect on N concentration. Similarly, N reduced the Ni concentration in the wheat tissues. Positive growth responses to Ni were associated with 22 and 15g Ni g –1 in wheat tops, in the presence of applied N at 60 and 120g N g –1 soil, while Ni toxicity was associated with 63, 92.5 and 112.5g Ni g –1 in wheat tops, in the absence and presence of applied N at 60 and 120g N g –1 soil, respectively. 相似文献
9.
It is a necessity to have a successful method to separate, quantify and define the active and passive soil organic matter
pools for appropriate verification of models. In this study, the organic carbon content of long-term bare fallow soils was
used as an indicator of the size of the stable soil organic matter pool. Although soil texture and soil structure are widely
accepted as having an influence on the stable pool, most soil organic models neglect the relationship between soil structure
and carbon stabilization. Therefore, the aim of this presentation is to estimate the size of the stable carbon pool and to
relate it to soil texture and structure properties. It was calculated that over 50 yr, under bare fallow conditions, the relative
decrease in the amount of carbon (C) for the most stable pools ranged between 2 and 12%. In comparison, for the less stabilized
pools the relative decrease was calculated from 50 to 100%. This indicates that the organic carbon content of long-term bare
fallow soils should be very similar to the size of the most stable C pool. We also observed that the amounts of carbon associated
with primary particles <20 μm for numerous soils with contrasting carbon content, soil texture, and management practices showed
a lower and an upper limit. Both these limits and the carbon content of long-term bare fallow soils (which were assumed to
be similar to the size of the stable pool) were related to the content of primary particles <20 μm in the soil. To calculate
these relationships, an equation was used including one term to describe the influence of soil texture and another to describe
that of soil structure. The calculated regression for the bare fallow soils corresponded very well to the lower limit of carbon
content associated with primary particles <20 μm. The upper limit was estimated only by increasing the regression parameter
which is related to the amount of C per unit primary particles <20 μm. Considering the many published results of the influence
of soil texture and structure on carbon stabilization processes in soil, the stable pool may be defined as the capacity of
soils to sorb C. The upper limit of carbon content associated with primary particles <20 μm may be interpreted as the capacity
of soil to protect C.
This revised version was published online in June 2006 with corrections to the Cover Date.
This revised version was published online in June 2006 with corrections to the Cover Date.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
10.
Sterols were analyzed in suspended particles collected in January 1991 in the Solo River system and in the Serayu River, Java,
Indonesia. Free sterols were extracted from particles larger than 0.7 μm and analyzed, after derivatization into their trimethylsilyl
esters, by GC and GC/MS. Concentrations of total sterols ranged from 438 to 7922 ng/1, or from 2.4 to 183.8 ng/mg of total
suspended matter, which varied from 3.3 to 400 and 471 mg/l, respectively in the Serayu River and at the downstream station
in the Solo River. POC concentrations also varied in a wide range, from 0.91 to 4.72 and 6.13% of TSM, respectively at the
above stations, and were associated with sterol/POC values ranging from 0.15 to 1.75 μg/mg. Eleven structures of C 27, C 28 and C 29 sterols and associated stanols were identified. 28Δ 3,22 was only found at downstream stations in the Solo River and in the Serayu River. This unique distribution, different from
that of other C 27, C 28 and C 29 sterols, suggests a predominantly autochthonous origin for these compounds associated with an increased planktonic biosynthesis
near the estuary. Concentrations of 28Δ 5, 29Δ 5,22 and 29Δ 5 showed similar spatial distributions and increased downstream, reflecting the significant accumulation of organic matter
originating from the vegetation of the various drainage basins.
Values of the autochthonous versus terrigenous sterol index, defined as 27Δ 5/29Δ 5,22 + 29Δ 5 were in the 1.4–1.9 range at upstream stations, whereas at downstream stations lower values were found, 0.4–0.6, which also
corresponded to higher concentrations of TSM and lower POC values.
Insofar as the stanol/stenol values can be used to estimate the bacterial activity of oxic waters, simultaneous variations
of C 27, and C 29 stenol/stanol pairs suggest rather different bacterial degradation capacities of autochthonous versus allochthonous organic
matter. The wide differencies between the values of the stenol/stanol pairs observed in one of the main tributaries and in
downstream stations of the Solo River is evidence that allochthonous organic matter is much more resistant than autochthonous
matter. The low index value observed in the Serayu River indicates the highly refractory nature of both autochthonous and
allochthonous organic material. 相似文献
11.
在自然降雨下,研究降雨,坡度,耕作和施肥对侵蚀泥沙,有机质和全N富集率的影响,分析土壤和泥沙颗粒组成,富集与泥沙有机质和全N富集的关系,揭示土壤有机质和全N在泥沙中的富集规律,结果表明,泥沙粘粒的富集导致有机质和全N的富集,泥沙粘粒,有机质和全N富集率分别平均为1.77,2.09和1.61,土壤侵蚀模数与泥沙有机质和全N富集率呈显著的负相关关系,降雨,坡度,施肥和耕作措施对泥沙有机质富集作用的影响通过减少土壤侵蚀模数来实现的,减少土壤侵蚀的措施可增加泥沙有机质和全N的富集。 相似文献
12.
在年均降水量632 mm的黄土高原南部半湿润红油土上,以NR9405、9430、偃师9号、小偃6号、陕229、西农2208、矮丰3号和商188为供试材料,进行大田试验,研究在不施氮和施氮(90 kg.hm-2)条件下不同品种冬小麦灌浆特性及物质转移效率。结果表明,冬小麦干物质生产及物质转移效率共同受品种和氮肥的影响。开花期老叶、茎鞘和成熟期茎鞘、籽粒干重间存在显著差异。施氮对开花期、成熟期地上部各部位干重均有明显的促进作用。各部位干物质转移量、转移效率和转移量对籽粒的贡献率既与品种有关,也与施氮有关;氮肥的影响又因品种不同而异。干物质转移量、转移效率和转移干物质对籽粒的贡献率在8个供试品种中,最高的是NR9405,最低的是偃师9号,除NR9405和西农2208籽粒中50%以上干物质来自于开花前贮存光合产物的再转移外,其余6个品种籽粒中50%以上的干物质来自于开花后新合成的同化产物。干物质转移量对籽粒的贡献率以穗轴+颖壳部位最低,且多数处理为负值,以茎秆为最大,叶片居中。从总体看,干物质转移量、干物质转移率和干物质转移量对粒重的贡献率在不同品种之间的差异大于施氮处理间的差异,施氮后降低了干物质向籽粒中的转移。 相似文献
13.
Waterlogging is predicted to increase in both magnitude and frequency along with global warming, and will become one of the
most severe adversities for crop production in many regions. Nitrogen is considered to be an effective up-regulatory nutrient
for crops grown under stress and non-stress conditions. In this study, we try to evaluate N fertiliser effects on contents
of carbohydrate and N dynamics, dry matter accumulation in shoot, yield under post-anthesis waterlogging. Waterlogging after
anthesis significantly reduced grain yield due to decrease in thousand-kernel-weight and in grain number per spike. High N
fertiliser application aggravated grain yield loss due to post-anthesis waterlogging. These yield losses were related to the
decreases in dry matter accumulation, redistribution of stored photosynthate to the grain, and the conversion capacity from
carbohydrate to starch in grain. The decrease in dry matter accumulation could be attributed to the reduced activities of
Pn (photosynthesis) and SPS (sucrose phosphate synthase) in the flag leaf, while the low capacity in starch synthesis could
be explained by the reduced activities of sucrose synthase (SS) and soluble starch synthase (SSS) in grain. Total N uptake
in shoot was also reduced, which could contribute to the losses in biomass and yield by waterlogging. The decrease in Pn was
inconsistent with the increase in N content in the flag leaf at high N fertiliser application under post-anthesis waterlogging. 相似文献
14.
秸秆露天焚烧作为对废弃秸秆常见的处理方式在中国普遍存在。目前的研究多集中在焚烧对区域大气环境的影响,对土壤环境的化学效应研究较少。因此,为揭示大田秸秆焚烧对土壤生物化学性质的影响,设置不焚烧(CK)、减量焚烧(A1)、全量焚烧(A2)、增量焚烧(A3)4个处理,通过连续4个月的田间小区定位试验,探究不同小麦秸秆焚烧量对耕层0—5 cm土壤有机质含量、微生物数量、土壤养分含量的即时效应和各指标在玉米各生育期内的变化情况。结果表明:小麦秸秆焚烧1 d后土壤有机质含量和微生物数量相对于CK显著降低(P0.05)。其中,有机质含量在焚烧后减少11.0%—22.1%,真菌数量降低30.8%—56.1%,细菌数量降低50.6%—72.6%,放线菌数量降低46.9%—68.3%。土壤全效和速效养分含量显著增加(P0.05):全磷含量增加6.5%—12.9%,全钾含量增加4.6%—18.1%,全氮含量增加2.6%—13.2%。速效磷含量增加9.8%—39.1%,速效钾含量增加13.2%—39.1%,铵态氮含量增加8.6%—38.7%,硝态氮含量增加1.4%—9.2%。各指标的变化幅度随焚烧量的增多而加大(A3A2A1)。玉米生育期内,焚烧处理的土壤有机质含量平均恢复5.6%(A1A2A3)。与有机质相比,焚烧处理土壤微生物数量恢复程度较高,其中细菌的恢复速率最快。在玉米苗期各焚烧处理的真菌、细菌和放线菌平均数量相对于CK依次降低12.7%、17.4%、11.9%,在大喇叭口期和成熟期,微生物数量与CK间差异不显著。速效养分含量在玉米生育期显著高于CK。在玉米苗期、大喇叭口期和成熟期,相对于CK速效磷含量平均增加24.9%、27.0%、29.2%,速效钾平均增加24.0%、14.1%、15.2%,铵态氮平均增加25.5%、23.1%、20.2%,硝态氮平均增加20.8%、19.2%、19.8%。 相似文献
15.
A simple model was developed to estimate the contribution of nitrogen (N) mineralization to the N supply of crops. In this model the soil organic matter is divided into active and passive pools. Annual soil mineralization of N is derived from the active pool. The active pool comprises stabilized and labile soil organic N. The stabilized N is built up from accumulated inputs of fresh organic N during a crop rotation but the labile N is a fraction of total N added, which mineralizes faster than the stabilized N. The passive pool is considered to have no participation in the mineralization process. Mineralization rates of labile and stabilized soil organic N from different crop residues decomposing in soil were derived from the literature and were described by the first-order rate equation dN/dt =- K*N, where N is the mineralizable organic N from crop residues and K is a constant. The data were grouped K
1 by short-term (0–1 year) and K
2 by long-term (0–10 years) incubation. Because the range of variation in K
2 was smaller than in K
1 we felt justified in using an average value to derive N mineralization from the stabilized pool. The use of a constant rate of K
1 was avoided so net N mineralization during the first year after addition is derived directly from the labile N in the crop residues. The model was applied to four Chilean agro-ecosystems, using daily averages of soil temperature and moisture. The N losses by leaching were also calculated. The N mineralization varied between 30 and 130 kg N ha –1 yr –1 depending on organic N inputs. Nitrogen losses by leaching in a poorly structured soil were estimated to be about 10% of total N mineralized. The model could explain the large differences in N- mineralization as measured by the potential N mineralization at the four sites studied. However, when grassland was present in the crop rotation, the model underestimated the results obtained from potential mineralization. 相似文献
16.
An agriculturally-impacted stream in northern Idaho was examined over a two-year period to determine seasonal and longitudinal patterns of the storage and decomposition of particulate organic matter. Biomass of benthic organic matter (BOM) was considerably less than values reported in the literature for comparable, undisturbed streams. Coarse, fine, and total benthic particulate organic matter were not correlated with parameters pertaining to stream size (e.g., stream order), but were correlated with sample site and amount of litterfall. The association of BOM with site and litterfall suggests that storage of particulate organic matter is a function of local characteristics rather than stream size. Low biomass of stored organic matter is a response to the low input of terrestrially-derived organic matter resulting from removal of climax vegetation.Leaf packs of alder, Alnus sp., were placed in the stream seasonally for 30 and 60 d. While there were significant differences for months, there was no significant difference among sites for leaf packs exposed for 30 d. Significant differences were observed among both sites and months for leaf packs exposed for 60 d; however, differences among sites accounted for only 5% of the variance. The absence of differences in decomposition of organic matter along the gradient of Lapwai Creek, despite heterogeneity of the drainage basin and availability of organic matter, may be in response to the overall low biomass of stored benthic organic matter. This study demonstrates that agricultural activity can substantially influence instream heterotrophic processes through reduced availability of organic matter and can shape community structure and ecosystem dynamics of streams flowing through agricultural drainage basins. 相似文献
17.
Many organic pollutants are readily degradable by microorganisms in soil, but the importance of soil organic matter for their transformation by specific microbial taxa is unknown. In this study, sorption and microbial degradation of phenol and 2,4-dichlorophenol (DCP) were characterized in three soil variants, generated by different long-term fertilization regimes. Compared with a non-fertilized control (NIL), a mineral-fertilized NPK variant showed 19% and a farmyard manure treated FYM variant 46% more soil organic carbon (SOC). Phenol sorption declined with overall increasing SOC because of altered affinities to the clay fraction (soil particles <2 mm in diameter). In contrast, DCP sorption correlated positively with particulate soil organic matter (present in the soil particle fractions of 63–2000 μm). Stable isotope probing identified Rhodococcus, Arthrobacter (both Actinobacteria) and Cryptococcus ( Basidiomycota) as the main degraders of phenol. Rhodococcus and Cryptococcus were not affected by SOC, but the participation of Arthrobacter declined in NPK and even more in FYM. 14C-DCP was hardly metabolized in the NIL variant, more efficiently in FYM and most in NPK. In NPK, Burkholderia was the main degrader and in FYM Variovorax. This study demonstrates a strong effect of SOC on the partitioning of organic pollutants to soil particle size fractions and indicates the profound consequences that this process could have for the diversity of bacteria involved in their degradation. 相似文献
18.
Managing soil organic matter (SOM) stocks to address global change challenges requires well‐substantiated knowledge of SOM behavior that can be clearly communicated between scientists, management practitioners, and policy makers. However, SOM is incredibly complex and requires separation into multiple components with contrasting behavior in order to study and predict its dynamics. Numerous diverse SOM separation schemes are currently used, making cross‐study comparisons difficult and hindering broad‐scale generalizations. Here, we recommend separating SOM into particulate (POM) and mineral‐associated (MAOM) forms, two SOM components that are fundamentally different in terms of their formation, persistence, and functioning. We provide evidence of their highly contrasting physical and chemical properties, mean residence times in soil, and responses to land use change, plant litter inputs, warming, CO 2 enrichment, and N fertilization. Conceptualizing SOM into POM versus MAOM is a feasible, well‐supported, and useful framework that will allow scientists to move beyond studies of bulk SOM, but also use a consistent separation scheme across studies. Ultimately, we propose the POM versus MAOM framework as the best way forward to understand and predict broad‐scale SOM dynamics in the context of global change challenges and provide necessary recommendations to managers and policy makers. 相似文献
19.
近年来,大气颗粒物成为我国城市大气的主要污染物,其中细颗粒物(PM 2.5)粒径小、沉降困难,对环境的危害已成为亟待解决的问题。森林植被可显著消减空气颗粒物,有效改善空气环境质量。本文概述了植被对颗粒物的移除过程和方法,探讨了大气颗粒物与森林植被的相互关系。从单叶、单木及群落3个尺度,结合气象因素讨论了植被对移除大气颗粒物的影响,分析了颗粒物的后续再悬浮过程及对植被的危害。最后,从植被吸附颗粒物的能力测定和评价、本土高吸附PM 2.5能力植被的筛选及综合研究不同植被配置结构的吸附效应等方面提出了植被吸附颗粒污染物,尤其是细颗粒物的研究重点与趋势。 相似文献
20.
针对乌梁素海富营养化日趋严重和湿地面积逐渐萎缩,系统地研究了其生态环境地球化学效应.结果表明,乌梁素海表层沉积物中的全氮含量存在明显的经向和纬向分异特征;沉积物中全氮养分含量与有机质含量显著相关(r>0.93);沉积物中C/N的平均值介于12.07~19.95之间,表明有机质主要来源于湖中水生植物,水体富营养化具有显著的内源性.TN和有机质在不同粒级表层沉积物中的粒度效应明显,且TN和有机质在IV粒级的含量分别为I粒级的3.1~7.6倍和2.5~8.0倍. 相似文献
|