首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Epidemiological studies and healthy eating guidelines suggest a positive correlation between ingestion of whole grain cereal and food rich in fibre with protection from chronic diseases. The prebiotic potential of whole grains may be related, however, little is known about the microbiota modulatory capability of oat grain or the impact processing has on this ability. In this study the fermentation profile of whole grain oat flakes, processed to produce two different sized flakes (small and large), by human faecal microbiota was investigated in vitro. Simulated digestion and subsequent fermentation by gut bacteria was investigated using pH controlled faecal batch cultures inoculated with human faecal slurry. The different sized oat flakes, Oat 23’s (0.53–0.63 mm) and Oat 25’s/26’s (0.85–1.0 mm) were compared to oligofructose, a confirmed prebiotic, and cellulose, a poorly fermented carbohydrate. Bacterial enumeration was carried out using the culture independent technique, fluorescent in situ hybridisation, and short chain fatty acid (SCFA) production monitored by gas chromatography. Significant changes in total bacterial populations were observed after 24 h incubation for all substrates except Oat 23’s and cellulose. Oats 23’s fermentation resulted in a significant increase in the BacteroidesPrevotella group. Oligofructose and Oats 25’s/26’s produced significant increases in Bifidobacterium in the latter stages of fermentation while numbers declined for Oats 23’s between 5 h and 24 h. This is possibly due to the smaller surface area of the larger flakes inhibiting the simulated digestion, which may have resulted in increased levels of resistant starch (Bifidobacterium are known to ferment this dietary fibre). Fermentation of Oat 25’s/26’s resulted in a propionate rich SCFA profile and a significant increase in butyrate, which have both been linked to benefiting host health. The smaller sized oats did not produce a significant increase in butyrate concentration. This study shows for the first time the impact of oat grain on the microbial ecology of the human gut and its potential to beneficially modulate the gut microbiota through increasing Bifidobacterium population.  相似文献   

2.
The present study was undertaken to investigate how three different fibre sources, sugar beet pulp, soya bean hulls and pectin residue, constituting 15% of diets for growing pigs, influenced daily body gain, feed conversion, apparent faecal digestibility and nitrogen and energy balances. Eight castrated crossbreed pigs (30-80 kg live weight) were used in a replicated 4 x 4 Latin-square design with one control diet and three fibre containing diets. Daily body weight gain and feed conversion were not affected by the dietary treatments. The apparent faecal digestibility of organic matter (OM) and energy were significantly lower for the fibre diets (OM: 0.81-0.85; energy: 0.78-0.83) compared to the control diet (OM: 0.88; energy: 0.86). The apparent faecal digestibility of crude protein (CP) was lower for the fibre diets (0.71-0.78) compared to the control diet (0.83), although it was only significantly lower for the sugar beet pulp and pectin residue diets. The pectin residue diet, which contained the highest amount of dietary fibre, lignin and insoluble non-starch polysaccharides, had the lowest digestibility of OM, CP and energy. There was a tendency (p = 0.07) for a diet effect on retained nitrogen in proportion to digested nitrogen, where the sugar beet pulp and pectin residue diets had numerically the highest values. Heat production and retained energy in proportion to metabolizable energy intake were not affected by fibre inclusion. It was concluded that the inclusion of sugar beet pulp, soya bean hulls and pectin residue in diets for growing pigs decreased the apparent faecal digestibility and in the diets with sugar beet pulp and pectin residue higher utilization of digested nitrogen for retention compensated for the lower amount of digested nitrogen.  相似文献   

3.
Two experiments were undertaken to investigate the influence of (1) pig bodyweight and (2) dietary fibre content of the diet on the in vitro gas production of sugar beet pulp fibre using faecal inoculum.In the first experiment, inocula prepared from young pigs (Y; 16–50 kg), growing pigs (G; 62–93 kg) and sows (S; 216–240 kg) were compared. Sugar beet pulp, hydrolysed in vitro with pepsin and then pancreatin, was used as the fermentation substrate. The cumulated gas productions over 144 h were modelled and the kinetics parameters compared. Lag times (Y: 4.6 h; G: 6.4 h; S: 9.2 h) and half-times to asymptote (Y: 14.7 h; G: 15.9 h; S: 20.8 h) increased with pig bodyweight (P<0.001) and the fractional degradation rates of the substrate differed between the pig categories (Y: 0.110 h−1; G: 0.115 h−1; S: 0.100 h−1; P<0.001). The final gas production was not affected (P=0.10) by the inoculum source.In the second experiment hydrolysed sugar beet pulp was fermented with four inocula prepared from pigs fed diets differing in their total and soluble dietary fibre contents, i.e. low fibre diet rich in soluble fibre (LOW-S) or in insoluble fibre (LOW-I) or high fibre diet rich in soluble fibre (HIGH-S) or in insoluble fibre (HIGH-I). The total and the soluble dietary fibres influenced the kinetics of gas production. The presence of soluble fibres decreased the lag times, whatever the total dietary fibre content (2.7 h for LOW-S versus 3.5 h for LOW-I, 4.0 h for HIGH-S versus 4.4 h for HIGH-I; P<0.001). The half-times to asymptote were higher with the low fibre diets (P<0.001) and, for similar total dietary fibre contents, they were lower when the proportion of soluble fibres increased (LOW-S: 9.9 h; LOW-I: 11.4 h; HIGH-S: 8.9 h; HIGH-I: 10.1 h; P<0.001). The fractional degradation rates of the substrate were the highest with the fibre-rich diet containing a high proportion of soluble fibres (0.158 h−1; P<0.001).In conclusion, the bodyweight of the faeces donors and the dietary fibre composition of the pig diet influence the in vitro fermentation kinetics of hydrolysed sugar beet pulp, but not the final gas production.  相似文献   

4.
The aim of this study was to investigate the effect of galacto-oligosaccharides, lactulose, apple fiber and sugar beet pectin on the composition and activity of human colonic microbiota of lean and obese healthy subjects using an in vitro model of the proximal colon: TIM-2. Substrate fermentation was assessed by measuring the production of short-chain and branched-chain fatty acids, lactate and ammonia and by studying the composition of the bacterial communities over time. The results suggest that energy harvest (in terms of metabolites) of lean and obese microbiotas is different and may depend on the fermentable substrate. For galacto-oligosaccharides and lactulose, the cumulative amount of short-chain fatty acids plus lactate produced in TIM-2 was lower in the fermentation experiments with the lean microbiota (123 and 155 mmol, respectively) compared to the obese (162 and 173 mmol, respectively). This was reversed for the pectin and the fiber. The absolute amount produced of short-chain fatty acids including lactate was higher after 72 h in the fermentation experiments with apple fiber-L (108 mmol) than with apple fiber-O (92 mmol). Sugar beet-L was also higher (130 mmol) compared to sugar beet-O (103 mmol). Galacto-oligosaccharides and lactulose boosted the balance of health-promoting over toxic metabolites produced by the microbiota from obese subjects. Firmicutes were more predominant in the inoculum prepared from feces of obese subjects compared to lean subjects. The average abundance at time zero was 92% and 74%, respectively. On the other hand, Bacteroidetes were more dominant in the microbiota prepared with homogenates from lean subjects with an average abundance of 22% compared with the microbiota prepared with homogenates from obese subjects (3.6%). This study brings evidence that different fermentable carbohydrates are fermented differently by lean and obese microbiotas, which contributes to the understanding of the role of diet and the microbiota in tackling obesity.  相似文献   

5.
Fibre is essential to maintain healthy gut; however, energy demands of performance horses can be too high to be met by forages alone. Yeast may support the function of cellulolytic bacteria to digest fibre. The aim of this work was to determine the effect of an oral supplement (VistaEQ) containing 4% live yeast on the in vitro and in vivo digestibility of high-starch (HS) and high-fibre diets (HF). Eight ponies were used in a 4 × 4 Latin square design consisting of 4- × 19-day periods and four diets: HF, HF + yeast (HFY), HS and HS + yeast (HSY). In vivo apparent digestibility (AD) was estimated using total collection technique, and faecal particle size was measured using NASCO digestive analyser. Faeces from the ponies were subsequently used as an inoculum in ANKOM RF gas production system to assess fermentation kinetics in vitro. Each module contained 1 g of feed substrate DM in the following combinations: 50% grass hay and 50% alfalfa (HF_50 : 50) or concentrate (HS_50 : 50), and 75% grass hay and 25% alfalfa (HF_75 : 25) or concentrate (HS_75 : 25) with or without yeast. Yeast was able to induce more gas production from HF_75 : 25, HS_75 : 25 and HF_50 : 50 feed substrates incubated with respective faecal inoculum base. Yeast did not affect pH in vitro when the substrates were incubated in 50 : 50 ratio, while the pH was higher for HF_75 : 25 incubated with correspondent faecal inoculum compared to HS_75 : 25 and HSY_75 : 25. Yeast had no effects on ADF and CP AD of either diet. Yeast addition increased DM (HF: 0.2%, HS: 0.4%), organic matter (HF: 0.7%, HS: 1.3%), NDF (HF: 0.5%, HS: 1.5%), total detergent fibre (HF: 0.7%; HS: 0.4%) (P < 0.05) and also tended to increase hemicellulose AD (HF: 0.9%, HS: 1.2%) (P < 0.10). Faecal pH in vivo was higher for both HF diets compared to HS diet without yeast supplementation (P < 0.001, HF and HFY: 6.8; HS: 6.6, HSY: 6.7). However, no difference was observed in faecal pH when HSY was compared to both HF diets. Yeast had no effect on the size of the faecal particles (P > 0.05). Yeast increased in vitro gas production, suggesting more energy could be extracted from the feed, and the in vivo AD of some of the nutrients when HF and HS diets were fed.  相似文献   

6.
Recent studies have shown that Salmonella shedding status affects sows’ microbiota during gestation and that these modifications are reflected in the faecal microbiota of their piglets at weaning. The aims of this study were: (a) to evaluate the persistence, up to the fattening period, of the previously measured link between the microbiota of piglets and their mothers’ Salmonella shedding status; and (b) measure the impact of the measured microbiota variations on their Salmonella excretion at this stage. To achieve this, 76 piglets born from 19 sows for which the faecal microbiota was previously documented, were selected in a multisite production system. The faecal matter of these swine was sampled after 4 weeks, at the fattening stage. The Salmonella shedding status and faecal microbiota of these animals were described using bacteriological and 16S rRNA gene amplicon sequencing respectively. The piglet digestive microbiota association with the Salmonella shedding status of their sows did not persist after weaning and did not affect the risk of Salmonella excretion during fattening, while the birth mother still affected the microbiota of the swine at fattening. This supports the interest in sows as a target for potentially transferrable microbiota modifications.  相似文献   

7.
Abstract

The present study was undertaken to investigate how three different fibre sources, sugar beet pulp, soya bean hulls and pectin residue, constituting 15% of diets for growing pigs, influenced daily body gain, feed conversion, apparent faecal digestibility and nitrogen and energy balances. Eight castrated crossbreed pigs (30 – 80 kg live weight) were used in a replicated 4 × 4 Latin-square design with one control diet and three fibre containing diets. Daily body weight gain and feed conversion were not affected by the dietary treatments. The apparent faecal digestibility of organic matter (OM) and energy were significantly lower for the fibre diets (OM: 0.81 – 0.85; energy: 0.78 – 0.83) compared to the control diet (OM: 0.88; energy: 0.86). The apparent faecal digestibility of crude protein (CP) was lower for the fibre diets (0.71 – 0.78) compared to the control diet (0.83), although it was only significantly lower for the sugar beet pulp and pectin residue diets. The pectin residue diet, which contained the highest amount of dietary fibre, lignin and insoluble non-starch polysaccharides, had the lowest digestibility of OM, CP and energy. There was a tendency (p = 0.07) for a diet effect on retained nitrogen in proportion to digested nitrogen, where the sugar beet pulp and pectin residue diets had numerically the highest values. Heat production and retained energy in proportion to metabolizable energy intake were not affected by fibre inclusion. It was concluded that the inclusion of sugar beet pulp, soya bean hulls and pectin residue in diets for growing pigs decreased the apparent faecal digestibility and in the diets with sugar beet pulp and pectin residue higher utilization of digested nitrogen for retention compensated for the lower amount of digested nitrogen.  相似文献   

8.
Soluble fermentable dietary fibre elicits gut adaptations, increases satiety and potentially offers a natural sustainable means of body weight regulation. Here we aimed to quantify physiological responses to graded intakes of a specific dietary fibre (pectin) in an animal model. Four isocaloric semi-purified diets containing 0, 3.3%, 6.7% or 10% w/w apple pectin were offered ad libitum for 8 or 28 days to young adult male rats (n = 8/group). Measurements were made of voluntary food intake, body weight, initial and final body composition by magnetic resonance imaging, final gut regional weights and histology, and final plasma satiety hormone concentrations. In both 8- and 28-day cohorts, dietary pectin inclusion rate was negatively correlated with food intake, body weight gain and the change in body fat mass, with no effect on lean mass gain. In both cohorts, pectin had no effect on stomach weight but pectin inclusion rate was positively correlated with weights and lengths of small intestine and caecum, jejunum villus height and crypt depth, ileum crypt depth, and plasma total glucagon-like peptide-1 (GLP-1) and peptide tyrosine tyrosine (PYY) concentrations, and at 8 days was correlated with weight and length of colon and with caecal mucosal depth. Therefore, the gut’s morphological and endocrine adaptations were dose-dependent, occurred within 8 days and were largely sustained for 28 days during continued dietary intervention. Increasing amounts of the soluble fermentable fibre pectin in the diet proportionately decreased food intake, body weight gain and body fat content, associated with proportionately increased satiety hormones GLP-1 and PYY and intestinal hypertrophy, supporting a role for soluble dietary fibre-induced satiety in healthy body weight regulation.  相似文献   

9.
The effects of soluble fiber inclusion in gestation diets with varying fermentation characteristics (fermentation kinetics and short-chain fatty acids (SCFA)-profile) on lactational feed intake of sows and their piglet growth over two parities were investigated using an in vitroin vivo methodology. After breeding, 90 multiparous Landrace sows were randomized to one of three experimental diets: the control (CON) diet, konjac flour (KF) diet or sugar beet pulp (SBP) diet. All diets had similar levels of net energy, CP, insoluble fiber and NDF, but KF and SBP diets had higher soluble fiber levels than the CON diet. During gestation, the sows were restrictively fed with three different diets, but during lactation, all the sows were similarly fed ad libitum. The three gestation diets were enzymatically hydrolyzed using pepsin and pancreatin, and enzymolyzed residues were used in in vitro fermentation. Gas and SCFA production were monitored during fermentation. After fermentation, enzymolyzed residues of KF or SBP diets resulted in higher final asymptotic gas volume than those of the CON diet. The enzymolyzed residues of KF diet were mainly part of rapidly fermented fractions, whereas those of SBP diet were mainly part of slowly fermented fractions. In addition, the acetic acid, butyric acid and total SCFA concentrations of enzymolyzed residues of KF diet were higher (P<0.01) than the control and SBP diets. In the in vivo studies, on day 90 of gestation, the KF diet sows had higher plasma SCFA concentration (P<0.05) at 4 h after feeding than the CON diet sows. Furthermore, the KF diet sows had lower plasma free fatty acid (FFA) concentration (P<0.01) at 4 h after feeding, and a lower value of homeostasis model assessment (HOMA)-insulin resistance (P<0.05), but a higher value of HOMA-insulin sensitivity (P<0.01). The KF diet sows also consumed more feed during lactation (P<0.01) and weaned significantly heavier pigs (P<0.01) than the CON diet sows. The overall results showed that the high fermentation capacity KF diet contributed to an increased lactational feed intake and improved performance of piglets in the second reproductive cycle.  相似文献   

10.
Two experiments were undertaken to adapt the in vitro gas production technique in syringes, used for ruminants, to fibre fermentation studies in the large intestine of pigs.In a first experiment, two inocula (faeces and large intestine content) were compared at four dilution levels in a buffer solution (0.025, 0.05, 0.1 and 0.2 g ml−1) with two substrates: wheat bran and sugar–beet pulp. The accumulated gas produced over 72 h was modelled and the kinetics parameters compared. The time to half asymptote was lower for the intestinal inoculum (5.5 versus 8.0 h, P<0.02), but the 2 inocula yielded similar fractional rates of degradation (0.16 h−1) and gave equal final gas production (252 ml g−1 substrate). No interaction (P>0.05) was observed between inocula and substrates. The dilution of the samples in the buffer solution increased (P<0.001) the lag time (from 0.9 to 2.1 h for dilution rates ranging from 0.2 to 0.025 g ml−1, respectively) and decreased (P<0.001) the rates of substrate degradation (from 0.18 to 0.13 h−1).A second experiment aimed to study the effect of an in vitro pepsin–pancreatin hydrolysis of the sample prior to the gas test. Six substrates were tested: maize, wheat bran, sugar–beet pulp, lupins, peas and soybean meal. The enzymatic hydrolysis affected (P<0.001) the kinetics parameters and the ranking order of the fermented substrates. The lag times also increased for all ingredients. The rate of degradation decreased when peas, lupins, maize and wheat bran were hydrolysed (P<0.001) but it increased with soybean meal (P=0.014) and sugar–beet pulp (P<0.001). Final gas production increased with peas and soybean meal (P<0.001), remained unchanged for lupins and decreased for the other substrates (P<0.001).In conclusion, the method using faeces as a source of microbial inoculum is reliable to characterise the fermentation kinetics of ingredients in the large intestine of pigs. However, it is important to hydrolyse the substrates with pepsin and pancreatin before the gas tests.  相似文献   

11.
Dietary yeast culture supplementation can contribute to the performance and health of sows and piglets, but few studies have focused on the relationships between the effects of yeast culture and gut microbiota. This study investigated the effect of yeast culture (Saccharomyces cerevisiae) supplementation from late gestation to weaning on the reproductive performance of lactating sows and their faecal microbiota. One hundred and six purebred Landrace sows, of parities two to six were selected and randomly assigned to a control (CON) and yeast culture supplementation (YC) groups based on parity and back fat thickness. The YC sows were individually fed with yeast culture at a dose of 24 g/d from day 90 of gestation to parturition and 40 g/d during lactational period. Blood samples were collected from sows on d 110 of gestation and at weaning at day 21 of lactation for plasma hormone and immunoglobulin analysis. Colostrum and milk on day 20 of lactation were collected for composition analysis. Faecal samples from sows on day 110 of gestation and day 20 of lactation were collected for short-chain fatty acid and faecal microbial analysis. Results showed that the farrowing performance of YC sows did not differ significantly from the CON group (P > 0.05). The average daily feed intake by the YC group during the lactation period was significantly increased by 9.98% (P = 0.004), the weaning-to-oestrus interval was shortened by 0.96 d (P = 0.046) and average daily weight gain of piglets increased by 7.14% (P = 0.036) compared with the CON group. Yeast culture supplementation also significantly improved the average daily milk yield in the first week of lactation (P = 0.035), lactose content in colostrum (P = 0.046), protein (P = 0.033) and DM (P < 0.001) content of milk. In the YC group, concentrations of plasma ghrelin (P = 0.02) and IgG (P = 0.015) were increased compared with the CON group, while that of glucagon-like peptide-1 was decreased (P = 0.006) on d 110 of gestation. The 16S rRNA gene sequencing showed that faecal microbiota changed at taxonomic levels with yeast culture addition (P < 0.05). Dietary yeast culture supplementation from late gestation to lactation improved feed intake, immunity status, milk yield, milk quality and faecal microbiota of sows, resulting in the improved growth performance of piglets.  相似文献   

12.

Background  

A study was designed to elucidate effects of selected carbohydrates on composition and activity of the intestinal microbiota. Five groups of eight rats were fed a western type diet containing cornstarch (reference group), sucrose, potato starch, inulin (a long- chained fructan) or oligofructose (a short-chained fructan). Fructans are, opposite sucrose and starches, not digestible by mammalian gut enzymes, but are known to be fermentable by specific bacteria in the large intestine.  相似文献   

13.
Abstract Chemostat cultures of human faecal bacteria were used to determine the bifidogenic effect of oligofructose, a fermentable carbohydrate found in a number of plants. In single stage continuous culture, oligofructose preferentially enriched for bifidobacteria, in comparison to sucrose and inulin. This stimulatory effect was enhanced at a high dilution rate, high substrate concentration and low pH. These parameters are likely to approximate to those that occur in the proximal colon. Studies with a three-stage continuous culture model of the large intestine confirmed the bifidogenic effect of oligofructose. These in vitro data indicate that an increase in the concentration of fructose-based oligosaccharides in the diet may alter the balance of the gut microflora towards bifidobacteria, a purported health-promoting genus.  相似文献   

14.
Dietary fibre is a major energy source for the human gut microbiota, but it is unclear to what extent the fibre source and complexity affect microbial growth and metabolite production. Cell wall material and pectin were extracted from five different dicotyledon plant sources, apples, beet leaves, beetroots, carrots and kale, and compositional analysis revealed differences in the monosaccharide composition. Human faecal batch incubations were conducted with 14 different substrates, including the plant extracts, wheat bran and commercially available carbohydrates. Microbial activity was determined for up to 72 h by measuring gas and fermentation acid production, total bacteria (by qPCR) and microbial community composition by 16S rRNA amplicon sequencing. The more complex substrates gave rise to more microbiota variation compared with the pectins. The comparison of different plant organs showed that the leaves (beet leaf and kale) and roots (carrot and beetroot) did not give rise to similar bacterial communities. Rather, the compositional features of the plants, such as high arabinan levels in beet and high galactan levels in carrot, appear to be major predictors of bacterial enrichment on the substrates. Thus, in-depth knowledge on dietary fibre composition should aid the design of diets focused on optimizing the microbiota.  相似文献   

15.
In vitro gas production kinetics of six different substrates, pectin (PEC), xylan (XYL), starch (STA), cellulose (CEL), commercial compound feed (FEED; 201 g crude protein per kg, 155 g crude fibre per kg, 334 g neutral-detergent fibre (NDF) per kg and 190 g acid-detergent fibre (ADF) per kg) and an NDF prepared from commercial compound feed (NDFFEED) were determined using the caecum contents of weaned rabbits (36 days of age) and of rabbits at slaughter age (78 days of age) as inoculums. The cumulated gas production over 96 h of incubation was modelled with Gompertz model, and the kinetic parameters compared. The total potential gas production (parameter ‘B’ of the Gompertz model) was not affected (P>0.05) by the inoculum source, except with STA, where rabbits at slaughter weight had significantly higher total potential fermentability (314 ml/g dry matter (DM)) than those at weaning age (189 ml/g DM). Intensities of fermentation (maximum fermentation rate; MFR) of PEC (32.2 ml/h) and XYL (24.4 ml/h) were significantly greater in rabbits at weaning, while that of STA (45 ml/h) was significantly lower than at slaughter age (23.0, 14.3 and 14.0 ml/h for PEC, XYL and STA, respectively). The MFRs of CEL and NDFFEED were very similar between inoculum sources. In the first 10 h of fermentation which correspond to the normal retention time of the substrates in the caecum, the highest amount of gas was produced from PEC, followed by FEED and XYL. These substrates had a time of maximum fermentation rate (TMFR) at both rabbit ages short enough (8.0 and 9.5 h for PEC, 9.5 and 6.6 h for FEED, 13.7 and 14.2 h for XYL at weaning and at slaughter age, respectively) to be almost completely fermented in vivo.  相似文献   

16.
The aim of the experiment on 180 weaned piglets (8.9 kg body weight) was to investigate the influence of high fibre diets formulated with different fibrous ingredients on performance, nutrient digestibility, diarrhoea incidence and numbers of faecal microbiota. The dietary treatments included a Control diet and five high fibre diets formulated with different fibre sources including wheat bran, soybean hulls, naked oat hulls, palm kernel expeller and bamboo fibre. The high fibre diets averaged 14.6% neutral detergent fibre with different non-starch polysaccharides (NSP) components and were fed ad libitum for 28 d. Faecal samples were collected during the last 3 d of the experiment and the apparent total tract digestibility of nutrients and fibre components were determined. Pigs fed the Control and wheat bran diets had a higher (≤ 0.05) average daily gain (ADG) than pigs fed the palm kernel expeller and bamboo meal diets. The reduced ADG for pigs appeared to be related to reductions in the digestibility of gross energy and dry matter, respectively. The feed-to-gain ratio was significantly higher (≤ 0.05) for pigs fed the fibre diets. The digestibility of NSP components was different among the treatments. The diarrhoea incidence was not affected by treatments. The abundance of faecal bifidobacteria was significantly higher (≤ 0.05) for pigs fed the wheat bran diet than for pigs fed the bamboo meal diet. It was concluded that the diets formulated with different fibre sources when fed to weaned piglets have different effects on pig performance, nutrient digestibility and numbers of faecal microbiota. The wheat bran diet rich in arabinoxylans enabled a better performance than the other tested diets with fibre addition.  相似文献   

17.
Aquatic ferns (AFs) such as Azolla filiculoides and Salvinia molesta are grown on swine lagoons in the tropics and used in diets for pigs. The present work is aimed at evaluating their potential as feed ingredients for sows. When presented with ad libitum AFs, gilts weighing 110 ± 14 kg (mean ± SD), were able to ingest 9.1–9.7 kg fresh AF per day (from 597 to 630 g dry matter (DM) per day) and from 1240 to 1428 g DM per day when presented in a dry, ground form. A digestibility study was conducted, using sows weighing 213 ± 9 kg (mean ± SD), which were fed diets containing maize, soybean meal and 0, 150 or 300 g AF kg−1 diet. The presence of AFs had a negative impact on the faecal digestibility of the crude protein, NDF and energy content of the whole diet (P<0.001) and on the ileal protein digestibility, especially with 300 g AFs kg−1 diet. The level of AFs in the diet had no effect on stomach weight (P>0.05) but increased the weight of the rest of the gastrointestinal tract (P<0.001). The rate of AF fibre fermentation in the pig large intestine was measured using an in vitro gas test. The rates were much lower than tropical tree foliage, which can also be used in pig diets in the tropics. This could partly explain the low apparent digestibility of AFs in pigs. In conclusion, the inclusion level of AFs in rations for sows should be limited to 150 g AFs kg−1 diet due to the low digestibility and energy density, as well as the negative impact on the digestibility of the whole diet.  相似文献   

18.
Resin acid-enriched composition (RAC) mainly containing tall oil fatty acid with an active component of resin acid (RA) can improve the microbial population in the digestive system, change the microbial fermentation, and improve the feed conversion ratio. We investigated the effects of dietary supplementation of RAC on sow colostrum yield (CY), colostrum composition and gut microbiota. Tall oil fatty acid and RA are commonly termed RAC and CLA, pinolenic, abietic, dehydrobiotic acids are characteristic components of RAC. The experiment was conducted in three trials in three respective herds. Sows were fed with a control diet and the same diet supplemented with 5 g RAC/day per sow during the last week of gestation. The 16S ribosomal RNA gene sequencing technique was used to assess sows’ faecal microbiota populations at farrowing. Colostrum nutritional composition, acute phase proteins (APPs) and immunoglobulin (Ig) content were also assessed. Individual piglets were weighed at birth and 24 h after the birth of first piglets in order to calculate CY and later at 3 to 4 weeks to calculate average daily gain. The RAC-fed sows had significantly higher IgG levels (P<0.05) in all three herds but treatment did not influence colostrum IgA and IgM concentration. There were no significant differences in colostrum protein, lactose and fat content in sows of the two diet groups (P>0.05), but those fed RAC had higher levels of colostrum serum amyloid A. Colostrum yield was significantly higher in RAC-fed sows in herds 2 and 3 with heavier piglets between 3 and 4 weeks of age (P<0.05), but not in herd 1 (P>0.05). Resin acid-enriched composition supplementation significantly increased some beneficial and fermentative bacteria (Romboutsia and Clostridium sensu stricto) than the control diet (P<0.01) while some opportunistic pathogens (Barnesiella, Sporobacter, Intestinimonas and Campylobacter), including Proteobacteria, were suppressed. Therefore, RAC added to the sow diet at late pregnancy increases colostrum IgG, colostrum availability for neonate piglets, and seems to promote better maternal intestinal microbial sources.  相似文献   

19.
Aims: To investigate the impact of human milk oligosaccharides (HMOs) from a single donor (SO), HMOs from multiple donors (PO), a fructooligosaccharides and galactooligosaccharides mixture (FG) on the composition of a batch culture inoculated with faecal microbiota from formula‐fed infants. Methods and Results: Three substrates were compared using 24‐h pH‐controlled anaerobic batch cultures inoculated with infant faecal slurries. Changes in bacterial populations, short‐chain fatty acids (SCFA) production and bacterial 16S rRNA gene profiles were determined. All three substrates significantly increased numbers of bifidobacteria, bacteroides and those aligning with the clostridial cluster XIVa. Neither the FG nor the HMOs substrates supported the growth of the Clostridium perfringens–histolyticum group. SCFA production corresponded to changes observed in bacterial populations. Denaturing gradient gel electrophoresis fingerprint analysis showed a distinct profile of faecal bacteria present in each infant. Conclusions: HMOs modulated infant faecal culture composition in a similar manner to the prebiotic mixture FG in vitro. Significance and Impact of the Study: This is the first demonstration of the impact of pure HMOs on the mixed culture of infant faecal bacteria. HMOs induced the growth of several saccharolytic bacterial groups and may thus play a role in the health‐promoting attributes of human breast milk and have an extended significance in infant diet during/after weaning.  相似文献   

20.
In pigs, the microbial ecosystem of the gastrointestinal tract (GIT) is influenced by various factors; however, variations in diet composition have been identified as one of the most important determinants. Marked changes in fermentation activities and microbial ecology may occur when altering the diet, for example, from milk to solid feed during weaning. In that way, access of pathogens to the disturbed ecosystem is alleviated, leading to infectious diseases and diarrhea. Thus, there is increasing interest in improving intestinal health by use of dietary ingredients suitable to beneficially affect the microbial composition and activity. For example, fermentable carbohydrates have been shown to promote growth of beneficial Lactobacillus species and bifidobacteria, thereby enhancing colonization resistance against potential pathogens or production of short-chain fatty acids, which can be used as energy source for epithelial cells. On the other hand, fermentation of protein results in the production of various potentially toxic products, such as amines and NH3, and is often associated with growth of potential pathogens. In that way, excessive protein intake has been shown to stimulate the growth of potentially pathogenic species such as Clostridium perfringens, and to reduce fecal counts of beneficial bifidobacteria. Therefore, it seems to be a promising approach to support growth and metabolic activity of the beneficial microbiota by developing suitable feeding strategies. For example, a reduction of dietary CP content and, at the same time, dietary supplementation with fermentable carbohydrates have proven to successfully suppress protein fermentation. In addition, the intestinal microbiota seems to be sensible to variations in dietary protein source, such as the use of highly digestible protein sources may reduce growth of protein-fermenting and potentially pathogenic species. The objective of the present review is to assess the impact of dietary protein on microbiota composition and activity in the GIT of piglets. Attention will be given to studies designed to determine the effect of variations in total protein supply, protein source and supplementation of fermentable carbohydrates to the diet on composition and metabolic activity of the intestinal microbiota.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号