首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We examined HeLa cell viability and RNA oxidative damage in response to hydrogen peroxide (H2O2) treatment. The level of damaged RNA, measured by the content of 8-hydroxyguanosine (7,8-dihydro-8-oxoguanosine, 8-oxoG), increases depending on H2O2 dosage and is inversely correlated with cell viability. The elevated level of 8-oxoG in RNA decreases after removal of oxidative challenge, suggesting the existence of surveillance mechanism(s) for cleaning up oxidized RNA. Human polynucleotide phosphorylase (hPNPase), an exoribonuclease primarily located in mitochondria, has been previously shown to bind 8-oxoG-RNA with high affinity. The role of hPNPase in HeLa cell under oxidative stress conditions is examined here. Overexpression of hPNPase reduces RNA oxidation and increases cell viability against H2O2 insult. Conversely, hPNPase knockdown decreases viability and increases 8-oxoG level in HeLa cell exposed to H2O2. Our results suggest that hPNPase plays an important role in protecting cells and limiting damaged RNA under oxidative stress.  相似文献   

2.
The most potent of the dioxins, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), is a persistent and ubiquitous environmental contaminant. And the health impact of exposure to TCDD is of great concern to the general public. Recent data indicate that l-glutamine (Gln) has antioxidant properties and may influence hepatotoxicity. The objective of the present study was undertaken to explore the effectiveness of Gln in alleviating the hepatotoxicity of TCDD on primary cultured rat hepatocytes. Gln (0.5, 1 and 2 mM) was added to cultures alone or simultaneously with TCDD (0.005 and 0.01 mM). The hepatocytes were treated with TCDD and Gln for 48 h. Then cell viability was detected by [3-(4,5-dimethyl-thiazol-2-yl) 2,5-diphenyltetrazolium bromide] (MTT) assay and lactate dehydrogenase (LDH) release, while total antioxidant capacity (TAC), total glutathione (TGSH) and total oxidative stress (TOS) levels were determined to evaluate the oxidative injury. The DNA damage was also analyzed by liver micronucleus assay (MN) and 8-oxo-2-deoxyguanosine (8-OH-dG). The results of MTT and LDH assays showed that TCDD decreased cell viability but not l-glutamine. TCDD also increased TOS level in rat hepatocytes and significantly decreased TAC and TGSH levels. On the basis of increasing doses, the dioxin in a dose-dependent manner caused significant increases of micronucleated hepatocytes (MNHEPs) and 8-OH-dG as compared to control culture. Whereas, in cultures exposured with Gln alone, TOS levels were not changed and TAC and TGSH together were significantly increased in dose-dependent fashion. The presence of Gln with TCDD modulated the hepatotoxic effects of TCDD on primary hepatocytes cultures. Noteworthy, Gln has a protective effect against TCDD-mediated DNA damages. As conclusion, we reported here an increased potential therapeutic significance of l-glutamine in TCDD-mediated hepatic injury for the first time.  相似文献   

3.
Background/aimThe ingestion of contaminated seafood by MeHg is considered the main route of human exposure, turning the salivary gland one important target organ. The salivary glands play critical roles in maintaining oral health homeostasis, producing saliva that maintains the oral microbiota, initiation of the digestion of macromolecules, and being essential in maintaining the integrity of the adjacent soft tissues and teeth. Thus, this study aimed to investigate the effects of MeHg exposure on human salivary gland cells line.MethodsCells were exposed to 1–6 μM of MeHg for 24 h, and analysis of toxicity was performed. Based on these results, the LC50 was calculated and two concentrations were chosen (0.25 and 2.5 μM MeHg) to evaluate intracellular mercury (Hg) accumulation (THg), metabolic viability and oxidative stress parameters (GSH:GSSG ratio, lipid peroxidation, protein oxidation and DNA damage).ResultsThe results demonstrated accumulation of THg as we increased the MeHg concentrations in the exposure and, the higher the dose, the lower is the cell metabolic response. In addition, the 2.5 μM MeHg concentration also triggered oxidative stress in human salivary gland cells by depleting the antioxidant competence of GSH:GSSG ratio and increasing lipid peroxidation and proteins carbonyl levels, but no damages to DNA integrity.ConclusionIn conclusion, although these two elected doses did not show lethal effects, the highest dose triggered oxidative stress and new questionings about long-term exposure models are raised to investigate furthers cellular damages to human salivary gland cells caused by MeHg exposure to extrapolate in a translational perspective.  相似文献   

4.
BackgroundThe reactive oxygen species generated by numerous xenobiotic substances has as consequences the impairment of different organs normal function. Many plants pose antioxidant activity to counteract oxidative stress, among them being the chokeberry (Aronia melanocarpa). The purpose of present study was to determine if the use of A. melanocarpa extract can counteract the oxidative stress induced by cisplatin administration in rats.Material and methodsThe study was made on forty Wistar rats divided in four groups as follows: C (control): receiving i.p. 1 mL of saline solution; E1: receiving cisplatin 20 mg/kg bw, i.p.; E2: receiving cisplatin 20 mg/kg bw, i.p and A. melanocarpa berry 6 % aqueous extract as drinking water, and CB (control blank): i.p 1 mL saline solution and A. melanocarpa 6 % aqueous extract for four weeks. Results. Administration of Cisplatin was followed by the increase of serum superoxide dismutase (+21.18 %, P < 0.05), catalase (+25.44 %, P < 0.001), glutathione peroxidase (+17.88 %, P < 0.05) and thiobarbituric reactive substances (+28.17 %, P < 0.01) but significantly decreased glutathione reductase (−22.35 %, P < 0.001) level comparative to control, pointing out that administration of cisplatin induced oxidative stress in rats. In groups that received A. melanocarpa extract as drinking water, we noted that the levels of the oxidative stress biomarkers tended to be restored almost to normal levels, which could be a possible good antioxidant used in condition to cisplatin use. Also, we noted a significant (P < 0.001) decrease of total antioxidant capacity in liver and kidney of rats exposed to cisplatin, recovered in those that received chokeberry. Studied trace elements important for the stress oxidative enzymes (Cu, Zn, Fe and Mn) were decreased in cisplatin exposed groups compared to control and mainly all were almost to normal level in groups receiving A. melanocarpa. Conclusion. A. melanocarpa extract due to its antioxidants content could offer protection against free radicals produced as a consequence of cisplatin use.  相似文献   

5.
6.
This paper evaluates the effects of testosterone (0.5 mg/kg subcutaneously (s.c.) for 8 days) on oxidative stress and cell damage induced by 3-nitropropionic acid (20 mg/kg intraperitoneally (i.p.) for 4 days) in ovariectomized rats. Gonadectomy triggered oxidative damage and cell loss, evaluated by the detection of caspase-3, whereas 3-nitropropionic acid increased the levels of oxidative stress induced by ovariectomy and prompted cell damage characterized by enhanced levels of lactate dehydrogenase. These changes were blocked by testosterone administration. Our results support the following conclusions: i) ovariectomy triggers oxidative and cell damage via caspase-3 in the striatum; ii) 3-nitropropionic acid exacerbates oxidative stress induced by ovariectomy and leads to cell damage characterized by increased levels of lactate dehydrogenase; iii) testosterone administration decreases oxidative stress and cell damage. Additionally, these data support the hypothesis that testosterone might play an important role in the onset and development of neurodegenerative diseases.  相似文献   

7.
The overproduction of reactive oxygen species (ROS) causes oxidative stress, such as Hydrogen peroxide (H2O2). Acute oxidative stress is one of the main reasons for cell death. In this study, the antioxidant properties of vanillic acid- a polyphenolic compound was evaluated. Therefore, this study aims to check the effectiveness of vanillic acid in H2O2-induced oxidative stress in D. Mel-2 cell line. The efficacy was determined by biochemical tests to check the ROS production. The cytotoxicity of H2O2 and vanillic acid was checked by MTT assay. The DNA fragmentation was visualized by gel electrophoresis. Protein biomarkers of oxidative stress were analyzed by western blotting. The results depict a promising antioxidant effect of vanillic acid. The IC50 value of vanillic acid and H2O2 was found 250 μg/ml and 125 μg/ml, respectively. The catalase activity, SOF, GPx, and PC was seen less in H2O2 treated group compared with the control and vanillic acid treated group. However, the TBRAS activity was hight in H2O2 treated group. The effect of H2O2 on DNA fragmentation was high as compared with vanillic acid-treated cells. The protein expression of Hsp70, IL-6 and iNOS was seen significant in a vanillic acid-treated group as compared with H2O2 treated group. These results reinforce that at low concentration, vanillic acid could be used as an antioxidant agent in the food and pharmaceutical industries.  相似文献   

8.
《Process Biochemistry》2014,49(2):195-202
The antioxidant response system of Phanerochaete chrysosporium against menadione-induced oxidative stress was investigated in this study. The superoxide anion radical levels in tested menadione-supplemented conditions generally decreased over the incubation period. The level of hydrogen peroxide and the activities of NAD(P)H oxidase, superoxide dismutase (SOD) and catalase (CAT) were higher than those in the controls at all incubation times. The highest NADH and NADPH oxidase activities were determined to be 4.9- and 5.0-fold higher than those in the control, respectively in cells exposed to 0.75 mM menadione. The SOD and CAT activities increased with increasing menadione, and their highest activities were 5.4- and 5.1-fold higher than those in the control, respectively. In 0.1–0.5 mM menadione exposed cells, the lipid peroxidation levels did not change significantly when compared to each other, except 8th hour of incubation (p > 0.01). Our result shows that although menadione induces the formation of reactive oxygen species, the antioxidant response system of P. Chrysosporium is able to negate menadione-induced oxidative stress up to relatively high menadione concentrations, as 0.75 mM. These results are important to determine the effects of menadione, as a medicine, on the antioxidant response system of eukaryotic models and the resulting level of damage.  相似文献   

9.
10.
Sickle cell disease (SCD) is characterized by reperfusion injury and chronic oxidative stress. Oxidative stress and hemolysis in SCD result in inactivation of nitric oxide (NO) and depleted arginine levels. We hypothesized that augmenting NO production by arginine supplementation will reduce oxidative stress in SCD. To this end, we measured the effect of arginine (5% in mouse chow) on NO metabolites (NOx), lipid peroxidation (LPO), and selected antioxidants in transgenic sickle mouse models. Untreated transgenic sickle (NY1DD) mice (expressing  75% βS-globin of all β-globins; mild pathology) and knockout sickle (BERK) mice (expressing exclusively hemoglobin S; severe pathology) showed reduced NOx levels and significant increases in the liver LPO compared with C57BL mice, with BERK mice showing maximal LPO increase in accordance with the disease severity. This was accompanied by reduced activity of antioxidants (glutathione, total superoxide dismutase, catalase, and glutathione peroxidase). However, GSH levels in BERK were higher than in NY1DD mice, indicating a protective response to greater oxidative stress. Importantly, dietary arginine significantly increased NOx levels, reduced LPO, and increased antioxidants in both sickle mouse models. In contrast, nitro-L-arginine methylester, a potent nonselective NOS inhibitor, worsened the oxidative stress in NY1DD mice. Thus, the attenuating effect of arginine on oxidative stress in SCD mice suggests its potential application in the management of this disease.  相似文献   

11.
In order to determine whether cell membrane permeability, activities of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT) and peroxidase (POX) and K+ vs. Na+ selectivity could be used as effective selection criteria for salt tolerance in canola (Brassica napus L.) four lines, Dunkled, CON-III, Rainbow and Cyclone were subjected to non-saline (control) or saline (150 mM NaCl) conditions for 30 d in hydroponics. Cultivar Dunkled was the highest and cv. Cyclone the lowest, whereas both CON-III and Rainbow the intermediate in shoot and root masses. Relative membrane permeability (RMP) was recorded to be the lowest in salt-tolerant Dunkled, whereas the reverse was true in salt-sensitive Cyclone. RMP was found to be associated with the activities of antioxidant enzymes, SOD, CAT and POX determined in the present study, the activities of these enzymes being highest in cv. Dunkled and lowest in cv. Cyclone, whereas intermediate in the other two lines. Since the lines did not differ significantly for shoot K+/Na+ ratios and shoot K+ vs. Na+ selectivity, these traits did not prove to be good indicators of salt tolerance in the canola lines examined. Overall relative cell membrane permeability and activities of antioxidant enzymes (SOD, CAT and POX) proved to be very effective in discriminating the canola cultivars for salt tolerance.  相似文献   

12.
The steroidogenic capacity and oxidative stress-related parameters of the human corpus luteum (CL) at different stages of the luteal phase were studied under basal and human chorionic gonadotropin (hCG)-stimulated conditions. Mid CL exhibited the maximal steroidogenic capacity, together with lower levels of glutathione and higher thiobarbituric acid reactants content, macrophage count, and superoxide dismutase (SOD) activity, compared to the late CL. Addition of hCG to luteal cell cultures led to a preferential increase in progesterone synthesis in the late CL compared to the mid CL, without changes in the oxidative stress-related parameters, except for the increased SOD activity found in the late CL. It is concluded that an oxidative stress condition is established in the mid CL, coinciding with the maximal steroidogenic capacity and macrophage infiltration of the organ, which be of relevance as one of the major mechanisms initiating CL involution in the human.  相似文献   

13.
Overexpression of alpha-synuclein and oxidative stress has been implicated in the neuronal cell death in Parkinson's disease. Alpha-synuclein associates with mitochondria and excessive accumulation of alpha-synuclein causes impairment of mitochondrial functions. However, the mechanism of mitochondrial impairment caused by alpha-synuclein is not fully understood. We recently reported that alpha-synuclein associates with mitochondria and that overexpression of alpha-synuclein causes nitration of mitochondrial proteins and release of cytochrome c from the mitochondria [Parihar M.S., Parihar A., Fujita M., Hashimoto M., Ghafourifar P. Mitochondrial association of alpha-synuclein causes oxidative stress. Cell Mol Life Sci. 2008a;65:1272–1284]. The present study shows that overexpression of alpha-synuclein A53T or A30P mutants or wild-type in human neuroblastoma cells augmented aggregation of alpha-synuclein. Immunoblotting and immuno-gold electron transmission microscopy show localization of alpha-synuclein aggregates within the mitochondria of overexpressing cells. Overexpressing cells show increased mitochondrial reactive oxygen species, increased protein tyrosine nitration, decreased mitochondrial transmembrane potential, and hampered cellular respiration. These findings suggest an important role for mitochondria in cellular responses to alpha-synuclein.  相似文献   

14.
15.
Indices of oxidative stress viz., superoxide radical and H2O2 content increased in leaves of all the cultivars with the rise in salinity level, the increase was more pronounced and significant in salt-sensitive varieties and non-significant in resistant cultivars. Except for glutathione reductase (GR), basal activities of all other antioxidative enzymes viz. superoxide dismutase (SOD), catalase (CAT), peroxidase (POX), ascorbate peroxidase (APX) and glutathione reductase (GR) were significantly higher in leaves of all the resistant cultivars as compared to the sensitive ones. A differential response of salinity was observed on various enzymatic and non-enzymatic components of antioxidant system in leaves of salt-tolerant and salt-sensitive cultivars of rice (Oryza sativa L.). Activities of superoxide dismutase and glutathione reductase enhanced in all the tolerant cultivar while declined in the sensitive cultivars with increasing salinity from 0 to 100 mM. Salt-stress induced the activities of catalase and peroxidase in all the cultivars but the magnitude of increase was more pronounced in the sensitive cultivars than in the tolerant cultivars. Contrarily, APX activity increased in the salt-sensitive cultivars but showed no significant change in the salt-tolerant cultivars. The amount of ascorbic acid content, reduced glutathione (GSH), reduced/oxidized glutathione (GSSG) ratio was higher in leaves of the tolerant cultivars than that of the sensitive cultivars under saline conditions. It is inferred that leaves of salt-tolerant cultivars tend to attain greater capacity to perform reactions of antioxidative pathway under saline conditions to combat salinity-induced oxidative stress.  相似文献   

16.
Oxidative stress is detrimental to sperm function and a significant factor in the etiology of male infertility. Present study evaluates the effect of ter butyl hydroperoxide (TBHP)-induced oxidative stress on the spermatogenic process and cell number in the seminiferous tubules. Intraperitoneal injection of TBHP (84 μmol TBHP/100 g body weight) for 2 weeks to male Balb/c mice resulted in enhanced lipid peroxidation (P < 0.0001) decrease in reduced glutathione (P < 0.0001) and increase in the oxidized glutathione levels (P = 0.007) in the testis. Status of spermatogenesis after the treatment was assessed by the quantitative methods of germ cell evaluation in the seminiferous tubules. A significant decrease in the number of young spermatids (P = 0.0003) and pachytene cells (P = 0.022) was observed. A marked reduction was also seen in the mature spermatid number (P < 0.0001). An increase in testicular mRNA levels of redox-regulated cjun (P = 0.008) and cfos (P = 0.0006) subunits of activator protein 1 (AP1) was observed after TBHP treatment. Evaluation of AP1 regulated antioxidant enzymes in the testis revealed an increase in γ-glutamyl cysteine synthetase (GCS) mRNA expression (P = 0.001). These results suggest a potential role of AP1 in oxidative stress-mediated meiotic and post meiotic changes in the spermatogenic process and regulation of cell number in male reproductive system.  相似文献   

17.
The beneficial effects of antioxidant nutrients, as well as complex plant extracts, in cerebral ischemia/reperfusion brain injury are well known. Mediterranean diet, rich in olive products, is associated with lower incidence of cardiovascular disease, cancer, inflammation and stroke. In this study, the possible neuroprotective effect of standardized dry olive leaf extract (OLE) is investigated for the first time. Transient global cerebral ischemia in Mongolian gerbils was used to investigate the OLE effects on different parameters of oxidative stress and neuronal damage in hippocampus. The biochemical measurements took place at different time points (80 min, 2, 4 and 24 h) after reperfusion. The effects of applied OLE were compared with effects of quercetin, a known neuroprotective plant flavonoid. Pretreatment with OLE (100 mg/kg, per os) significantly inhibited production of superoxide and nitric oxide, decreased lipid peroxidation, and increased superoxide dismutase activity in all time points examined. Furthermore, OLE offered histological improvement as seen by decreasing neuronal damage in CA1 region of hippocampus. The effects of applied OLE were significantly higher than effects of quercetin (100 mg/kg, per os). Our results indicate that OLE exerts a potent neuroprotective activity against neuronal damage in hippocampus after transient global cerebral ischemia, which could be attributed to its antioxidative properties.  相似文献   

18.
Ferric nitrilotriacetate (Fe-NTA) is a known potent nephrotoxic agent. In this communication, we report the chemopreventive effect of soy isoflavones on renal oxidative stress, toxicity and cell proliferation response in Wistar rats. Fe-NTA (9 mg Fe/kg body weight, intraperitoneally) enhances gamma-glutamyl transpeptidase, renal lipid peroxidation, xanthine oxidase and hydrogen peroxide (H2O2) generation with reduction in renal glutathione content, antioxidant enzymes, viz., glutathione peroxidase, glutathione reductase, catalase, glucose-6-phosphate dehydrogenase and phase-II metabolising enzymes such as glutathione-S-transferase and quinone reductase. Fe-NTA treatment also induced tumor promotion markers, viz., ornithine decarboxylase (ODC) activity and thymidine [3H] incorporation into renal DNA. A sharp elevation in the levels of blood urea nitrogen and serum creatinine has also been observed. Treatment of rats orally with soy isoflavones (5 mg/kg body weight and 10 mg/kg body weight) resulted in significant decreases in gamma-glutamyl transpeptidase, lipid peroxidation, xanthine oxidase, H2O2 generation, blood urea nitrogen, serum creatinine, renal ODC activity and DNA synthesis (P < 0.001). Renal glutathione content (P < 0.01), glutathione metabolizing enzymes (P < 0.001) and antioxidant enzymes were also returned to normal levels (P < 0.001). Thus, our data suggest that soy isoflavones may be used as an effective chemopreventive agent against Fe-NTA-mediated renal oxidative stress, toxicity and cell proliferation response in Wistar rats.  相似文献   

19.
ObjectiveInflammation has been considered as an important factor in cardiovascular diseases (CVD). Curcumin has been well known for its anti-inflammatory effects. In current research, protective effect of curcumin on cardiovascular oxidative stress indicators in systemic inflammation induced by lipopolysaccharide (LPS) was investigated in rats.Material and methodsThe animals were divided into five groups and received the treatments during two weeks [1]: Control in which vehicle was administered instead of curcumin and saline was injected instead of LPS [2], LPS group in which vehicle of curcumin plus LPS (1 mg/kg) was administered [3-5], curcumin groups in them three doses of curcumin (5, 10 and 15 mg/kg) before LPS were administered.ResultsAdministration of LPS was followed by an inflammation status presented by an increased level of white blood cells (WBC) (p < 0.001). An oxidative stress status was also occurred after LPS injection which was presented by an increased level of malondialdehyde (MDA) while, a decrease in thiols, superoxide dismutase (SOD) and catalase(CAT) in all heart, aorta and serum (p < 0.001). The results also showed that curcumin decreased WBC (doses: 10 and 15 mg/kg) (p < 0.001) accompanying with a decrease in MDA (P < 0.01 and P < 0.001). Curcumin also improved the thiols and the activities of SOD and catalase (P < 0.05, P < 0.01 and P < 0.001).ConclusionBased on our findings, curcumin can ameliorates oxidative stress and inflammation induced by LPS in rats to protect the cardiovascular system.  相似文献   

20.
Agronomic biofortification with zinc (Zn) may be engaged to improve the nutritious value of food crops along-with tolerance to water deficit conditions. The Zn may increase plant resistance to water stress by boosting physiological and enzymatic antioxidants defense mechanisms. Major objective of this study was to investigate the effect of foliar applied Zn on grain zin biofortification and drought tolerance in wheat. Treatments include application of Zinc at terminal growth phases (BBCH growth stage 49 and BBCH growth stage 65) with five levels: 0 (control-ck), water spray, 5, 10 and 15 mM under two levels of water regimes; well-watered (where 80% water holding capacity (WHC) was maintained in the soil) and water stress, (where 40% WHC was maintained in the soil). Results revealed that water stress significantly reduced relative water contents, gas exchange attributes, plant height, yield and yield related attributes of wheat. In contrast, hydrogen peroxide, free proline levels, activities of malondialdehyde, and concentration of soluble protein were markedly increased under water stress condition. Application of various levels of Zn significantly improved the CAT, SOD, POD and ASP activities at 40% WHC compared with control treatment. Foliarly applied 10 and 15 mM Zn predominantly reduced the damaging impact of water stress by improving the plant status in the form of plant height, RWC and gas exchange attributes. Likewise, wheat plant treated with 10 mM Zn under water stress condition increased the grain yield by improving number of grains per spike, 100 grain weight and biological yield compared with control. Moreover, increasing Zn levels also increased Zn concentration in grains and leaves. Overall, this study suggests that optimum level of Zn (10 mM) might be promising for alleviating the adverse impacts of water stress and enhance the grain biofortification in wheat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号