首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the classic in situ method, small particles are removed during rinsing and hence their fractional degradation rate cannot be determined. A new approach was developed to estimate the fractional degradation rate of nutrients in small particles. This approach was based on an alternative rinsing method to reduce the particulate matter loss during rinsing and on quantifying the particulate matter loss that occurs during incubation in the rumen itself. To quantify particulate matter loss during incubation, loss of small particles during the in situ incubation was studied using undegradable silica with different particle sizes. Particulate matter loss during incubation was limited to particles smaller than ~40 μm with a mean fractional particulate matter loss rate of 0.035 h−1 (first experiment) and 0.073 h−1 (second experiment) and an undegradable fraction of 0.001 and 0.050, respectively. In the second experiment, the fractional particulate matter loss rate after rinsing in a water bath at 50 strokes per minute (s.p.m.) (0.215 h−1) and the undegradable fraction at 20 s.p.m. (0.461) were significantly larger than that upon incubation in the rumen, whereas the fractional particulate matter loss rate (0.140 and 0.087 h−1, respectively) and the undegradable fraction (0.330 and 0.075, respectively) after rinsing at 30 and 40 s.p.m. did not differ with that upon rumen incubation. This new approach was applied to estimate the in situ fractional degradation rate of insoluble organic matter (OM) and insoluble nitrogen (N) in three different wheat yeast concentrates (WYC). These WYC were characterised by a high fraction of small particles and estimating their fractional degradation rate was not possible using the traditional washing machine rinsing method. The new rinsing method increased the mean non-washout fraction of OM and N in these products from 0.113 and 0.084 (washing machine method) to 0.670 and 0.782, respectively. The mean effective degradation (ED) without correction for particulate matter loss of OM and of N was 0.714 and 0.601, respectively, and significant differences were observed between the WYC products. Applying the correction for particulate matter loss reduced the mean ED of OM to 0.676 (30 s.p.m.) and 0.477 (40 s.p.m.), and reduced the mean ED of N to 0.475 (30 s.p.m.) and 0.328 (40 s.p.m.). These marked reductions in fractional degradation rate upon correction for small particulate matter loss emphasised the pronounced effect of correction for undegraded particulate matter loss on the fractional disappearance rates of OM and N in WYC products.  相似文献   

2.
In recent years, advances in plant breeding were achieved, which potentially led to modified nutritional values of cereal grains. The present study was conducted in order to obtain a broad overview of ruminal digestion kinetics of rye, triticale and barley grains, and to highlight differences between the grain species. In total, 20 genotypes of each grain species were investigated using in situ and in vitro methods. Samples were ground (2 mm), weighed into polyester bags, and incubated in situ 1 to 48 h in three ruminally cannulated lactating dairy cows. The in vitro gas production of ground samples (1 mm) was measured according to the ‘Hohenheim Gas Test’, and cumulative gas production was recorded over different time spans for up to 72 h. There were significant differences (P<0.05) between the species for most parameters used to describe the in situ degradation of starch (ST) and dry matter (DM). The in situ degradation rate (c) and effective degradability (assuming a passage rate of 8%/h; ED8) of ST differed significantly between all grains and was highest for rye (rye: 116.5%/h and 96.2%; triticale: 85.1%/h and 95.0%; barley: 36.2%/h and 90.0% for c and ED8, respectively). With respect to DM degradation, the ranking of the species was similar, and predicted c values exhibited the highest variation within species. The in vitro gas production rate was significantly higher (P<0.05) for rye than for triticale and barley (rye: 12.5%/h; triticale: 11.5%/h; barley: 11.1%/h). A positive relationship between the potential gas production in vitro and the maximal degradable DM fraction in situ was found using all samples (r=0.84; P<0.001) as well as rye (P=0.002) and barley (P<0.001) alone, but not for triticale. Variation in ruminal in situ degradation parameters within the grain species resulted from the high c values, but was not reflected in the ED estimates. Therefore, the usage of mean values for the ED of DM and ST for each species appears reasonable. Estimated metabolisable energy concentrations (ME, MJ/kg DM) and the estimated digestibility of organic matter (dOM, %) were significantly lower (P<0.05) for barley than for rye and triticale. Rye and triticale dOM and ME values were not significantly different (P=0.386 and 0.485).  相似文献   

3.
Ruminal in situ incubations are widely used to assess the nutritional value of feedstuffs for ruminants. In in situ methods, feed samples are ruminally incubated in indigestible bags over a predefined timespan and the disappearance of nutrients from the bags is recorded. To describe the degradation of specific nutrients, information on the concentration of feed samples and undegraded feed after in situ incubation (‘bag residues’) is needed. For cereal and pea grains, CP and starch (ST) analyses are of interest. The numerous analyses of residues following ruminal incubation contribute greatly to the substantial investments in labour and money, and faster methods would be beneficial. Therefore, calibrations were developed to estimate CP and ST concentrations in grains and bag residues following in situ incubations by using their near-infrared spectra recorded from 680 to 2500 nm. The samples comprised rye, triticale, barley, wheat, and maize grains (20 genotypes each), and 15 durum wheat and 13 pea grains. In addition, residues after ruminal incubation were included (at least from four samples per species for various incubation times). To establish CP and ST calibrations, 620 and 610 samples (grains and bag residues after incubation, respectively) were chemically analysed for their CP and ST concentration. Calibrations using wavelengths from 1250 to 2450 nm and the first derivative of the spectra produced the best results (R2Validation=0.99 for CP and ST; standard error of prediction=0.47 and 2.10% DM for CP and ST, respectively). Hence, CP and ST concentration in cereal grains and peas and their bag residues could be predicted with high precision by NIRS for use in in situ studies. No differences were found between the effective ruminal degradation calculated from NIRS estimations and those calculated from chemical analyses (P>0.70). Calibrations were also calculated to predict ruminal degradation kinetics of cereal grains from the spectra of ground grains. Estimation of the effective ruminal degradation of CP and ST from the near-infrared spectra of cereal grains showed promising results (R2>0.90), but the database needs to be extended to obtain more stable calibrations for routine use.  相似文献   

4.
The objectives of this study were (1) to evaluate in situ ruminal dry matter (DM), crude protein (CP) and starch degradation characteristics and in vitro gas production (GP) kinetics using a set of 20 different maize grain genotypes and (2) to predict the effective degradation (ED) of CP and starch from chemical and physical characteristics alone or in combination with in vitro GP measurements. Maize grains were characterised by different chemical and physical characteristics. Ruminal in situ degradation was measured in three lactating Jersey cows. Ground grains (sieve size: 2 mm) were incubated in bags for 1, 2, 4, 8, 16, 24, 48 and 72 h. Bag residues were analysed for CP and starch content. Degradation kinetics was determined and the ED of DM, CP and starch calculated using a ruminal passage rate of 5%/h and 8%/h. The GP of the grains (sieve size: 1 mm) was recorded after 2, 4, 6, 8, 12, 24, 48 and 72 h incubation in buffered rumen fluid and fitted to an exponential equation to determine GP kinetics. Correlations and stepwise multiple linear regressions were evaluated for the prediction of ED calculated for a passage rate of 5%/h (ED5) for CP (EDCP5) and starch (EDST5). The in situ parameters and ED5 varied widely between genotypes with average values (±SD) of 64% ± 4.2, 62% ± 4.1 and 65% ± 5.2 for ED5 of DM, EDCP5 and EDST5 and were on average 10 percentage points lower for a passage rate of 8%/h. Degradation rates varied between 4.8%/h and 7.4%/h, 4.1%/h and 6.5%/h and 5.3%/h and 8.9%/h for DM, CP and starch, respectively. These rates were in the same range as GP rates (6.0–8.3%/h). The EDCP5 and EDST5 were related to CP concentration and could be evaluated in detail using CP fractions and specific amino acids. In vitro GP measurements and GP rates correlated well with EDCP5 and EDST5 and predicted EDCP5 and EDST5 in combination with the chemical characteristics of the samples. Equations can be used to obtain quick and cost effective information on ruminal degradation of CP and starch from maize grains.  相似文献   

5.
6.
ABSTRACT

Dairy cows are commonly fed compound feed concentrates, whose accurate formulation relies on the additivity of ruminal degradation characteristics of single feeds, and the absence of associative effects. The main aim of this study was to evaluate the additivity of single feeds in compound feeds made thereof. Twelve single feeds were used to produce eight compound feeds in mash and pelleted form. Samples of single and compound feeds were incubated in situ in three ruminally fistulated dairy cows, and effective ruminal degradation (ED) of CP and starch (ST) was computed. The ED values of examined compound feeds could be, in most cases, accurately calculated from ED values of single feeds. Observed EDCP values were significantly lower than that calculated, but differences were overall small and not exceeded 5% points. No significant differences were observed between calculated and observed EDST. The study also examined the effects of pelleting of compound feeds on in situ degradation. Pelleting significantly increased EDCP (up to 8% points), and EDST (up to 4% points) of most compound feeds. This could have been caused by the pelleting process increasing the proportion of fine feed particles with fast disappearance from the bags. It was concluded that small associative effects between the examined single feeds could be disregarded when formulating compound feeds for dairy cows, and that additivity of EDCP and EDST can be assumed in most cases.  相似文献   

7.
This study included 33 samples with main focus on unprotected or rumen-protected rapeseed and soybean feedstuffs, which were analysed using an enzymatic in vitro procedure (EIVP) in order to determine intestinal crude protein (CP) digestibility (IPD) of ruminally undegraded CP. The EIVP involved the sequential digestion of samples with a protease from Streptomyces griseus, pepsin-HCl and pancreatin. Briefly, the EIVP started with determination of true protein. Feeds were incubated for 18 h in a buffer solution at a constant ratio (41 U/g) of S. griseus protease activity to feed true protein. The dried residues were incubated in pepsin-HCl solution for 1 h, and residues from this step were incubated in pancreatin solution for 24 h. Results appeared to have lower IPD dimensions than literature data of previous studies. In addition, a negative correlation became apparent between acid detergent fibre and IPD, as well as a positive correlation between CP, true protein and IPD. The EIVP in its current, strictly standardised form can be applied to develop a database that can be used for protein evaluation systems for establishing tabular values of IPD. Nevertheless, future studies may be hindered since sufficient reference values, i.e. in vivo data, are completely missing.  相似文献   

8.
Urban particulate matter (UPM) contributes to lung cancer incidence. UPM has been shown to be genotoxic to mammalian cells and to induce mutations in the Ames assay. Here, we have studied the induction of mutations generated by direct acting mutagenic components of UPM, using the supF forward mutation assay. Plasmid pSP189 was exposed to UPM in aqueous solution in the presence of sucrose buffer, to reduce strand breaks. The mutation frequency induced by 1 μg/μl UPM was 4.99 mutants per 104 colonies. This was reduced to 0.84 and 1.48 mutants per 104 colonies by addition of mannitol (1 mM) or EDTA (1 mM), respectively. A large percentage of mutant plasmids contained frameshift mutations (57%), and 31% of mutant plasmids contained multiple mutations. Of the base substitution mutations, 88% were at GC pairs, with twice as many transversions as transitions. The types of mutations induced, the reduction of mutagenicity by the inclusion of the free radical scavenger, mannitol, or the metal chelator, EDTA, and the sequence context of the induced mutations all support the conclusion that the majority of mutations were induced by reactive oxygen species generated by metal ions present in the UPM. Most mutation studies with UPM have focused on organic carcinogens present on UPM. Our results highlight the potential contribution of metal ions to the mutagenicity of UPM.  相似文献   

9.
The in vitro digestibility of two-stage dried olive cake (TSDOC) and olive leaves (OL) unsupplemented or supplemented with increasing amounts of urea (U) or sunflower meal (SM) (0, 1.5, 2 and 2.5 g/100 g organic matter (OM) of the by-product) was determined. Chemical and amino acid composition, in vitro digestibility, in situ rumen degradability of crude protein and amino acids, and in situ–in vitro intestinal digestibility of SM CP and amino acids was determined. The in sacco rumen degradability and in vitro intestinal availability of CP and individual amino acids were also determined. Results obtained in Granadina goats and Segureña wethers were compared. SM provides arginine, glycine and aspartic and glutamic acids. The addition of increasing amounts of U or SM improved (P<0.001) the IVDMD and IVOMD of both TSDOC and OL. There was no effect (P>0.05) of the rumen inoculum origin on in vitro TSDOC digestibility. In contrast, values for OL were higher (P<0.001) for goats versus sheep. In sacco ruminal CP degradability of SM was relatively high, and similar in sheep and goats (ED=0.78 and 0.75 for sheep and goats). Individual amino acid ruminal degradability had different values, being lowest for methionine, leucine, proline, tyrosine and cysteine. Values obtained for individual amino acids differed from those of CP. Apparent intestinal digestibility of undegraded protein (AIDUP) of SM was high (0.86 and 0.98, respectively, for sheep and goats). The intestinally absorbable protein (IADP) was low (18.9 and 24.0 for sheep and goats, respectively). Results indicate that goats and sheep have the same capacity for TSDOC digestion, but goats showed a better capacity than sheep for OL utilisation. Although the amino acids supply to the intestine from SM is not important it could be a good supplement for low degradable protein feedstuffs such as TSDOC and OL.  相似文献   

10.
Native corn starch was hydrolyzed with 0.36% HCl in methanol at 25 and 45 °C for periods of time up to 240 h. The action of acid penetration and hydrolysis was investigated by confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM), high-performance anion-exchange chromatography (HPAEC) and high-performance size-exclusion chromatography (HPSEC) equipped with viscometry, right-angle laser light scattering (RALLS) and refractive index (RI) detectors. Corn starch hydrolyzed at 45 °C for 240 h showed strong intensity of APTS (8-amino-1,3,6-pyrenetrisulfonic acid) fluorescence and sharp growth ring structure. Exocorrosion over the surface of corn starch was only observed on the corn starch hydrolyzed at 25 °C for 240 h and observed on all corn starch hydrolyzed at 45 °C. The Mw and Rh of acid-hydrolyzed corn starch decreased with increasing the degree of hydrolysis. The acid hydrolysis rate in methanol of corn starch was mainly dependent on the temperature, which dominated the penetration efficiency of acid.  相似文献   

11.
Ruminal zearalenone (ZEA) degradation in “in vitro” digestion was examined in different variants using the Hohenheimer Gas Test. First, the mycotoxin degradation was measured using squeezed rumen fluid from solid digesta of the dorsal sack and free rumen fluid from the ventral sack, respectively. Then free rumen, fluid of the ventral sac was used with addition of concentrate and mixtures of concentrate with sun-flower oil and starch, respectively. Within 24 hours ZEA was degraded down to 63% and 49% of the initial concentration when incubated with solid and fluid rumen digesta, respectively. Using additives and rumen fluid concentrate for incubation, concentrate, concentrate with oil and concentrate with starch, respectively, a reduction of ZEA to 46, 56 and 37% of the initial toxin concentration was observed. Presented at the 26th Mykotoxin-Workshop in Herrsching, Germany, May 17–19 2004 Financial support: German Academic Exchange Service (approval of a grant) and Famy Foundation  相似文献   

12.
The ruminal degradation of P bound in phytate (InsP6) can vary between feeds, but data on ruminal degradation of InsP6 from different feedstuffs for cattle are rare. One objective of this study was to increase the data base on ruminal effective degradation of InsP6 (InsP6ED) and to assess if InsP6ED of compound feeds (CF) can be calculated from comprising single feeds. As a second objective, use of near-infrared spectroscopy (NIRS) to predict InsP6 concentrations was tested. Nine single feeds (maize, wheat, barley, faba beans, soybeans, soybean meal (SBM), rapeseed meal (RSM), sunflower meal (SFM), dried distillers’ grains with solubles (DDGS)) and two CF (CF1/CF2), consisting of different amounts of the examined single feeds, were incubated for 2, 4, 8, 16, 24, 48 and 72 h in the rumen of three ruminally fistulated Jersey cows. Samples of CF were examined before (CF1/CF2 Mash) and after pelleting (CF1/CF2 Pellet), and InsP6ED was calculated for all feeds at two passage rates (InsP6ED5: k = 5%/h; InsP6ED8: k = 8%/h). For CF1 and CF2, InsP6ED was also calculated from values of the respective single feeds. Near-infrared spectra were recorded in duplicate and used to establish calibrations to predict InsP6 concentration. Besides a global calibration, also local calibrations were evaluated by separating samples into different data sets based on their origin. The InsP6ED8 was highest for faba beans (91%), followed by maize (90%), DDGS (89%), soybeans (85%), wheat (76%) and barley (74%). Lower values were determined for oilseed meals (48% RSM, 65% SFM, 66% SBM). Calculating InsP6ED of CF from values of single feeds underestimated observed values up to 11 percentage points. The NIRS calibrations in general showed a good performance, but statistical key data suggest that local calibrations should be established. The wide variation of InsP6ED between feeds indicates that the ruminal availability of P bound in InsP6 should be evaluated individually for feeds. This requires further in situ studies with high amounts of samples for InsP6 analysis. Near-infrared spectroscopy has the potential to simplify the analytical step of InsP6 in the future, but the calibrations need to be expanded.  相似文献   

13.
The release of energy from particulate substrates such as dietary fiber and resistant starch (RS) in the human colon may depend on the presence of specialist primary degraders (or ‘keystone species'') within the microbial community. We have explored the roles of four dominant amylolytic bacteria found in the human colon in the degradation and utilization of resistant starches. Eubacterium rectale and Bacteroides thetaiotaomicron showed limited ability to utilize RS2- and RS3-resistant starches by comparison with Bifidobacterium adolescentis and Ruminococcus bromii. In co-culture, however, R. bromii proved unique in stimulating RS2 and RS3 utilization by the other three bacterial species, even in a medium that does not permit growth of R. bromii itself. Having previously demonstrated low RS3 fermentation in vivo in two individuals with undetectable populations of R. bromii-related bacteria, we show here that supplementation of mixed fecal bacteria from one of these volunteers with R. bromii, but not with the other three species, greatly enhanced the extent of RS3 fermentation in vitro. This argues strongly that R. bromii has a pivotal role in fermentation of RS3 in the human large intestine, and that variation in the occurrence of this species and its close relatives may be a primary cause of variable energy recovery from this important component of the diet. This work also indicates that R. bromii possesses an exceptional ability to colonize and degrade starch particles when compared with previously studied amylolytic bacteria from the human colon.  相似文献   

14.
15.
An Arabidopsis thaliana gene encoding a homologue of the potato alpha-glucan, water dikinase GWD, previously known as R1, was identified by screening the Arabidopsis genome and named AtGWD3. The AtGWD3 cDNA was isolated, heterologously expressed and the protein was purified to apparent homogeneity to determine the enzymatic function. In contrast to the potato GWD protein, the AtGWD3 primarily catalysed phosphorylation at the C-3 position of the glucose unit of preferably pre-phosphorylated amylopectin substrate with long side chains. An Arabidopsis mutant, termed Atgwd3, with downregulated expression of the AtGWD3 gene was analysed. In Atgwd3 the amount of leaf starch was constantly higher than wild type during the diurnal cycle. Compared with wild-type leaf starch, the level of C-3 phosphorylation of the glucosyl moiety of starch in this mutant was reduced. Taken together, these data indicate that the C-3 linked phospho-ester in starch plays a so far unnoticed specific role in the degradation of transitory starch.  相似文献   

16.
Several in situ studies have been conducted on maize silages to determine the effect of individual factors such as maturity stage, chop length and ensiling of maize crop on the rumen degradation but the information on the relationship between chemical composition and in situ rumen degradation characteristics remains scarce. The objectives of this study were to determine and describe relationships between the chemical composition and the rumen degradation characteristics of dry matter (DM), organic matter (OM), CP, starch and aNDFom (NDF assayed with a heat stable amylase and expressed exclusive of residual ash) of maize silages. In all, 75 maize silage samples were selected, with a broad range in chemical composition and quality parameters. The samples were incubated in the rumen for 2, 4, 8, 16, 32, 72 and 336 h, using the nylon bag technique. Large range was found in the rumen degradable fractions of DM, OM, CP, starch and aNDFom because of the broad range in chemical composition and quality parameters. The new database with in situ rumen degradation characteristics of DM, OM, CP, starch and aNDFom of the maize silages was obtained under uniform experimental conditions; same cows, same incubation protocol and same chemical analysis procedures. Regression equations were developed with significant predictors (P<0.05) describing moderate and weak relationships between the chemical composition and the washout fraction, rumen undegradable fraction, potentially rumen degradable fraction, fractional degradation rate and effective rumen degradable fraction of DM, OM, CP, starch and aNDFom.  相似文献   

17.
When the starch branching enzyme IIb (BEIIb) gene was introduced into a BEIIb-defective mutant, the resulting transgenic rice plants showed a wide range of BEIIb activity and the fine structure of their amylopectins showed considerable variation despite having the two other BE isoforms, BEI and BEIIa, in their endosperm at the same levels as in the wild-type. The properties of the starch granules, such as their gelatinization behaviour, morphology and X-ray diffraction pattern, also changed dramatically depending on the level of BEIIb activity, even when this was either slightly lower or higher than that of the wild-type. The over-expression of BEIIb resulted in the accumulation of excessive branched, water-soluble polysaccharides instead of amylopectin. These results imply that the manipulation of BEIIb activity is an effective strategy for the generation of novel starches for use in foodstuffs and industrial applications.  相似文献   

18.
Aims:  Common belief suggests that starch is less cariogenic than sugar; however, the related literature is quite controversial. We aimed to compare cariogenic and microbiological effects of soluble starch in both a standard animal model and an oral biofilm system, and to assess the possible substitution of the animal model.
Methods and Results:  Six-species biofilms were grown anaerobically on enamel discs in saliva and medium with glucose/sucrose, starch (average molecular weight of 5000, average polymerization grade of 31), or mixtures thereof. After 64·5 h of biofilm formation, the microbiota were quantitated by cultivation and demineralization was measured by quantitative light-induced fluorescence. To assess caries incidence in rats, the same microbiota as in the biofilm experiments were applied. The animals were fed diets containing either glucose, glucose/sucrose, glucose/sucrose/starch or starch alone. Results with both models show that demineralization was significantly smaller with starch than sucrose.
Conclusions:  The data demonstrate that soluble starch is substantially less cariogenic than glucose/sucrose.
Significance and Impact of the Study:  By leading to the same scientific evidence as its in vivo counterpart, the described in vitro biofilm system provides an interesting and valuable tool in the quest to reduce experimentation with animals.  相似文献   

19.
Aims There are numerous grassland ecosystem types on the Tibetan Plateau. These include the alpine meadow and steppe and degraded alpine meadow and steppe. This study aimed at developing a method to estimate aboveground biomass (AGB) for these grasslands from hyperspectral data and to explore the feasibility of applying air/satellite-borne remote sensing techniques to AGB estimation at larger scales.Methods We carried out a field survey to collect hyperspectral reflectance and AGB for five major grassland ecosystems on the Tibetan Plateau and calculated seven narrow-band vegetation indices and the vegetation index based on universal pattern decomposition (VIUPD) from the spectra to estimate AGB. First, we investigated correlations between AGB and each of these vegetation indices to identify the best estimator of AGB for each ecosystem type. Next, we estimated AGB for the five pooled ecosystem types by developing models containing dummy variables. At last, we compared the predictions of simple regression models and the models containing dummy variables to seek an ecosystem type-independent model to improve prediction of AGB for these various grassland ecosystems from hyperspectral measurements.Important findings When we considered each ecosystem type separately, all eight vegetation indices provided good estimates of AGB, with the best predictor of AGB varying among different ecosystems. When AGB of all the five ecosystems was estimated together using a simple linear model, VIUPD showed the lowest prediction error among the eight vegetation indices. The regression models containing dummy variables predicted AGB with higher accuracy than the simple models, which could be attributed to the dummy variables accounting for the effects of ecosystem type on the relationship between AGB and vegetation index (VI). These results suggest that VIUPD is the best predictor of AGB among simple regression models. Moreover, both VIUPD and the soil-adjusted VI could provide accurate estimates of AGB with dummy variables integrated in regression models. Therefore, ground-based hyperspectral measurements are useful for estimating AGB, which indicates the potential of applying satellite/airborne remote sensing techniques to AGB estimation of these grasslands on the Tibetan Plateau.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号