首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过 2 a、4个区试点和 5种基因型及其互作效应研究 ,运用混合线性模型和 MINQU E(1)法 ,对箭豌豆包括株高在内的9个农艺性状可塑性进行评价 ,揭示了年份和区试点的生态环境效应、基因型与生态环境互作效应对各农艺性状的可塑性。结果表明 ,种子产量和千粒重等性状的基因型与生态环境互作效应达到了极显著水平 (p <0 .0 1和 p<0 .0 0 1)。生态环境分量 (年份、区试点、年份×区试点 )对各农艺性状的可塑性贡献较大 ,同时在不同生态环境间各农艺性状间差异达到了显著水平 (p <0 .0 5)。其中区试点分量对各农艺性状的可塑性贡献最大 ,各农艺性状在 4个区试点之间差异达到了显著水平 (p<0 .0 1) ,肃南和天祝的 2个区试点的牧草干重和种子产量等重要农艺性状的平均值显著大于另 2个区试点。各农艺性状在不同年份间差异达到了极显著水平 (p<0 .0 1) ,2 0 0 2年各农艺性状的平均值显著优于 2 0 0 1年。牧草干重和种子产量数量性状与气候因子的相关分析表明 ,5~ 8月份的月均温对牧草干重和种子产量的影响作用较大 ,较高的温度有利于牧草干重和种子产量的提高 ;7月份的降水量与牧草干重和种子产量存在一定程度的正相关关系。品系 2 556和 2 560在进行了基因型与环境互作效应稳定性评价后 ,4个区试点两年间都  相似文献   

2.
Our objective was to genetically characterize post-weaning weight gain (PWG), over a 345-day period after weaning, of Brangus-Ibagé (Nelore×Angus) cattle. Records (n=4016) were from the foundation herd of the Embrapa South Livestock Center. A Bayesian approach was used to assess genotype by environment (G×E) interaction and to identify a suitable model for the estimation of genetic parameters and use in genetic evaluation. A robust and heteroscedastic reaction norm multiple-breed animal model was proposed. The model accounted for heterogeneity of residual variance associated with effects of breed, heterozygosity, sex and contemporary group; and was robust with respect to outliers. Additive genetic effects were modeled for the intercept and slope of a reaction norm to changes in the environmental gradient. Inference was based on Monte Carlo Markov Chain of 110 000 cycles, after 10 000 cycles of burn-in. Bayesian model choice criteria indicated the proposed model was superior to simpler sub-models that did not account for G×E interaction, multiple-breed structure, robustness and heteroscedasticity. We conclude that, for the Brangus-Ibagé population, these factors should be jointly accounted for in genetic evaluation of PWG. Heritability estimates increased proportionally with improvement in the environmental conditions gradient. Therefore, an increased proportion of differences in performance among animals were explained by genetic factors rather than environmental factors as rearing conditions improved. As a consequence response to selection may be increased in favorable environments.  相似文献   

3.
    
The objective of this study was to define different terminal sire flock environments, based on a range of environmental factors, and then investigate the presence of genotype by environment interactions (G×E) between the environments identified. Data from 79 different terminal sire flocks (40 Texel, 21 Charollais and 18 Suffolk), were analysed using principal coordinate and non-hierarchical cluster analyses, the results of which identified three distinct environmental cluster groups. The type of grazing, climatic conditions and the use of vitamins and mineral supplements were found to be the most important factors in the clustering of flocks. The presence of G×E was then investigated using data from the Charollais flocks only. Performance data were collected for 12 181 lambs, between 1990 and 2010, sired by 515 different sires. Fifty six of the sires had offspring in at least two of the three different cluster groups and pedigree information was available for a total of 161 431 animals. Traits studied were the 21-week old weight (21WT), ultrasound muscle depth (UMD) and log transformed backfat depth (LogUFD). Heritabilities estimated for each cluster, for each trait, ranged from 0.32 to 0.45. Genetic correlations estimated between Cluster 1 and Cluster 2 were all found to be significantly lower than unity, indicating the presence of G×E. They were 0.31 (±0.17), 0.68 (±0.14) and 0.18 (±0.21) for 21WT, UMD and LogUFD, respectively. Evidence of sires re-ranking across clusters was also observed. Providing a suitable strategy can be identified, there is potential for the optimisation of future breeding programmes, by taking into account the G×E observed. This would enable farmers to identify and select animals with an increased knowledge as to how they will perform in their specific farm environment thus reducing any unexpected differences in performance.  相似文献   

4.
    
Covariation between population‐mean phenotypes and environmental variables, sometimes termed a “phenotype–environment association” (PEA), can result from phenotypic plasticity, genetic responses to natural selection, or both. PEAs can potentially provide information on the evolutionary dynamics of a particular set of populations, but this requires a full theoretical characterization of PEAs and their evolution. Here, we derive formulas for the expected PEA in a temporally fluctuating environment for a quantitative trait with a linear reaction norm. We compare several biologically relevant scenarios, including constant versus evolving plasticity, and the situation in which an environment affects both development and selection but at different time periods. We find that PEAs are determined not only by biological factors (e.g., magnitude of plasticity, genetic variation), but also environmental factors, such as the association between the environments of development and of selection, and in some cases the level of temporal autocorrelation. We also describe how a PEA can be used to estimate the relationship between an optimum phenotype and an environmental variable (i.e., the environmental sensitivity of selection), an important parameter for determining the extinction risk of populations experiencing environmental change. We illustrate this ability using published data on the predator‐induced morphological responses of tadpoles to predation risk.  相似文献   

5.
    
A Bayesian procedure was used to estimate linear reaction norms (i.e. individual G × E plots) on 297 518 litter size records of 121 104 sows, daughters of 2040 sires, recorded on 144 farms in North and Latin America, Europe, Asia and Australia. The method allowed for simultaneous estimation of all parameters involved. The analysis was carried out on three subsets, comprising (i) parity 1 records of 33 641 sows of line B, (ii) all parity records of 52 120 sows of line B and (iii) all parity records of 121 104 sows of lines A, B and A × B. Estimated heritabilities ranged from 0.09 to 0.10 (smallest to largest subset) for the intercept of the reaction norms, and were 0.15, 0.08 and 0.02 (ditto) for the slope. Estimated genetic correlations between intercept and slope were -0.09, +0.26 and +0.69 (ditto). The three subsets therefore showed a progressively lower genetic component to environmental sensitivity, and progressively less re-ranking of genotypes across the environmental (herd-year-season) range. In a genetic evaluation that does not include reaction norms in the statistical model, part of the G × E effect remains confounded with the additive genetic effect, which may lead to errors in the estimates of the additive genetic effect; the reaction norms model removes this confounding. The intercept estimates from the largest data subset show correlations with litter size estimated breeding values (EBV) from routine genetic evaluation (without reaction norms included) of 0.78 to 0.85 for sows with one to seven litter records, and 0.75 for sires. Hence, including reaction norms in genetic evaluation would increase the reliability of the EBV of young selection candidates without own performance or progeny data by considerably more than 100 × (1/0.75-1) = 33%. Reaction norm slope estimates turn out to be very demanding statistics; environmental sensitivity must therefore be classified as a 'hard-to-measure' trait.  相似文献   

6.
This paper examines the relative importance of productive and adaptive traits in beef breeding systems based on Bos taurus and tropically adapted breeds across temperate and (sub)tropical environments. In the (sub)tropics, differences that exist between breeds in temperate environments are masked by the effects of environmental stressors. Hence in tropical environments, breeds are best categorised into breed types to compare their performance across environments. Because of the presence of environmental stressors, there are more sources of genetic variation in tropical breeding programmes. It is therefore necessary to examine the genetic basis of productive and adaptive traits for breeding programmes in those environments. This paper reviews the heritabilities and genetic relationships between economically important productive and adaptive traits relevant to (sub)tropical breeding programmes. It is concluded that it is possible to simultaneously genetically improve productive and adaptive traits in tropically adapted breeds of beef cattle grazed in tropical environments without serious detrimental consequences for either adaptation or production. However, breed-specific parameters are required for genetic evaluations. The paper also reviews the magnitude of genotype × environment (G × E) interactions impacting on production and adaptation of cattle, where 'genotype' is defined as breed (within a crossbreeding system), sire within breed (in a within-breed selection programme) or associations between economically important traits and single nucleotide polymorphisms (SNPs - within a marker-assisted selection programme). It is concluded that re-ranking of breeds across environments is best managed by the use of the breed type(s) best suited to the particular production environment. Re-ranking of sires across environments is apparent in poorly adapted breed types across extreme tropical and temperate environments or where breeding animals are selected in a temperate environment for use in the (sub)tropics. However, G × E interactions are unlikely to be of major importance in tropically adapted beef cattle grazed in either temperate or (sub)tropical environments, although sex × environment interactions may provide new opportunities for differentially selecting to simultaneously improve steer performance in benign environments and female performance in harsher environments. Early evidence suggests that re-ranking of SNPs occurs across temperate and tropical environments, although their magnitude is still to be confirmed in well-designed experiments. The major limitation to genetic improvement of beef cattle over the next decade is likely to be a deficiency of large numbers of accurately recorded phenotypes for most productive and adaptive traits and, in particular, for difficult-to-measure adaptive traits such as resistance to disease and environmental stressors.  相似文献   

7.
    
To investigate the potential response to natural selection of reaction norms for age and size at maturity, fresh body weight at eclosion was mass selected under rich and poor larval food conditions in Drosophila melanogaster. The sensitivity of dry weight at eclosion to the difference between rich and poor larval food was selected using differences in sensitivities among families. For both experiments, the correlated response to selection of age at eclosion was examined. The flies were derived from wild populations and had been mass cultured in the lab for more than six months before the experiments started. These flies responded to selection on body weight upwards and downwards on both rich and poor larval food. Selection on increased or decreased sensitivity of body weight was also successful in at least one direction. Sensitivity was reduced by selection upwards in a poor environment and downwards in a rich environment.  相似文献   

8.
1. The effects of temperature and food concentration on the fitness of Daphnia magna were tested in a 4×4 factorial flow-through design. Food ranged from 0.1 to 1.0 mg C L−1 and temperature ranged from 15 to 30 °C. 2. The juvenile growth rate ( g j) was used to construct reaction norms for temperature at varying food concentrations. Two clones isolated from the same pond at different seasons did not differ with respect to their temperature responses. Reaction norms had the shape of an optimum curve with highest values around 20 °C. There was a significant temperature–food interaction as the temperature response was most pronounced when the food was not limiting. 3. Differences in fitness were a consequence of different responses of physiological parameters to food and temperature. Age and size at first reproduction, as well as egg numbers, decreased with increasing temperature and decreasing food concentration. 4. As the temperature effect was strongest at the highest food concentrations, it can be concluded that environmental warming may affect D. magna more through a temperature rise earlier in spring rather than in summer.  相似文献   

9.
    
Marine and freshwater phytoplankton populations often show large clonal diversity, which is in disagreement with clonal selection of the most vigorous genotype(s). Temporal fluctuation in selection pressures in variable environments is a leading explanation for maintenance of such genetic diversity. To test the influence of temperature as a selection force in continually (seasonally) changing aquatic systems we carried out reaction norms experiments on co‐occurring clonal genotypes of a ubiquitous diatom species, Asterionella formosa Hassall, across an environmentally relevant range of temperatures. We report within population genetic diversity and extensive diversity in genotype‐specific reaction norms in growth rates and cell size traits. Our results showed genotype by environment interactions, indicating that no genotype could outgrow all others across all temperature environments. Subsequently, we constructed a model to simulate the relative proportion of each genotype in a hypothetical population based on genotype and temperature‐specific population growth rates. This model was run with different seasonal temperature patterns. Our modeling exercise showed a succession of two to several genotypes becoming numerically dominant depending on the underlying temperature pattern. The results suggest that (temperature) context dependent fitness may contribute to the maintenance of genetic diversity in isolated populations of clonally reproducing microorganisms in temporally variable environments.  相似文献   

10.
Two random regression models, where the effect of a putative QTL was regressed on an environmental gradient, are described. The first model estimates the correlation between intercept and slope of the random regression, while the other model restricts this correlation to 1 or -1, which is expected under a bi-allelic QTL model. The random regression models were compared to a model assuming no gene by environment interactions. The comparison was done with regards to the models ability to detect QTL, to position them accurately and to detect possible QTL by environment interactions. A simulation study based on a granddaughter design was conducted, and QTL were assumed, either by assigning an effect independent of the environment or as a linear function of a simulated environmental gradient. It was concluded that the random regression models were suitable for detection of QTL effects, in the presence and absence of interactions with environmental gradients. Fixing the correlation between intercept and slope of the random regression had a positive effect on power when the QTL effects re-ranked between environments.  相似文献   

11.
The univariate and multivariate study of variation for phenotypic plasticity is central to providing a clear understanding of hypotheses about the genetic control and evolution of reaction norms in natural populations. Arabidopsis thaliana is an ideal organism for the study of Genotype × Environment interactions (i.e., genetic variation for plasticity), because of the ease with which it can be grown in large numbers and due to the amount of information already available on its genetics, physiology and developmental biology. In this paper, we report on the plasticity, genetic variation and G × E interactions of four populations of A. thaliana in response to three environmental gradients (water, light and nutrients), each characterized by four levels of the controlled parameter. We measured nine traits and obtained their reaction norms. Path analysis was used to study the plasticity of character correlations. We found a tendency for A. thaliana reaction norms to be linear (either flat, i.e. no plasticity, or with a significant slope), in accordance with previous studies. We detected substantial amounts of genetic variation for plasticity in the light and nutrient gradients, but not in the water gradient. Dramatic restructuring of character correlations was induced by changes in environmental conditions, although some paths tended to be stable irrespective of the environment, thereby suggesting some degree of canalization.  相似文献   

12.
Covariance functions have been proposed to predict breeding values and genetic (co)variances as a function of phenotypic within herd-year averages (environmental parameters) to include genotype by environment interaction. The objective of this paper was to investigate the influence of definition of environmental parameters and non-random use of sires on expected breeding values and estimated genetic variances across environments. Breeding values were simulated as a linear function of simulated herd effects. The definition of environmental parameters hardly influenced the results. In situations with random use of sires, estimated genetic correlations between the trait expressed in different environments were 0.93, 0.93 and 0.97 while simulated at 0.89 and estimated genetic variances deviated up to 30% from the simulated values. Non random use of sires, poor genetic connectedness and small herd size had a large impact on the estimated covariance functions, expected breeding values and calculated environmental parameters. Estimated genetic correlations between a trait expressed in different environments were biased upwards and breeding values were more biased when genetic connectedness became poorer and herd composition more diverse. The best possible solution at this stage is to use environmental parameters combining large numbers of animals per herd, while losing some information on genotype by environment interaction in the data.  相似文献   

13.
    
Recent studies of animal personality have focused on its proximate causation and its ecological and evolutionary significance, but have mostly ignored questions about its development, although an understanding of the latter is highly relevant to these other questions. One possible reason for this neglect is confusion about many of the concepts and terms that are necessary to study the development of animal personality. Here, we provide a framework for studying personality development that focuses on the properties of animal personality, and considers how and why these properties may change over time. We specifically focus on three dimensions of personality: (1) contextual generality at a given age or time, (2) temporal consistency in behavioural traits and in relationships between traits, and (3) the effects of genes and experience on the development of personality at a given age or life stage. We advocate using a new approach, contextual reaction norms, to study the contextual generality of personality traits at the level of groups, individuals and genotypes, show how concepts and terms borrowed from the literature on personality development in humans can be used to study temporal changes in personality at the level of groups and individuals, and demonstrate how classical developmental reaction norms can provide insights into the ways that genes and experiential factors interact across ontogeny to affect the expression of personality traits. In addition, we discuss how correlations between the effects of genes and experience on personality development can arise as a function of individuals' control over their own environment, via niche‐picking or niche‐construction. Using this framework, we discuss several widely held assumptions about animal personality development that still await validation, identify neglected methodological issues, and describe a number of promising new avenues for future research.  相似文献   

14.
Isofemale lines of two populations of Drosophila melanogaster, originating from France and Tanzania, were examined over a range of temperatures. Morphological traits showed distinct patterns in phenotypic plasticity; flies of the two populations differed in shape. Genotype-by-Environment (G*E) interactions were frequently found in the Tanzania population, but were hardly present in the France population. If G*E interaction was present over temperature, estimates of additive genetic variance and additive genetic covariance were made to compare theoretical models with our data. The conclusion is that in France Drosophila melanogaster has been selected over a wider range of temperatures, resulting in parallel reaction norms of more optimal slope. In contrast, selection must have taken place over a narrower temperature range in Tanzanian flies, and will have exerted no direct influence on the slope of the reaction norm.  相似文献   

15.
16.
17.
Klaczko LB 《Genetica》2006,126(1-2):43-55
Drosophila mediopunctata belongs to the tripunctata group, which is the second largest Neotropical group of Drosophila with 64 species described. Here I review the work done with this forest dwelling species, and some applications of the methods developed using it as a model organism, to other species. Specifically I look at: the phylogenetic status of the tripunctata group and its relation with other groups in the Hirtodrosophila-immigrans radiation; D. mediopunctata’s chromosome inversion polymorphism (altitudinal cline of frequencies and evidences of selection); the morphological variation of the wing and the development and applications of the ellipse method to describe the morphology of the wing; the variation on the number of aristal branches; the genetic basis of the polychromatism present in D. mediopunctata and its association with chromosome inversions; the sex-ratio trait and its use in the demonstration of Fisher’s principle; and, finally, the finding of the transposable P-element in this species. This paper is respectfully dedicated to Prof. Sergio Olavo Pinto da Costa whose help was decisive in the initial stages of our work.  相似文献   

18.
1. The phenotypic constancy of four laboratory Daphnia magna clones in fitness-related life-history traits, such as age and clutch size at maturity, was studied among consecutive experimental runs in differing food environments.
2. A significant part of the observed clonal and genetic-by-environmental variation in age and clutch size at maturity was explained by experimentally uncontrollable variations in neonatal body length.
3. Despite food availability, neonatal length determined the number of instars invested to maturity and thus maturation age. Clonal differences in neonatal length and thus in maturation instar occurrence across environments explained most of the clonal variability observed in maturation age.
4. Although interclonal differences in clutch size existed, most of the phenotypic plasticity observed for clutch size was mediated by clonal differences in neonatal length.
5. Clonal differences in neonatal length and in the occurrence of maturation instars across environments dramatically affected the body length of instar IM-2 where provisioning of eggs take place. Since clutch size is determined from clutch mass and clutch mass was strongly related to the body length of instar IM-2, clonal differences across environments in body length of instar IM-2 mirrored clonal differences across environments in clutch size.
6. The results reported in the present study show that maternally mediated traits such as neonatal length affect how genotypes respond to different environmental selection regimes (genetic-by-environmental interaction). Future research needs to focus on the effects of neonatal length on the heritability or genetic variation of the reaction norms, since prediction of the response to selection is a key research objective in quantitative genetic studies.  相似文献   

19.
    
Global change encompasses many co-occurring anthropogenic drivers, which can act synergistically or antagonistically on ecological systems. Predicting how different global change drivers simultaneously contribute to observed biodiversity change is a key challenge for ecology and conservation. However, we lack the mechanistic understanding of how multiple global change drivers influence the vital rates of multiple interacting species. We propose that reaction norms, the relationships between a driver and vital rates like growth, mortality, and consumption, provide insights to the underlying mechanisms of community responses to multiple drivers. Understanding how multiple drivers interact to affect demographic rates using a reaction-norm perspective can improve our ability to make predictions of interactions at higher levels of organization—that is, community and food web. Building on the framework of consumer–resource interactions and widely studied thermal performance curves, we illustrate how joint driver impacts can be scaled up from the population to the community level. A simple proof-of-concept model demonstrates how reaction norms of vital rates predict the prevalence of driver interactions at the community level. A literature search suggests that our proposed approach is not yet used in multiple driver research. We outline how realistic response surfaces (i.e., multidimensional reaction norms) can be inferred by parametric and nonparametric approaches. Response surfaces have the potential to strengthen our understanding of how multiple drivers affect communities as well as improve our ability to predict when interactive effects emerge, two of the major challenges of ecology today.  相似文献   

20.
    
Drug-resistant parasites threaten livestock production. Breeding more resistant hosts could be a sustainable control strategy. Environmental variation linked to animal management practices or to parasite species turnover across farms may however alter the expression of genetic potential. We created sheep lines with high or low resistance to Haemonchus contortus and achieved significant divergence on both phenotypic and genetic scales. We exposed both lines to chronic stress or to the infection by another parasite Trichostrongylus colubriformis, to test for genotype-by-environment and genotype-by-parasite species interactions respectively. Between-line divergence remained significant following chronic stress exposure although between-family variation was found. Significant genotype-by-parasite interaction was found although H. contortus-resistant lambs remained more resistant against T. colubriformis. Growth curves were not altered by the selection process although resistant lambs were lighter after the second round of divergence, before any infection took place. Breeding for resistance is a sustainable strategy but allowance needs to be made for environmental perturbations and worm species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号