首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Endocrine practice》2014,20(4):285-292
ObjectiveThis meta-analysis of 5 trials from the Phase 3a insulin degludec (IDeg) clinical trial program evaluated the risk of hypoglycemia in a subset of subjects with type 2 diabetes (T2D) who required high basal insulin doses at the end of the trials.MethodsThis meta-analysis compared glycated hemoglobin (HbA1c), fasting plasma glucose (FPG), basal insulin dose, body weight, and rates of overall and nocturnal confirmed hypoglycemia in a pooled population of T2D subjects using > 60 U basal insulin at trial completion. Five Phase 3a, open-label, randomized, treat-to-target, confirmatory 26-or 52-week trials with IDeg (n = 2,262) versus insulin glargine (IGlar) (n = 1,110) administered once daily were included. Overall confirmed hypoglycemia was defined as self-measured blood glucose < 56 mg/dL or any episode requiring assistance; nocturnal confirmed hypoglycemia had an onset between 00:01 and 05:59 am.ResultsMore than one-third of IDeg-(35%) and IGlar-(34%) treated T2D subjects required > 60 U of basal insulin daily at the ends of the trial. Patients achieved similar mean HbA1c values (estimated treatment difference [ETD] IDeg - IGlar: 0.05%, P = .44) while mean FPG values were lower with IDeg than IGlar (ETD: - 5.9 mg/ dL, P = .04) at end-of-trial. There was a 21% lower rate of overall confirmed hypoglycemic episodes for IDeg (estimated rate ratio [RR] IDeg/IGlar: 0.79, P = .02) and a 52% lower rate of nocturnal confirmed hypoglycemic episodes for IDeg (RR: 0.48, P < .01).ConclusionIn this post hoc meta-analysis, more than 30% of subjects with T2D required > 60 U/day of basal insulin at the end of the trials. In these individuals, IDeg achieves similar HbA1c reduction with significantly less overall and nocturnal confirmed hypoglycemia compared with IGlar. (Endocr Pract. 2014;20:285-292)  相似文献   

2.
《Endocrine practice》2015,21(7):782-794
Objective: To compare the efficacy and safety of 2 dosing regimens for human regular U-500 insulin (U-500R, 500 units/mL) replacing high-dose U-100 insulins with or without oral antihyperglycemic drugs in patients with inadequately controlled type 2 diabetes (T2D).Methods: We conducted a 24-week, open-label, parallel trial in 325 patients (demographics [means]: age, 55.4 years; diabetes duration, 15.2 years; body mass index, 41.9 kg/m2; glycated hemoglobin [HbA1c], 8.7%; U-100 insulin dose, 287.5 units administered in 5 injections/day [median; range, 2 to 10]). Patients were randomized to thrice-daily (TID, n = 162) or twice-daily (BID, n = 163) U-500R after a 4-week lead-in period. The primary outcome was HbA1c change from baseline.Results: After 24 weeks, both treatments demonstrated significant HbA1c reductions (TID, -1.12%; BID, -1.22%; both, P<.001) and clinical equivalence (difference, -0.10%; 95% confidence interval, -0.33 to 0.12%; noninferiority margin, 0.4%). Comparable increases in total daily U-500R dose (TID, 242.7 to 343.1 units; BID, 249.0 to 335.0 units) were observed. Incidence and rate of documented symptomatic hypoglycemia (≤70 mg/dL) were lower for TID versus BID (P = .003 and P = .02, respectively); severe hypoglycemia was similar between treatments. Weight gain was similar in both groups (TID, 5.4 kg; BID, 4.9 kg).Conclusion: Initiation and titration of U-500R using either algorithm (TID or BID) improves glycemic control effectively and safely with fewer injections in patients with T2D treated with high-dose/high-volume U-100 insulin. These results provide clinicians with a practical framework for using U-500R in severely insulin-resistant patients with suboptimally controlled T2D.Abbreviations: BID = twice daily FAS = full analysis set HbA1c = glycated hemoglobin PG = plasma glucose SMPG = self-monitored plasma glucose T2D = type 2 diabetes TDD = total daily dose TID = thrice daily U-500R = human regular U-500 insulin  相似文献   

3.
《Endocrine practice》2014,20(5):389-398
ObjectiveTo evaluate the efficacy and safety of insulin lispro in the treatment of patients with type 2 diabetes (T2DM) who had a body mass index (BMI) ≥ 30 kg/m2 (obese) compared with patients with BMIs < 30 kg/m2 (nonobese).MethodsA retrospective analysis of predefined endpoints from 7 randomized clinical trials of T2DM patients treated with insulin lispro was performed. The primary efficacy measure was to assess the noninferiority of insulin lispro in obese patients versus nonobese patients as measured by the change in hemoglobin A1C (HbA1c) from baseline to Month 3 (n = 1,518), using a noninferiority margin of 0.4%. The secondary measures included overall hypoglycemia incidence and event rates and relative change in body weight.ResultsMean changes in HbA1c from baseline (9.06% for obese and 8.92% for nonobese) to Month 3 were similar for obese patients (–1.03%) and nonobese (–1.02%), with a least squares (LS) mean difference (95% confidence interval [CI]) of –0.05% (–0.17%, 0.07%; P = .384). The overall incidence of hypoglycemia (53% vs. 63%; P < .001) and rate of hypoglycemia (0.93 vs. 1.76 events per 30 days; P < .001) was significantly lower in obese patients compared with nonobese patients. The 2 BMI cohorts did not demonstrate a significant difference in mean percent changes in body weights (LS mean difference = 0.4% [–0.2%, 0.9%]; P = .202).ConclusionObese patients with T2DM treated with insulin lispro were able to achieve the same level of glycemic control as their nonobese counterparts, with some evidence supporting a reduced risk of hypoglycemia. (Endocr Pract. 2014;20:389-398)  相似文献   

4.
《Endocrine practice》2020,26(8):818-829
Objective: The cardiovascular outcomes of insulin detemir in patients with type 2 diabetes mellitus (T2DM) after acute coronary syndrome (ACS) or acute ischemic stroke (AIS) are unclear. The aim of our real-life cohort study was to evaluate the cardiovascular outcomes of insulin detemir (IDet) versus insulin glargine (IGlar) in T2DM patients after ACS or AIS.Methods: A retrospective cohort study was conducted between June 1, 2005, and December 31, 2013, utilizing the Taiwan National Health Insurance Research Database. A total of 3,129 ACS or AIS patients were eligible for the analysis. Clinical outcomes were evaluated by comparing 1,043 subjects receiving IDet with 2,086 propensity score-matched subjects who received IGlar. The primary composite outcome included cardiovascular (CV) death, nonfatal myocardial infarction (MI) and nonfatal stroke.Results: The primary composite outcome occurred in 322 patients (30.9%) in the IDet group and 604 patients (29.0%) in the IGlar group (hazard ratio [HR], 1.12; 95% confidence interval [CI], 0.95 to 1.32) with a mean follow-up of 2.4 years. No significant differences were observed for CV death (HR, 1.09; 95% CI, 0.86 to 1.38), nonfatal MI (HR, 0.88; 95% CI, 0.66 to 1.19), and nonfatal stroke (HR, 1.15; 95% CI, 0.97 to 1.35). There were similar risks of all-cause mortality, hospitalization for heart failure and revascularization between the IDet group and the IGlar group (P = .647, .115, and .390 respectively).Conclusion: Compared with IGlar, in T2DM patients after ACS or AIS, IDet was not associated with increased risks of CV death, nonfatal MI, or nonfatal stroke.Abbreviations: ACS = acute coronary syndrome; AIS = acute ischemic stroke; ASCVD = atherosclerotic cardiovascular disease; CI = confidence interval; CV = cardiovascular; DKA = diabetic ketoacidosis; HHF = hospitalization for heart failure; HHS = hyperosmolar hyperglycemic state; HR = hazard ratio; IDet = insulin detemir; IGlar = insulin glargine; MI = myocardial infarction; NHIRD = National Health Insurance Research Database; PCI = percutaneous coronary intervention; PSM = propensity score matching; T2DM = type 2 diabetes mellitus  相似文献   

5.
《Endocrine practice》2014,20(8):785-791
ObjectiveThe purpose of the present study was to provide clinical data on the efficacy and safety of insulin degludec (IDeg) 200 U/mL compared with IDeg 100 U/mL in patients with type 2 diabetes mellitus (T2DM) currently treated with basal insulin in combination with oral antidiabetic drugs.MethodsIn this 22-week, treat-to-target trial, eligible adult patients with T2DM were randomized 1:1 to IDeg 200 or IDeg 100 U/mL once daily (OD) (n = 186 and 187, respectively). The starting insulin dose was based on a 1:1 transfer of the total prerandomization basal insulin dose. The primary endpoint was change (%) from baseline in glycosylated hemoglobin A1C (A1C) after 22 weeks of treatment.ResultsA total of 373 subjects (mean age 59.8 years, A1C 8.2%, fasting plasma glucose 149.6 mg/dL [8.3 mmol/L], body mass index 33.3 kg/m2) were randomized. A1C reduction with IDeg 200 U/mL was noninferior to that of IDeg 100 U/mL (IDeg 200 U/mL – IDeg 100 U/mL estimated treatment difference: -0.11%, 95% confidence interval (CI): -0.28 to 0.05). Rates of overall confirmed hypoglycemia were low and similar between both formulations (5.17 and 5.66 events/patient-year of exposure [PYE] for IDeg 200 and 100 U/mL, respectively). Similarly, the rates of nocturnal confirmed hypoglycemia were low (1.27 and 1.70 events/PYE for 200 and 100 U/mL). In general, both IDeg formulations were well tolerated (respective rates of adverse events: 4.16 and 3.00 events/PYE for 200 and 100 U/mL).ConclusionThe 200 and 100 U/mL formulations of IDeg provide comparable and effective levels of glycemic control with similar, low rates of overall confirmed and nocturnal confirmed hypoglycemia. (Endocr Pract. 2014; 20:785-791)  相似文献   

6.
《Endocrine practice》2015,21(2):143-157
ObjectiveSelf-adjustment of insulin dose is commonly practiced in Western patients with type 2 diabetes but is usually not performed in Asian patients. This multinational, 24-week, randomized study compared patient-led with physician-led titration of once-daily insulin glargine in Asian patients with uncontrolled type 2 diabetes who were on 2 oral glucose-lowering agents.MethodsPatient-led (n = 275) or physician-led (n = 277) subjects followed the same dose-titration algorithm guided by self-monitored fasting blood glucose (FBG; target, 110 mg/dL [6.1 mmol/L]). The primary endpoint was change in mean glycated hemoglobin (HbA1c) at week 24 in the patient-led versus physician-led titration groups.ResultsPatient-led titration resulted in a significantly higher drop in HbA1c value at 24 weeks when compared with physician-led titration (− 1.40% vs. − 1.25%; mean difference, − 0.15; 95% confidence interval, − 0.29 to 0.00; P = .043). Mean decrease in FBG was greatest in the patient-led group (− 2.85 mmol/L vs. − 2.48 mmol/L; P = .001). The improvements in HbA1c and FBG were consistent across countries, with similar improvements in treatment satisfaction in both groups. Mean daily insulin dose was higher in the patient-led group (28.9 units vs. 22.2 units; P < .001). Target HbA1c of < 7.0% without severe hypoglycemia was achieved in 40.0% and 32.9% in the patient-led and physician-led groups, respectively (P = .086). Severe hypoglycemia was not different in the 2 groups (0.7%), with an increase in nocturnal and symptomatic hypoglycemia in the patient-led arm.ConclusionPatient-led insulin glargine titration achieved near-target blood glucose levels in Asian patients with uncontrolled type 2 diabetes who were on 2 oral glucose-lowering drugs, demonstrating that Asian patients can self-uptitrate insulin dose effectively when guided. (Endocr Pract. 2015;21:143-157)  相似文献   

7.
《Endocrine practice》2019,25(12):1317-1322
Objective: De-intensification of diabetes treatment is recommended in elderly patients with tight glycemic control at high risk of hypoglycemia. However, rates of de-intensification in endocrine practice are unknown. We conducted a retrospective study to evaluate the rate of de-intensification of antidiabetic treatment in elderly patients with type 2 diabetes mellitus (T2DM) and tight glycemic control.Methods: All patients with ≥2 clinic visits over a 1-year period at a major academic diabetes center were included. De-intensification of diabetes treatment was defined as a decrease or discontinuation of any antidiabetic drug without adding another drug, or a reduction in the total daily dose of insulin or a sulfonylurea drug with or without adding a drug without risk of hypoglycemia.Results: Out of 3,186 unique patients, 492 were ≥65 years old with T2DM and hemoglobin A1c (HbA1c) <7.5% (<58 mmol/mol). We found 308 patients treated with a sulfonylurea drug or insulin, 102 of whom had hypoglycemia as per physician note. Among these 102 patients, 38 (37%) were advised to de-intensify therapy. In a subgroup analysis of patients ≥75 years old with HbA1c <7% (<53 mmol/mol), we found that out of 23 patients treated with a sulfonylurea drug or insulin and reporting hypoglycemia, 11 (43%) were advised de-intensification of therapy. There were no significant predictors of de-intensification of treatment.Conclusion: Our study suggests that de-intensification of antidiabetic medications is uncommon in elderly patients with T2DM. Strategies may need to be developed to prevent the potential harm of overtreatment in this population.Abbreviations: ADA = American Diabetes Association; CGM = continuous glucose monitoring; HbA1c = hemoglobin A1c; T2DM = type 2 diabetes mellitus; UKPDS = United Kingdom Prospective Diabetes Study  相似文献   

8.
《Endocrine practice》2014,20(11):1143-1150
ObjectiveTo compare the efficacy of 500 U/mL (U-500) regular insulin + metformin with U-500 regular insulin + metformin + exenatide in improving glycemic control in patients with severely insulin-resistant type 2 diabetes mellitus (T2DM).MethodsThirty patients with T2DM and severe insulin resistance were screened, and 28 were randomized to regular insulin U-500 + metformin or the GLP-1 analog exenatide, U-500, and metformin. Glycated hemoglobin (HbA1c) levels, body weight, and insulin doses were documented at baseline and at 3 and 6 months. The number and severity hypoglycemic episodes were noted.ResultsThere were 7 males and 7 females in each group (U-500 + metformin and U-500 + metformin + exenatide). Overall, U-500 insulin + metformin, either alone or with the addition of exenatide, resulted in a significant improvement in HbA1c in both groups, with no significant difference between the 2 groups. There was no meaningful weight change in those utilizing exenatide. Those on U-500 insulin and metformin alone had a tendency toward some weight gain. No severe hypoglycemia occurred during the study period. Symptomatic hypoglycemia was more common in the group on exenatide, but this occurred in only 5 patients, and the clinical significance of this is uncertain. Insulin dosage changes on U-500 regular insulin were variable but tended to be lower in those subjects on exenatide.ConclusionsU-500 regular insulin + metformin is effective for the treatment of T2DM patients with severe insulin resistance. The addition of exenatide may ameliorate potential weight gain but provides no additional improvement in glycemia. (Endocr Pract. 2014;20:1143-1150)  相似文献   

9.
《Endocrine practice》2015,21(7):807-813
Objective: Few randomized studies have focused on the optimal management of non–intensive care unit patients with type 2 diabetes in Latin America. We compared the safety and efficacy of a basal-bolus regimen with analogues and human insulins in general medicine patients admitted to a University Hospital in Asunción, Paraguay.Methods: In a prospective, open-label trial, we randomized 134 nonsurgical patients with blood glucose (BG) between 140 and 400 mg/dL to a basal-bolus regimen with glargine once daily and glulisine before meals (n = 66) or Neutral Protamine Hagedorn (NPH) twice daily and regular insulin before meals (n = 68). Major outcomes included differences in daily BG levels and frequency of hypoglycemic events between treatment groups.Results: There were no differences in the mean daily BG (157 ± 37 mg/dL versus 158 ± 44 mg/dL; P = .90) or in the number of BG readings within target <140 mg/dL before meals (76% versus 74%) between the glargine/glulisine and NPH/regular regimens. The mean insulin dose in the glargine/glulisine group was 0.76 ± 0.3 units/kg/day (glargine, 22 ± 9 units/day; glulisine, 31 ± 12 units/day) and was not different compared with NPH/regular group (0.75 ± 0.3 units/kg/day [NPH, 28 ± 12 units/day; regular, 23 ± 9 units/day]). The overall prevalence of hypoglycemia (<70 mg/dL) was similar between patients treated with NPH/regular and glargine/glulisine (38% versus 35%; P = .68), but more patients treated with human insulin had severe (<40 mg/dL) hypoglycemia (7.6% versus 25%; P = .08). There were no differences in length of hospital stay or mortality between groups.Conclusion: The basal-bolus regimen with insulin analogues resulted in equivalent glycemic control and frequency of hypoglycemia compared to treatment with human insulin in hospitalized patients with diabetes.Abbreviations: BG = blood glucose BMI = body mass index HbA1c = glycated hemoglobin NPH = Neutral Protamine Hagedorn T2D = type 2 diabetes  相似文献   

10.
《Endocrine practice》2020,26(6):604-611
Objective: Treatment of hyperglycemia with insulin is associated with increased risk of hypoglycemia in type 2 diabetes mellitus (T2DM) patients receiving total parenteral nutrition (TPN). The aim of this study was to determine the predictors of hypoglycemia in hospitalized T2DM patients receiving TPN.Methods: Post hoc analysis of the INSUPAR study, which is a prospective, open-label, multicenter clinical trial of adult inpatients with T2DM in a noncritical setting with indication for TPN.Results: The study included 161 patients; 31 patients (19.3%) had hypoglycemic events, but none of them was severe. In univariate analysis, hypoglycemia was significantly associated with the presence of diabetes with end-organ damage, duration of diabetes, use of insulin prior to admission, glycemic variability (GV), belonging to the glargine insulin group in the INSUPAR trial, mean daily grams of lipids in TPN, mean insulin per 10 grams of carbohydrates, duration of TPN, and increase in urea during TPN. Multiple logistic regression analysis showed that the presence of diabetes with end-organ damage, GV, use of glargine insulin, and TPN duration were risk factors for hypoglycemia.Conclusion: The presence of T2DM with end-organ damage complications, longer TPN duration, belonging to the glargine insulin group, and greater GV are factors associated with the risk of hypoglycemia in diabetic noncritically ill inpatients with parenteral nutrition.Abbreviations: ADA = American Diabetes Association; BMI = body mass index; CV% = coefficient of variation; DM = diabetes mellitus; GI = glargine insulin; GV = glycemic variability; ICU = intensive care unit; RI = regular insulin; T2DM = type 2 diabetes mellitus; TPN = total parenteral nutrition  相似文献   

11.
ObjectiveWe compared the efficacy of the second-generation basal insulin degludec (IDeg) to that of insulin aspart via pump using continuous glucose monitoring in patients with well-controlled type 1 diabetes.MethodsIn this 40-week, single-center, randomized, crossover-controlled trial, adults with well-controlled type 1 diabetes (hemoglobin A1C of <7.5% [<58 mmol/mol]) (N = 52) who were using an insulin pump and continuous glucose monitoring were randomized to 1 of 2 treatments for a 20-week period: a single daily injection of IDeg with bolus aspart via pump or a continuous subcutaneous insulin infusion (CSII) with aspart, followed by crossover to the other treatment. The primary endpoint was time in range (70-180 mg/dL) during the final 2 weeks of each treatment period.ResultsFifty-two patients were randomized and completed both treatment periods. The time in range for IDeg and CSII was 71.5% and 70.9%, respectively (P = .553). The time in level 1 hypoglycemia for the 24-hour period with IDeg and CSII was 2.19% and 1.75%, respectively (P = .065). The time in level 2 hypoglycemia for the 24-hour period with IDeg and CSII was 0.355% and 0.271%, respectively (P = .212), and the nocturnal period was 0.330% and 0.381%, respectively (P = .639). The mean standard deviation of blood glucose levels for the 24-hour period for IDeg and CSII was 52.4 mg/dL and 51.0 mg/dL, respectively (P = .294). The final hemoglobin A1C level for each treatment was 7.04% (53 mmol/mol) with IDeg, and 6.95% (52 mmol/mol) with CSII (P = .288). Adverse events were similar between treatments.ConclusionWe observed similar glycemic control between IDeg and insulin aspart via CSII for basal insulin coverage in patients with well-controlled type 1 diabetes.  相似文献   

12.
《Endocrine practice》2015,21(7):794-806
Objective: Recent guidelines recommend a physiologic approach to non–intensive care unit (ICU) inpatient glucose management utilizing basal-bolus with correctional (BBC) insulin over traditional sliding-scale insulin monotherapy. Unfortunately, few studies exist using a BBC approach restricted to human insulins (regular and neutral protamine Hagedorn [NPH]). This study evaluated changes in provider prescribing patterns, effects on blood glucose, and safety with implementation of hospital order sets for BBC using human insulins.Methods: Order sets were developed for non-ICU inpatients, consisting of basal, prandial, and correctional insulin using NPH and regular human insulins. Evaluation compared a 4-month period before (admissions, n = 274) with a 4-month period after order set availability (n = 302). Primary outcome was change in insulin prescribing patterns. Secondary outcomes included use of nonpreferred diabetes treatments, hemoglobin A1c testing, mean daily blood glucose, and incidence of hypoglycemia.Results: Use of BBC insulin regimen increased from 10.6 to 27.5% after order set implementation (P<.001). Use of oral antihyperglycemic agents decreased from 24.1 to 14.9% after implementation (P = .006). Hemoglobin A1c testing rose from 50.0 to 62.3% after (P = .003). Mean daily blood glucose improved, with an estimated mean difference of 14.4 mg/dL (95% confidence interval, 2.2 to 26.5 mg/dL) over hospital days 3 through 9 (P = .02). There was no significant change in the incidence of moderate or severe hypoglycemia.Conclusion: Implementation of hospital-wide human insulin order sets led to improvements in prescribing practices and blood glucose control, without increasing the incidence of hypoglycemia. These order sets may be useful for facilities limited by formulary and cost considerations to the use of older human insulins.Abbreviations: BBC = basal-bolus with correctional insulin ICU = intensive care unit NPH = neutral protamine Hagedorn NPO = nil per os  相似文献   

13.
Chromium is required for a normal insulin function, and low levels have been linked with insulin resistance. The aim of this study was to follow the effect of chromium supplementation on fasting plasma glucose (FPG), glycated haemoglobin (HbA1c) and serum lipids in patients with type 2 diabetes mellitus (DM2) on insulin therapy. Eleven randomly selected patients with DM2 on insulin therapy were supplemented with a daily dose of 100 μg chromium yeast for the first supplementation period of 2 weeks. In the second supplementation period, the chromium dose was doubled and continued for the next 6 weeks. The third phase was a 6-week washout period. After each period, the levels of FPG and HbA1c were compared with the corresponding values at the end of the previous period. Serum triglycerides, total HDL and LDL cholesterol values after supplementation were compared with the baseline values. FPG decreased significantly after the first period of chromium supplementation (p?<?0.001), and a tendency to a further reduction was observed after the second supplementation period. Similarly, HbA1c decreased significantly in both periods (p?<?0.02 and p?<?0.002, respectively). Eight weeks after withdrawal of chromium supplementation, both FPG and HbA1c levels returned to their pre-intervention values. The serum lipid concentrations were not significantly influenced by chromium supplementation. Chromium supplementation could be beneficial in patients with DM2 treated with insulin, most likely due to lowered insulin resistance leading to improved glucose tolerance. This finding needs to be confirmed in a larger study.  相似文献   

14.
《Endocrine practice》2019,25(9):899-907
Objective: In early type 2 diabetes (T2DM), the administration of short-term intensive insulin therapy (IIT) can induce glycemic remission for a year thereafter, but this effect ultimately wanes. In this context, intermittently repeating short-term IIT could provide a strategy for maintaining the otherwise transient benefits of this intervention. However, the viability of this strategy would be contingent upon not inducing undesirable effects of insulin therapy such as excessive hypoglycemia and fat deposition. We thus sought to evaluate the effect of administering short-term IIT every 3 months on hypoglycemia, weight gain, and quality of life in early T2DM.Methods: In this 2-year pilot trial, 24 adults with T2DM of 2.0 ± 1.7 years duration and hemoglobin A1c of 6.4 (46 mmol/mol) ± 0.1% were randomized to 3 weeks of IIT (glargine, lispro) followed by either (1), repeat IIT for up to 2 weeks every 3 months or (2), daily metformin. IIT was titrated to target near-normoglycemia (premeal glucose 4 to 6 mmol/L; 2-hour postmeal <8 mmol/L). Participants were assessed every 3 months, with quality of life (QOL) evaluated annually.Results: The rate of hypoglycemia (<3.5 mmol/L) was low in the metformin and intermittent IIT arms (0.37 versus 0.95 events per patient-year; P = .28). There were no differences between the groups in changes over time in overall, central, or hepatic fat deposition (as reflected by weight &lsqb;P = .10], waist-to-hip ratio &lsqb;P = .58], and alanine aminotransferase &lsqb;P = .64], respectively). Moreover, there were no differences between the groups in QOL at 1- and 2-years.Conclusion: Intermittent short-term IIT may be safely administered in early T2DM without excessive adverse impact on hypoglycemic risk, anthropometry, or QOL.Abbreviations: ALT = alanine aminotransferase; HbA1c = hemoglobin A1c; IIT = intensive insulin therapy; ISSI-2 = insulin secretion-sensitivity index-2; OGTT = oral glucose tolerance test; QOL = quality of life; SF-36 = medical outcomes study 36-item short-form health survey; T2DM = type 2 diabetes  相似文献   

15.
《Endocrine practice》2014,20(1):52-61
ObjectiveTo evaluate real-world treatment persistence among patients with type 2 diabetes mellitus (T2DM) initiating treatment with insulin.MethodsPatient-level data were pooled from 3 previously published observational retrospective studies evaluating patients with T2DM who were previously on oral antidiabetic drugs (OADs) and initiated with a basal analog insulin (insulin glargine or insulin detemir). Treatment persistence was defined as remaining on the study drug during the 1-year follow-up period without discontinuation or switching after study drug initiation. Analyses were conducted to identify baseline factors associated with persistence with insulin therapy and to estimate the association between insulin treatment persistence and patients’ clinical and economic outcomes during the follow-up period.ResultsA total of 4,804 patients with T2DM (insulin glargine: n = 4,172, insulin detemir: n = 632) were included. The average insulin persistence rate over the 1-year follow-up period was 65.0%. A significantly higher persistence rate was associated with older age, initiation with insulin glargine using either disposable pens or vial-and-syringe, and with baseline exenatide or sitagliptin use. Higher insulin treatment persistence was also associated with lower hemoglobin A1c (A1C) at follow-up, a greater reduction in A1C from baseline, and lower health care utilization.ConclusionIn real-world settings, treatment persistence among patients with T2DM initiating basal insulin is influenced by the type of insulin and patient factors. Greater insulin treatment persistence is linked to improved clinical outcomes and reduced health care utilization. (Endocr Pract. 2014;20:52-61)  相似文献   

16.
《Endocrine practice》2015,21(12):1323-1332
Objective: Postprandial hyperglycemia (PPHG) may need addressing when glycemic control cannot be maintained in patients with type 2 diabetes mellitus. We investigated whether glycated hemoglobin A1c (A1c) levels ≥7.0% can indicate postprandial defects warranting prandial therapy after optimized basal insulin therapy.Methods: From 6 clinical trials of insulin glargine treatment, data were pooled from 496 patients with A1c ≥7.0% after 24 weeks. Patient characteristics and clinical outcomes were summarized according to fasting plasma glucose (FPG) target achievement (<130 mg/dL), postprandial blood glucose (PPBG) levels, and PPBG increments (ΔPPBG). Basal and postprandial contributions to hyperglycemia were determined.Results: After 24 weeks of insulin glargine titration, A1c change from baseline was greater in patients with FPG <130 mg/dL versus ≥130 mg/dL (-1.35% versus -1.11%, respectively; P = .0275), but with increased confirmed hypoglycemia rates (blood glucose <70 mg/dL; 4.06 events/patient-year versus 3.31 events/patient-year; P = .0170). However, increased severe hypoglycemia rates were observed in patients with FPG ≥130 mg/dL. At week 24, postprandial contributions to hyperglycemia increased (>60% regardless of PPBG). Patients with high FPG had lower, but substantial, relative postprandial contributions versus patients achieving FPG target. A similar pattern was observed according to whether patients had a ΔPPBG ≥50 mg/dL after any meal.Conclusion: After optimized basal insulin therapy, elevated A1c is the most effective indicator of residual PPHG, regardless of existent FPG or PPBG. When confronted with an uncontrolled A1c after reasonable titration of basal insulin, clinicians should be aware of probable postprandial contributions to hyperglycemia and consider prandial therapy.Abbreviations:A1c = glycated hemoglobin A1cAUC = area under the curveAUCB = area under the curve (basal hyperglycemia)AUCG = total area under the curve (total glucose)AUCN = area under the curve (normal glycemic exposure)AUCP = area under the curve (postprandial hyperglycemia)BHG = basal hyperglycemiaFBG = fasting blood glucoseFPG = fasting plasma glucoseGLP-1 = glucagon-like peptide 1HE = hyperglycemic exposureOADs = oral antidiabetes drugsPPBG = postprandial blood glucoseΔPPBG = change in postprandial blood glucosePPHG = postprandial hyperglycemiaSMBG = self-monitored blood glucoseT2DM = type 2 diabetes mellitus  相似文献   

17.
《Endocrine practice》2014,20(2):120-128
ObjectiveTo evaluate the effect of diabetes duration on efficacy and safety in patients with type 2 diabetes mellitus (T2DM) using insulin glargine versus comparator (oral antidiabetic drugs [OADs], dietary changes, or other insulins).MethodsData were pooled from randomized controlled clinical trials conducted in adults with T2DM with at least 24-week treatment with insulin glargine or a comparator, where predefined insulin titration algorithms were utilized to achieve fasting plasma glucose (FPG) concentrations of ≤ 100 mg/dL. Glycated hemoglobin A1C (A1C), FPG, and insulin dose and safety (hypoglycemia) outcomes were analyzed.ResultsNine studies were included in the analysis of 2,930 patients. Patients with shorter duration of diabetes were more likely to have greater reductions in A1C compared with those who had longer-duration disease (P < .0001). Disease duration did not affect change in FPG concentrations (P = .9017), but lower weight-adjusted insulin dose was correlated with longer-duration disease (P < .0001). Patients with longer-duration diabetes had increased risks of symptomatic hypoglycemia, confirmed hypoglycemia (self-monitored blood glucose < 50 mg/dL and < 70 mg/dL), and nocturnal hypoglycemia (all P < .001). No significant relationship was found between severe hypoglycemia and duration of diabetes. However, treatment with insulin glargine lowered A1C values more effectively than comparator treatments with fewer hypoglycemic episodes.ConclusionPatients with shorter-duration T2DM better achieved target A1C levels and had less hypoglycemia than those with longer disease duration. Insulin glargine was associated with reduced A1C and fewer hypoglycemic events than comparators, regardless of disease duration. (Endocr Pract. 2014;20:120-128)  相似文献   

18.
《Endocrine practice》2015,21(8):861-869
Objective: Retinol binding protein 4 (RBP4) has been implicated in metabolic disorders including type 2 diabetes mellitus (T2DM), but few studies have looked at transthyretin (TTR) with which RBP4 is normally bound to in the circulation. We report on the systemic levels of RBP4 and TTR and their associations with insulin resistance, obesity, prediabetes, and T2DM in Asian Indians.Methods: Age-matched individuals with normal glucose tolerance (NGT, n = 90), impaired glucose tolerance (IGT, n = 70) and T2DM (n = 90) were recruited from the Chennai Urban Rural Epidemiology Study (CURES). Insulin resistance was estimated using the homeostasis model assessment of insulin resistance (HOMA-IR). RBP4 and TTR levels were measured by enzyme-linked immunosorbent assay (ELISA).Results: Circulatory RBP4 and TTR levels (in μg/mL) were highest in T2DM (RBP4: 13 ± 3.9, TTR: 832 ± 310) followed by IGT (RBP4: 10.5 ± 3.2; TTR: 720 ± 214) compared to NGT (RBP4: 8.7 ± 2.5; TTR: 551 ± 185; P<.001). Compared to nonobese NGT individuals, obese NGT, nonobese T2DM, and obese T2DM had higher RBP4 (8.1 vs. 10.6, 12.1, and 13.2 μg/mL, P<.01) and TTR levels (478 vs. 737, 777, and 900 μg/mL, P<.01). RBP4 but not TTR was significantly (P<.001) correlated with insulin resistance even among NGT subjects. In regression analysis, RBP4 and TTR showed significant associations with T2DM after adjusting for confounders (RBP4 odds ratio [OR]: 1.107, 95% confidence interval [CI]: 1.008–1.216; TTR OR: 1.342, 95% CI: 1.165–1.547).Conclusion: Circulatory levels of RBP4 and TTR showed a significant associations with glucose intolerance, obesity, T2DM and RBP4 additionally, with insulin resistance.Abbreviations: BMI = body mass index CI = confidence interval HDL = high-density lipoprotein IGT = impaired glucose tolerance LDL = low-density lipoprotein NGT = normal glucose tolerance OGTT = oral glucose tolerance test OR = odds ratio RBP4 = retinol binding protein 4 T2DM = type 2 diabetes mellitus TTR = transthyretin WC = waist circumference  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号