首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 43 毫秒
1.
Leishmania is an obligate intracellular parasite that primarily inhabits macrophages. The destruction of the parasite in the host cell is a fundamental mechanism for infection control. In addition, inhibition of the leishmanicidal activity of macrophages seems to be related to the ability of some species to inhibit the production of nitric oxide (NO) by depleting arginine. Some species of Leishmania have the ability to produce NO from a constitutive nitric oxide synthase-like enzyme (cNOS-like). However, the localization of cNOS-like in Leishmania has not been described before. As such, this study was designed to locate cNOS-like enzyme and NO production in promastigotes of Leishmania (Leishmania) amazonensis and Leishmania (Viannia) braziliensis. NO production was initially quantified by flow cytometry, which indicated a significant difference in NO production between L. (L.) amazonensis (GMFC = 92.17 +/− 4.6) and L. (V.) braziliensis (GMFC = 18.89 +/− 2.29) (P < 0.05). Analysis of cNOS expression by immunoblotting showed more expression in L. (L.) amazonensis versus L. (V.) braziliensis. Subsequently, cNOS-like immunolabeling was observed in promastigotes in regions near vesicles, the flagellar pocket and mitochondria, and small clusters of particles appeared to be fusing with vesicles suggestive of glycosomes, peroxisome-like-organelles that compartmentalize the glycolytic pathway in trypanosomatid parasites. In addition, confocal microscopy analysis demonstrated colocalization of cNOS-like and GAPDH, a specific marker for glycosomes. Thus, L. (L.) amazonensis produces greater amounts of NO than L. (V.) braziliensis, and both species present the cNOS-like enzyme inside glycosomes.  相似文献   

2.

Background

Studies on the role of neutrophils in Leishmania infection were mainly performed with L. (L) major, whereas less information is available for L. (L) amazonensis. Previous results from our laboratory showed a large infiltrate of neutrophils in the site of infection in a mouse strain resistant to L. (L.) amazonensis (C3H/HePas). In contrast, the susceptible strain (BALB/c) displayed a predominance of macrophages harboring a high number of amastigotes and very few neutrophils. These findings led us to investigate the interaction of inflammatory neutrophils with L. (L.) amazonensis-infected macrophages in vitro.

Methodology/Principal Findings

Mouse peritoneal macrophages infected with L. (L.) amazonensis were co-cultured with inflammatory neutrophils, and after four days, the infection was quantified microscopically. Data are representative of three experiments with similar results. The main findings were 1) intracellular parasites were efficiently destroyed in the co-cultures; 2) the leishmanicidal effect was similar when cells were obtained from mouse strains resistant (C3H/HePas) or susceptible (BALB/c) to L. (L.) amazonensis; 3) parasite destruction did not require contact between infected macrophages and neutrophils; 4) tumor necrosis factor alpha (TNF-α), neutrophil elastase and platelet activating factor (PAF) were involved with the leishmanicidal activity, and 5) destruction of the parasites did not depend on generation of oxygen or nitrogen radicals, indicating that parasite clearance did not involve the classical pathway of macrophage activation by TNF-α, as reported for other Leishmania species.

Conclusions/Significance

The present results provide evidence that neutrophils in concert with macrophages play a previously unrecognized leishmanicidal effect on L. (L.) amazonensis. We believe these findings may help to understand the mechanisms involved in innate immunity in cutaneous infection by this Leishmania species.  相似文献   

3.
Professional phagocytes generate a myriad of antimicrobial molecules to kill invading microorganisms, of which nitrogen oxides are integral in controlling the obligate intracellular pathogen Leishmania. Although reactive nitrogen species produced by the inducible nitric oxide synthase (iNOS) can promote the clearance of intracellular parasites, some Leishmania species/stages are relatively resistant to iNOS-mediated antimicrobial activity. The underlying mechanism for this resistance remains largely uncharacterized. Here, we show that the amastigote form of L. amazonensis is hyper-resistant to the antimicrobial actions of cytokine-activated murine and human macrophages as compared to its promastigote counterpart. Amastigotes exhibit a marked ability to directly counter the cytotoxicity of peroxynitrite (ONOO), a leishmanicidal oxidant that is generated during infection through the combined enzymatic activities of NADPH oxidase and iNOS. The enhanced antinitrosative defense of amastigotes correlates with the increased expression of a tryparedoxin peroxidase (TXNPx) isoform that is also upregulated in response to iNOS enzymatic activity within infected macrophages. Accordingly, ectopic over-expression of the TXNPx isoform by L. amazonensis promastigotes significantly enhances parasite resistance against ONOO cytotoxicity. Moreover, TXNPx-overexpressing parasites exhibit greater intra-macrophage survival, and increased parasite growth and lesion development in a murine model of leishmaniasis. Our investigations indicate that TXNPx isoforms contribute to Leishmania''s ability to adapt to and antagonize the hostile microenvironment of cytokine-activated macrophages, and provide a mechanistic explanation for persistent infection in experimental and human leishmaniasis.  相似文献   

4.
Leishmania is an intracellular protozoan parasite that causes a broad spectrum of clinical manifestations, ranging from self‐healing skin lesions to fatal visceralizing disease. As the host cells of choice for all species of Leishmania, macrophages are critical for the establishment of infections. How macrophages contribute to parasite homing to specific tissues and how parasites modulate macrophage function are still poorly understood. In this study, we show that Leishmania amazonensis infection inhibits macrophage roaming motility. The reduction in macrophage speed is not dependent on particle load or on factors released by infected macrophages. L. amazonensis‐infected macrophages also show reduced directional migration in response to the chemokine MCP‐1. We found that infected macrophages have lower levels of total paxillin, phosphorylated paxillin, and phosphorylated focal adhesion kinase when compared to noninfected macrophages, indicating abnormalities in the formation of signaling adhesion complexes that regulate motility. Analysis of the dynamics of actin polymerization at peripheral sites also revealed a markedly enhanced F‐actin turnover frequency in L. amazonensis‐infected macrophages. Thus, Leishmania infection inhibits macrophage motility by altering actin dynamics and impairing the expression of proteins that function in plasma membrane–extracellular matrix interactions.  相似文献   

5.
Leishmania chagasi and Leishmania amazonensis are the etiologic agents of different clinical forms of human leishmaniasis in South America. In an attempt to select candidate antigens for a vaccine protecting against different Leishmania species, the efficacy of vaccination using Leishmania ribosomal proteins and saponin as adjuvant was examined in BALB/c mice against challenge infection with both parasite species. Mice vaccinated with parasite ribosomal proteins purified from Leishmania infantum plus saponin showed a specific production of IFN-γ, IL-12 and GM-CSF after in vitro stimulation with L. infantum ribosomal proteins. Vaccinated mice showed a reduction in the liver and spleen parasite burdens after L. chagasi infection. After L. amazonensis challenge, vaccinated mice showed a decrease of the dermal pathology and a reduction in the parasite loads in the footpad and spleen. In both models, protection was correlated to an IL-12-dependent production of IFN-γ by CD4+ and CD8+ T cells that activate macrophages for the synthesis of NO. In the protected mice a decrease in the parasite-mediated IL-4 and IL-10 responses was also observed. In mice challenged with L. amazonensis, lower levels of anti-parasite-specific antibodies were detected. Thus, Leishmania ribosomal proteins plus saponin fits the requirements to compose a pan-Leishmania vaccine.  相似文献   

6.
Infections caused by Leishmania amazonensis are characterized by a persistent parasitemia due to the ability of the parasite to modulate the immune response of macrophages. It has been proposed that ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDases) could be able to suppress the host immune defense by reducing the ATP and ADP levels. The AMP generated from E-NTPDase activity can be subsequently hydrolyzed by ecto-nucleotidases, increasing the levels of adenosine, which can reduce the inflammatory response. In the present work, we provide new information about the role of E-NTPDases on infectivity and virulence of L. amazonensis. Our data demonstrate that not only the E-NTPDase activity is differentially regulated during the parasite development but also the expression of the genes ntpd1 and ntpd2. E-NTPDase activity increases significantly in axenic amastigotes and metacyclic promastigotes, both infective forms in mammalian host. A similar profile was found for mRNA levels of the ntpd1 and ntpd2 genes. Using parasites overexpressing the genes ntpd1 and ntpd2, we could demonstrate that L. amazonensis promastigotes overexpressing ntpd2 gene show a remarkable increase in their ability to interact with macrophages compared to controls. In addition, both ntpd1 and ntpd2-overexpressing parasites were more infective to macrophages than controls. The kinetics of lesion formation by transfected parasites were similar to controls until the second week. However, twenty days post-infection, mice infected with ntpd1 and ntpd2-overexpressing parasites presented significantly reduced lesions compared to controls. Interestingly, parasite load reached similar levels among the different experimental groups. Thus, our data show a non-linear relationship between higher E-NTPDase activity and lesion formation. Previous studies have correlated increased ecto-NTPDase activity with virulence and infectivity of Leishmania parasites. Based in our results, we are suggesting that the induced overexpression of E-NTPDases in L. amazonensis could increase extracellular adenosine levels, interfering with the balance of the immune response to promote the pathogen clearance and maintain the host protection.  相似文献   

7.

Background

Chemotherapy for leishmaniasis, a disease caused by Leishmania parasites, is expensive and causes side effects. Furthermore, parasite resistance constitutes an increasing problem, and new drugs against this disease are needed. In this study, we examine the effect of the compound 8,10,18-trihydroxy-2,6-dolabelladiene (Dolabelladienetriol), on Leishmania growth in macrophages. The ability of this compound to modulate macrophage function is also described.

Methodology/Principal Findings

Leishmania-infected macrophages were treated with Dolabelladienetriol, and parasite growth was measured using an infectivity index. Nitric oxide (NO), TNF-α and TGF-β production were assayed in macrophages using specific assays. NF-kB nuclear translocation was analyzed by western blot. Dolabelladienetriol inhibited Leishmania in a dose-dependent manner; the IC50 was 44 µM. Dolabelladienetriol diminished NO, TNF-α and TGF-β production in uninfected and Leishmania-infected macrophages and reduced NF-kB nuclear translocation. Dolabelladienetriol inhibited Leishmania infection even when the parasite growth was exacerbated by either IL-10 or TGF-β. In addition, Dolabelladienetriol inhibited Leishmania growth in HIV-1-co-infected human macrophages.

Conclusion

Our results indicate that Dolabelladienetriol significantly inhibits Leishmania in macrophages even in the presence of factors that exacerbate parasite growth, such as IL-10, TGF-β and HIV-1 co-infection. Our results suggest that Dolabelladienetriol is a promising candidate for future studies regarding treatment of leishmaniasis, associated or not with HIV-1 infection.  相似文献   

8.
Understanding the impact of intracellular pathogens on the behaviour of their host cells is key to designing new interventions. We are interested in how Leishmania alters the electrical functioning of the plasma membrane of the macrophage it infects. The specific question addressed here is whether Leishmania amazonensis infection alters the macrophage’s outward currents and what the consequences of such changes might be. Using the whole cell configuration of the patch clamp technique, we show that outward peak current density remains constant over the period studied but that time to peak and sensitivity to inhibitors vary during infection. Infected cells take 40% longer to activate and are more sensitive to the potassium channel inhibitor tetraethyl ammonium, compared to control cells, indicating increased potassium outward current activity. Activation of macrophages is associated with increases of nitric oxide production and membrane area, depolarization of the macrophage membrane, down regulation of inward potassium and up regulation of outward currents. After Leishmania infection, macrophage activation is characterised by a reduction of nitric oxide production and of outward current density. We therefore suggest that this reflects a weaker activation.  相似文献   

9.
The intercellular adhesive molecule, ICAM-L, of Leishmania amazonensis is known to block the attachment as well as internalisation of Leishmania for infection in host macrophages. We employed monoclonal antibodies (mAb) to the surface molecules of a macrophage to block the attachment of ICAM-L to the macrophage surface and identified that CD68 macrosialin is likely the receptor molecule on the macrophage for ICAM-L. We then demonstrated physical interaction between ICAM-L and macrosialin by co-immunoprecipitation of macrosialin with ICAM-L or vice versa. Finally, macrosialin is expressed in macrosialin-negative murine fibroblast cell line NCTC clone 2555 and demonstrates that both ICAM-L and promastigotes of L. amazonensis can bind to the CD68 transfectant. We thus conclude that CD68 macrosialin is the receptor on host macrophages for ICAM-L. Also, involvement of ICAM-L-macrosialin interaction in other Leishmania species and other mammalian macrophages were demonstrated, indicating the biological relevance of this ligand–receptor interaction.  相似文献   

10.
11.
The myeloid-related proteins (MRPs) 8/14 are small proteins mainly produced by neutrophils, which have been reported to induce NO production in macrophages. On the other hand, Leishmania survives and multiplies within phagocytes by inactivating several of their microbicidal functions. Whereas MRPs are rapidly released during the innate immune response, their role in the regulation of Leishmaniasis is still unknown. In vitro experiments revealed that Leishmania infection alters MRP-induced signaling, leading to inhibition of macrophage functions (NO, TNF-α). In contrast, MRP-primed cells showed normal signaling activation and NO production in response to Leishmania infection. Using a murine air-pouch model, we observed that infection with L. major induced leukocyte recruitment and MRP secretion comparable to LPS-treated mice. Depletion of MRPs significantly reduced these inflammatory events and augmented both parasite load and footpad swelling during the first 8 weeks post-infection, as also observed in MRP KO mice. On the contrary, mouse treatment with recombinant MRPs (rMRPs) had the opposite effect. Collectively, our results suggest that rapid secretion of MRPs by neutrophils at the site of infection may protect uninfected macrophages and favor a more efficient innate inflammatory response against Leishmania infection. In summary, our study reveals the critical role played by MRPs in the regulation of Leishmania infection and how this pathogen can subvert its action.  相似文献   

12.
Leishmania is an intracellular parasite in vertebrate hosts, including man. During infection, amastigotes replicate inside macrophages and are transmitted to healthy cells, leading to amplification of the infection. Although transfer of amastigotes from infected to healthy cells is a crucial step that may shape the outcome of the infection, it is not fully understood. Here we compare L. amazonensis and L. guyanensis infection in C57BL/6 and BALB/c mice and investigate the fate of macrophages when infected with these species of Leishmania in vitro. As previously shown, infection of mice results in distinct outcomes: L. amazonensis causes a chronic infection in both strains of mice (although milder in C57BL/6), whereas L. guyanensis does not cause them disease. In vitro, infection is persistent in L. amazonensis-infected macrophages whereas L. guyanensis growth is controlled by host cells from both strains of mice. We demonstrate that, in vitro, L. amazonensis induces apoptosis of both C57BL/6 and BALB/c macrophages, characterized by PS exposure, DNA cleavage into nucleosomal size fragments, and consequent hypodiploidy. None of these signs were seen in macrophages infected with L. guyanensis, which seem to die through necrosis, as indicated by increased PI-, but not Annexin V-, positive cells. L. amazonensis-induced macrophage apoptosis was associated to activation of caspases-3, -8 and -9 in both strains of mice. Considering these two species of Leishmania and strains of mice, macrophage apoptosis, induced at the initial moments of infection, correlates with chronic infection, regardless of its severity. We present evidence suggestive that macrophages phagocytize L. amazonensis-infected cells, which has not been verified so far. The ingestion of apoptotic infected macrophages by healthy macrophages could be a way of amastigote spreading, leading to the establishment of infection.  相似文献   

13.
Leishmaniasis is a widespread tropical infection caused by different species of Leishmania protozoa. There is no vaccine available for Leishmania infections and conventional treatments are very toxic to the patients. Therefore, antileishmanial drugs are urgently needed. In this study we have analyzed the effects of essential oils from Lippia sidoides (LSEO) and its major compound thymol on the growth, viability and ultrastructure of Leishmania amazonensis. The essential oil and thymol showed significant activity against promastigote forms of L. amazonensis, with IC50/48 h of 44.38 and 19.47 μg/mL respectively. However, thymol showed toxicity against peritoneal macrophages and low selectivity against the promastigotes when compared with the crude LSEO. On the other hand, no cytotoxic effect was observed in macrophages treated with the crude essential oil. Incubation of L. amazonensis-infected macrophages with LSEO showed a marked reduction in amastigote survival within the macrophages. Significant morphological alterations as accumulation of large lipid droplets in the cytoplasm, disrupted membrane and wrinkled cells were usually seen in treated parasites. The LSEO's activity against both promastigote and the amstigote forms of L. amazonensis, together with its low toxicity to mammalian cells, point to LSEO as a promising agent for the treatment of cutaneous leishmaniasis.  相似文献   

14.
The Leishmania plasma membrane transporter Leishmania Iron Regulator 1 (LIR1) facilitates iron export and is required for parasite virulence. By modulating macrophage iron content, we investigated the host site where LIR1 regulates Leishmania amazonensis infectivity. In bone marrow-derived macrophages, LIR1 null mutants demonstrated a paradoxical increase in virulence during infections in heme-depleted media, while wild-type growth was inhibited under the same conditions. Loading the endocytic pathway of macrophages with cationized ferritin prior to infection reversed the effect of heme depletion on both strains. Thus, LIR1 contributes to Leishmania virulence by protecting the parasites from toxicity resulting from iron accumulation inside parasitophorous vacuoles.  相似文献   

15.
Footpad infection of C3HeB/FeJ mice with Leishmania amazonensis leads to chronic lesions accompanied by large parasite loads. Co-infecting these animals with L. major leads to induction of an effective Th1 immune response that can resolve these lesions. This cross-protection can be recapitulated in vitro by using immune cells from L. major-infected animals to effectively activate L. amazonensis-infected macrophages to kill the parasite. We have shown previously that the B cell population and their IgG2a antibodies are required for effective cross-protection. Here we demonstrate that, in contrast to L. major, killing L. amazonensis parasites is dependent upon FcRγ common-chain and NADPH oxidase-generated superoxide from infected macrophages. Superoxide production coincided with killing of L. amazonensis at five days post-activation, suggesting that opsonization of the parasites was not a likely mechanism of the antibody response. Therefore we tested the hypothesis that non-specific immune complexes could provide a mechanism of FcRγ common-chain/NADPH oxidase dependent parasite killing. Macrophage activation in response to soluble IgG2a immune complexes, IFN-γ and parasite antigen was effective in significantly reducing the percentage of macrophages infected with L. amazonensis. These results define a host protection mechanism effective during Leishmania infection and demonstrate for the first time a novel means by which IgG antibodies can enhance killing of an intracellular pathogen.  相似文献   

16.
How human macrophages can control the intracellular infection with Leishmania is not completely understood. IL-15 and IL-32 are cytokines produced by monocytes/macrophages that can induce antimicrobial mechanisms. Here, we evaluated the effects of recombinant human IL-15 (rhIL-15) on primary human macrophage infection and response to L. braziliensis. Priming with rhIL-15 reduced the phagocytosis of L. braziliensis and increased the killing of the parasites in monocyte-derived macrophages from healthy donors. rhIL-15 induced TNFα and IL-32 in uninfected cells. After infection, the high levels of rhIL-15-induced TNFα and IL-32 were maintained. In addition, there was an increase of NO and an inhibition of the parasite-induced IL-10 production. Inhibition of NO reversed the leishmanicidal effects of rhIL-15. Although rhIL-15 did not increase L. braziliensis-induced reactive oxygen intermediates (ROS) production, inhibition of ROS reversed the control of infection induced by rhIL-15. Treatment of the cells with rhIL-32γ increased microbicidal capacity of macrophages in the presence of high levels of vitamin D (25D3), but not in low concentrations of this vitamin. rhIL-15 together with rhIL-32 lead to the highest control of the L. braziliensis infection in high concentrations of vitamin D. In this condition, NO and ROS mediated rhIL-32γ effects on microbicidal activity. The data showed that priming of human macrophages with rhIL-15 or rhIL-32γ results in the control of L. braziliensis infection through induction of NO and ROS. In addition, rhIL-32γ appears to synergize with rhIL-15 for the control of L. braziliensis infection in a vitamin D-dependent manner.  相似文献   

17.
We investigated the role of autophagy in infection of macrophages by Leishmania amazonensis. Induction of autophagy by IFN-γ or starvation increased intracellular parasite load and the percentages of infected macrophages from BALB/c but not from C57BL/6 mice. In contrast, starvation did not affect the replication of either Leishmania major or Trypanosoma cruzi in BALB/c macrophages. In BALB/c macrophages, starvation resulted in increased monodansylcadaverine staining and in the appearance of double-membrane and myelin-like vesicles characteristic of autophagosomes. Increased parasite load was associated with a reduction in NO levels and was attenuated by wortmannin, an inhibitor of autophagy. In infected macrophages from BALB/c, but not from C57BL/6 mice, starvation increased the number of lipid bodies and the amounts of PGE2 produced. Exogenous PGE2 increased parasite load in macrophages from BALB/c, but not C57BL/6 mice. The cyclooxygenase inhibitor indomethacin prevented the increase of parasite load in starved BALB/c macrophages, and actually induced parasite killing. These results suggest that autophagy regulates the outcome of L. amazonensis infection in macrophages in a host strain specific manner.  相似文献   

18.
Infection of macrophages by the intracellular protozoan Leishmania leads to down-regulation of a number of macrophage innate host defense mechanisms, thereby allowing parasite survival and replication. The underlying molecular mechanisms involved remain largely unknown. In this study, we assessed epigenetic changes in macrophage DNA methylation in response to infection with L. donovani as a possible mechanism for Leishmania driven deactivation of host defense. We quantified and detected genome-wide changes of cytosine methylation status in the macrophage genome resulting from L. donovani infection. A high confidence set of 443 CpG sites was identified with changes in methylation that correlated with live L. donovani infection. These epigenetic changes affected genes that play a critical role in host defense such as the JAK/STAT signaling pathway and the MAPK signaling pathway. These results provide strong support for a new paradigm in host-pathogen responses, where upon infection the pathogen induces epigenetic changes in the host cell genome resulting in downregulation of innate immunity thereby enabling pathogen survival and replication. We therefore propose a model whereby Leishmania induced epigenetic changes result in permanent down regulation of host defense mechanisms to protect intracellular replication and survival of parasitic cells.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号