首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, a new heuristic scheme for the approximate solution of the generalized Burgers''-Fisher equation is proposed. The scheme is based on the hybridization of Exp-function method with nature inspired algorithm. The given nonlinear partial differential equation (NPDE) through substitution is converted into a nonlinear ordinary differential equation (NODE). The travelling wave solution is approximated by the Exp-function method with unknown parameters. The unknown parameters are estimated by transforming the NODE into an equivalent global error minimization problem by using a fitness function. The popular genetic algorithm (GA) is used to solve the minimization problem, and to achieve the unknown parameters. The proposed scheme is successfully implemented to solve the generalized Burgers''-Fisher equation. The comparison of numerical results with the exact solutions, and the solutions obtained using some traditional methods, including adomian decomposition method (ADM), homotopy perturbation method (HPM), and optimal homotopy asymptotic method (OHAM), show that the suggested scheme is fairly accurate and viable for solving such problems.  相似文献   

2.
Traveling waves of calcium are widely observed under the condition that the free cytosolic calcium is buffered. Thus it is of physiological interest to determine how buffers affect the properties of calcium waves. Here we summarise and extend previous results on the existence, uniqueness and stability of traveling wave solutions of the buffered bistable equation, which is the simplest possible model of the upstroke of a calcium wave. Taken together, the results show that immobile buffers do not change the existence, uniqueness or stability of the traveling wave, while mobile buffers can eliminate a traveling wave. However, if a wave exists in the latter case, it remains unique and stable.   相似文献   

3.
Total generalized variation (TGV)-based computed tomography (CT) image reconstruction, which utilizes high-order image derivatives, is superior to total variation-based methods in terms of the preservation of edge information and the suppression of unfavorable staircase effects. However, conventional TGV regularization employs l1-based form, which is not the most direct method for maximizing sparsity prior. In this study, we propose a total generalized p-variation (TGpV) regularization model to improve the sparsity exploitation of TGV and offer efficient solutions to few-view CT image reconstruction problems. To solve the nonconvex optimization problem of the TGpV minimization model, we then present an efficient iterative algorithm based on the alternating minimization of augmented Lagrangian function. All of the resulting subproblems decoupled by variable splitting admit explicit solutions by applying alternating minimization method and generalized p-shrinkage mapping. In addition, approximate solutions that can be easily performed and quickly calculated through fast Fourier transform are derived using the proximal point method to reduce the cost of inner subproblems. The accuracy and efficiency of the simulated and real data are qualitatively and quantitatively evaluated to validate the efficiency and feasibility of the proposed method. Overall, the proposed method exhibits reasonable performance and outperforms the original TGV-based method when applied to few-view problems.  相似文献   

4.
Various explicit reformulations of time-dependent solutions for the classical two-step irreversible Michaelis–Menten enzyme reaction model have been described recently. In the current study, I present further improvements in terms of a generalized integrated form of the Michaelis–Menten equation for computation of substrate or product concentrations as functions of time for more real-world, enzyme-catalyzed reactions affected by the product. The explicit equations presented here can be considered as a simpler and useful alternative to the exact solution for the generalized integrated Michaelis–Menten equation when fitted to time course data using standard curve-fitting software.  相似文献   

5.
The reflection coefficient method for describing volume and solute fluxes through membranes is generalized to take into account the nonideality of the solutions bathing the membrane and/or multicomponent systems. The reflection coefficient of the impermeable species in these systems is less than unity by a coefficient γ. The reflection coefficient obtained solely from the volume flow equation, σv, will always be less than the reflection coefficient obtained from the solute flow equation, σ8v. These two coefficients are related by σ8v = σv + γ.  相似文献   

6.
7.
The (1+1)-dimensional Sine-Gordon equation passes integrability tests commonly applied to nonlinear evolution equations. Its kink solutions (one-dimensional fronts) are obtained by a Hirota algorithm. In higher space-dimensions, the equation does not pass these tests. Although it has been derived over the years for quite a few physical systems that have nothing to do with Special Relativity, the Sine-Gordon equation emerges as a non-linear relativistic wave equation. This opens the way for exploiting the tools of the Theory of Special Relativity. Using no more than the relativistic kinematics of tachyonic momentum vectors, from which the solutions are constructed through the Hirota algorithm, the existence and classification of N-moving-front solutions of the (1+2)- and (1+3)-dimensional equations for all N ≥ 1 are presented. In (1+2) dimensions, each multi-front solution propagates rigidly at one velocity. The solutions are divided into two subsets: Solutions whose velocities are lower than a limiting speed, c = 1, or are greater than or equal to c. To connect with concepts of the Theory of Special Relativity, c will be called “the speed of light.” In (1+3)-dimensions, multi-front solutions are characterized by spatial structure and by velocity composition. The spatial structure is either planar (rotated (1+2)-dimensional solutions), or genuinely three-dimensional – branes. Planar solutions, propagate rigidly at one velocity, which is lower than, equal to, or higher than c. Branes must contain clusters of fronts whose speed exceeds c = 1. Some branes are “hybrids”: different clusters of fronts propagate at different velocities. Some velocities may be lower than c but some must be equal to, or exceed, c. Finally, the speed of light cannot be approached from within the subset of slower-than-light solutions in both (1+2) and (1+3) dimensions.  相似文献   

8.
In this work, a scheme to generate exact wave functions and eigenvalues for the spherically symmetric three-dimensional position-dependent effective mass Schrödinger equation is presented. The methodology is implemented by means of separation of variables and point canonical transformations that allow to recognize a radial dependent equation with important differences as compared with the one-dimensional position dependent mass problem, which has been widely studied. This situation deserves to consider the boundary conditions of the emergent problem. To obtain specific exact solutions, the methodology requires known solutions of ordinary one-dimensional Schrödinger equations. We have preferred those applications that use the harmonic oscillator and the Morse oscillator solutions.  相似文献   

9.
潘杰 《生物数学学报》2007,22(3):465-470
研究一类含时滞的Logistic滞反应扩散方程的波前解.通过构造合适的上下解,证明了当时滞充分小时,方程存在波前解.用线性化方法,给出了存在波前解的时滞τ取值范围的一个估计.  相似文献   

10.
Weak periodic external perturbations of an autowave medium can cause large-distance directed motion of the spiral wave. This happens when the period of the perturbation coincides with, or is close to the rotation period of a spiral wave, or its multiple. Such motion is called resonant or parametric drift. It may be used for low-voltage defibrillation of heart tissue. Theory of the resonant drift exists, but so far was used only qualitatively. In this paper, we show good quantitative agreement of the theory with direct numerical simulations. This is done for Complex Ginzburg-Landau Equation, one of the simplest autowave models.  相似文献   

11.
Lei Zhao  Xingye Yue  David Waxman 《Genetics》2013,194(4):973-985
A numerical method is presented to solve the diffusion equation for the random genetic drift that occurs at a single unlinked locus with two alleles. The method was designed to conserve probability, and the resulting numerical solution represents a probability distribution whose total probability is unity. We describe solutions of the diffusion equation whose total probability is unity as complete. Thus the numerical method introduced in this work produces complete solutions, and such solutions have the property that whenever fixation and loss can occur, they are automatically included within the solution. This feature demonstrates that the diffusion approximation can describe not only internal allele frequencies, but also the boundary frequencies zero and one. The numerical approach presented here constitutes a single inclusive framework from which to perform calculations for random genetic drift. It has a straightforward implementation, allowing it to be applied to a wide variety of problems, including those with time-dependent parameters, such as changing population sizes. As tests and illustrations of the numerical method, it is used to determine: (i) the probability density and time-dependent probability of fixation for a neutral locus in a population of constant size; (ii) the probability of fixation in the presence of selection; and (iii) the probability of fixation in the presence of selection and demographic change, the latter in the form of a changing population size.  相似文献   

12.

Background

Because the accurate measure of body fat (BF) is difficult, several prediction equations have been proposed. The aim of this study was to compare different multiple regression models to predict BF, including the recently reported CUN-BAE equation.

Methods

Multi regression models using body mass index (BMI) and body adiposity index (BAI) as predictors of BF will be compared. These models will be also compared with the CUN-BAE equation. For all the analysis a sample including all the participants and another one including only the overweight and obese subjects will be considered. The BF reference measure was made using Bioelectrical Impedance Analysis.

Results

The simplest models including only BMI or BAI as independent variables showed that BAI is a better predictor of BF. However, adding the variable sex to both models made BMI a better predictor than the BAI. For both the whole group of participants and the group of overweight and obese participants, using simple models (BMI, age and sex as variables) allowed obtaining similar correlations with BF as when the more complex CUN-BAE was used (ρ = 0:87 vs. ρ = 0:86 for the whole sample and ρ = 0:88 vs. ρ = 0:89 for overweight and obese subjects, being the second value the one for CUN-BAE).

Conclusions

There are simpler models than CUN-BAE equation that fits BF as well as CUN-BAE does. Therefore, it could be considered that CUN-BAE overfits. Using a simple linear regression model, the BAI, as the only variable, predicts BF better than BMI. However, when the sex variable is introduced, BMI becomes the indicator of choice to predict BF.  相似文献   

13.
The exact general solution is obtained to a linear second order ordinary differential equation which has quite general coefficients depending on an arbitrary function of the independent variable. From this, the exact fundamental solution is derived for the corresponding linear parabolic partial differential equation with coefficients depending on the single space coordinate. In a special case this latter equation reduces to one of the Fokker-Planck type. These coefficients are then generalised and the appropriate fundamental solution is obtained. Extensions are given to linear parabolic equations in two andn space dimensions. The paper provides a collection of basic examples which illustrate and develop the theory for the generation of the exact fundamental solutions. Reduction to, and the corresponding fundamental solutions of the Fokker-Planck equations is presented, where appropriate.  相似文献   

14.
This paper aims at constructing a general mathematical frame for the equilibrium theory of open or closed biomembranes. Based on the generalized potential functional, the equilibrium differential equation for open biomembrane (with free edge) or closed one (without boundary) is derived. The boundary conditions for open biomembranes are obtained. Besides, the geometrically constraint equation for the existence, formation and disintegration of open or closed biomembranes is revealed. The physical and biological meanings of the equilibrium differential equation and the geometrically constraint equation are discussed. Numerical simulation results for axisymmetric open biomembranes show the effectiveness and convenience of the present theory.  相似文献   

15.
In this paper, the fractional-order generalized Laguerre operational matrices (FGLOM) of fractional derivatives and fractional integration are derived. These operational matrices are used together with spectral tau method for solving linear fractional differential equations (FDEs) of order ν (0 < ν < 1) on the half line. An upper bound of the absolute errors is obtained for the approximate and exact solutions. Fractional-order generalized Laguerre pseudo-spectral approximation is investigated for solving nonlinear initial value problem of fractional order ν. The extension of the fractional-order generalized Laguerre pseudo-spectral method is given to solve systems of FDEs. We present the advantages of using the spectral schemes based on fractional-order generalized Laguerre functions and compare them with other methods. Several numerical examples are implemented for FDEs and systems of FDEs including linear and nonlinear terms. We demonstrate the high accuracy and the efficiency of the proposed techniques.  相似文献   

16.
Summary A method for studying biological control loops has been developed, which suffices to prove global stability for the Goodwin equations when the Hill coefficient is equal to 1. This holds for arbitrary reaction constants, even if time delays are included in the system. For a generalized class of repfessible systems, including the Goodwin Equations for >1, the method gives a sufficient condition for global stability, in terms of solutions of an algebraic equation in a single variable. When the criterion is not satisfied, the same equation gives bounds on any possible limit cycles. The method also shows that inducible systems with a unique equilibrium are globally stable. The system of equations studied allows each reaction rate equation to be non-linear, and to include a time delay.  相似文献   

17.
We derive a closed master equation for an individual-based population model in continuous space and time. The model and master equation include Brownian motion, reproduction via binary fission, and an interaction-dependent death rate moderated by a competition kernel. Using simulations we compare this individual-based model with the simplest approximation, the spatial logistic equation. In the limit of strong diffusion the spatial logistic equation is a good approximation to the model. However, in the limit of weak diffusion the spatial logistic equation is inaccurate because of spontaneous clustering driven by reproduction. The weak-diffusion limit can be partially analyzed using an exact solution of the master equation applicable to a competition kernel with infinite range. This analysis shows that in the case of a top-hat kernel, reducing the diffusion can increase the total population. For a Gaussian kernel, reduced diffusion invariably reduces the total population. These theoretical results are confirmed by simulation.  相似文献   

18.
Models of cellular osmotic behaviour depend on thermodynamic solution theories to calculate chemical potentials in the solutions inside and outside the cell. These solutions are generally thermodynamically non-ideal under cryobiological conditions. The molality-based Elliott et al. form of the multi-solute osmotic virial equation is a solution theory which has been demonstrated to provide accurate predictions in cryobiological solutions, accounting for the non-ideality of these solutions using solute-specific thermodynamic parameters called osmotic virial coefficients. However, this solution theory requires as inputs the exact concentration of every solute in the solution being modeled, which poses a problem for the cytoplasm, where such detailed information is rarely available. This problem can be overcome by using a grouped solute approach for modeling the cytoplasm, where all the non-permeating intracellular solutes are treated as a single non-permeating “grouped” intracellular solute. We have recently shown (Zielinski et al., J Physical Chemistry B, 2017) that such a grouped solute approach is theoretically valid when used with the Elliott et al. model, and Ross-Rodriguez et al. (Biopreservation and Biobanking, 2012) have previously developed a method for measuring the cell type-specific osmotic virial coefficients of the grouped intracellular solute. However, the Ross-Rodriguez et al. method suffers from a lack of precision, which—as we demonstrate in this work—can severely impact the accuracy of osmotic model predictions under certain conditions. Thus, we herein develop a novel method for measuring grouped intracellular solute osmotic virial coefficients which yields more precise values than the existing method and then apply this new method to measure these coefficients for human umbilical vein endothelial cells.  相似文献   

19.
A generalized single-step stepwise mutation model (SMM) is developed that takes into account an arbitrary initial state to a certain partial difference equation. This is solved in both the approximate continuum limit and the more exact discrete form. A time evolution model is developed for Y DNA or mtDNA that takes into account the reflective boundary modeling minimum microsatellite length and the original difference equation. A comparison is made between the more widely known continuum Gaussian model and a discrete model, which is based on modified Bessel functions of the first kind. A correction is made to the SMM model for the probability that two individuals are related that takes into account a reflecting boundary modeling minimum microsatellite length. This method is generalized to take into account the general n-step model and exact solutions are found. A new model is proposed for the step distribution.  相似文献   

20.
The problem of biological invasion in a model single-species community is considered, the spatiotemporal dynamics of the system being described by a modified Fisher equation. For a special case, we obtain an exact solution describing self-similar growth of the initially inhabited domain. By comparison with numerical solutions, we show that this exact solution may be applicable to describe an early stage of a biological invasion preceding the propagation of the stationary travelling wave. Also, the exact solution is applied to the problem of critical aggregation to derive sufficient conditions of population extinction. Finally, we show that the solution we obtain is in agreement with some data from field observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号