首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We have studied association and uptake of Chlamydia trachomatis serovar L1 under various infection conditions. Chlamydiae attached to a greater extent to McCoy cells than to HeLa cells, although the number of inclusions formed in the latter was the same or higher. The amount of internalised chlamydiae was similar in the 2 cell types. Centrifugation of McCoy cell-attached chlamydiae did not affect the uptake of this serovar. However, if the inoculum was centrifuged to the cell surface and then incubated at 37°C, there was a pronounced increase in the relative amount of ingested chlamydiae in comparison with stationary infection. Chlamydiae were attached to and internalised insubconfluent McCoy cell monolayers as efficiently as in confluent layers. If the monolayers were sparse or very sparse, there was a great reduction of associated chlamydiae. Our results indicate that the host cell binding for chlamydiae vary with cell type, cell density, and mode of infection.  相似文献   

3.
Chlamydiae are important pathogens of humans and animals but diagnosis of chlamydial infections is still hampered by inadequate detection methods. Fluorescence in situ hybridization (FISH) using rRNA-targeted oligonucleotide probes is widely used for the investigation of uncultured bacteria in complex microbial communities and has recently also been shown to be a valuable tool for the rapid detection of various bacterial pathogens in clinical specimens. Here we report on the development and evaluation of a hierarchic probe set for the specific detection and differentiation of chlamydiae, particularly C. pneumoniae, C. trachomatis, C. psittaci, and the recently described chlamydia-like bacteria comprising the novel genera Neochlamydia and Parachlamydia. The specificity of the nine newly developed probes was successfully demonstrated by in situ hybridization of experimentally infected amoebae and HeLa 229 cells, including HeLa 229 cells coinfected with C. pneumoniae and C. trachomatis. FISH reliably stained chlamydial inclusions as early as 12 h postinfection. The sensitivity of FISH was further confirmed by combination with direct fluorescence antibody staining. In contrast to previously established detection methods for chlamydiae, FISH was not susceptible to false-positive results and allows the detection of all recognized chlamydiae in one single step.  相似文献   

4.
Chlamydial symbionts in the enigmatic Xenoturbella (Deuterostomia)   总被引:1,自引:0,他引:1  
Ultrastructural observations of the gastrodermal cells in the enigmatic Xenoturbella revealed numerous chlamydiae. They are related to "Candidatus Fritschea" and Simkania (Simkaniaceae) based on 16S and 23S rRNA. Their 23S rRNA gene contains an intron encoding a putative homing endonuclease. The chlamydiae were pleomorphic and formed intravacuolar colonies. They have flattened disk-shaped elementary bodies, either oval or bow tie-shaped in cross-section, and reticulate bodies that are spherical, polygonal or irregularly shaped. All stages have five-layered cell wall with rippled appearance. Bacteria were not observed in the nuclei. The association between the chlamydiae and Xenoturbella is characterized by absence of cytopathological effects; limited host cell response against the chlamydiae; the confinement of the chlamydiae to inclusions in some part of the host cell; and complete and uniform infection of all examined hosts.  相似文献   

5.

Background

Chlamydiae species are of much importance from a clinical viewpoint. Their diversity both in terms of their numbers as well as clinical involvement are presently believed to be significantly underestimated. The obligate intracellular nature of chlamydiae has also limited their genetic and biochemical studies. Thus, it is of importance to develop additional means for their identification and characterization.

Results

We have carried out analyses of available chlamydiae genomes to identify sets of unique proteins that are either specific for all Chlamydiales genomes, or different Chlamydiaceae family members, or members of the Chlamydia and Chlamydophila genera, or those unique to Protochlamydia amoebophila, but which are not found in any other bacteria. In total, 59 Chlamydiales-specific proteins, 79 Chlamydiaceae-specific proteins, 20 proteins each that are specific for both Chlamydia and Chlamydophila and 445 ORFs that are Protochlamydia-specific were identified. Additionally, 33 cases of possible gene loss or lateral gene transfer were also detected.

Conclusion

The identified chlamydiae-lineage specific proteins, many of which are highly conserved, provide novel biomarkers that should prove of much value in the diagnosis of these bacteria and in exploration of their prevalence and diversity. These conserved protein sequences (CPSs) also provide novel therapeutic targets for drugs that are specific for these bacteria. Lastly, functional studies on these chlamydiae or chlamydiae subgroup-specific proteins should lead to important insights into lineage-specific adaptations with regards to development, infectivity and pathogenicity.  相似文献   

6.

Background

Intracellular pathogens have developed elaborate strategies for silent infection of preferred host cells. Chlamydia pneumoniae is a common pathogen in acute infections of the respiratory tract (e.g. pneumonia) and associated with chronic lung sequelae in adults and children. Within the lung, alveolar macrophages and polymorph nuclear neutrophils (PMN) are the first line of defense against bacteria, but also preferred host phagocytes of chlamydiae.

Methodology/Principal Findings

We could show that C. pneumoniae easily infect and hide inside neutrophil granulocytes until these cells become apoptotic and are subsequently taken up by macrophages. C. pneumoniae infection of macrophages via apoptotic PMN results in enhanced replicative activity of chlamydiae when compared to direct infection of macrophages, which results in persistence of the pathogen. Inhibition of the apoptotic recognition of C. pneumoniae infected PMN using PS- masking Annexin A5 significantly lowered the transmission of chlamydial infection to macrophages. Transfer of apoptotic C. pneumoniae infected PMN to macrophages resulted in an increased TGF-ß production, whereas direct infection of macrophages with chlamydiae was characterized by an enhanced TNF-α response.

Conclusions/Significance

Taken together, our data suggest that C. pneumoniae uses neutrophil granulocytes to be silently taken up by long-lived macrophages, which allows for efficient propagation and immune protection within the human host.  相似文献   

7.

Background

Chlamydia pecorum is the causative agent of a number of acute diseases, but most often causes persistent, subclinical infection in ruminants, swine and birds. In this study, the genome sequences of three C. pecorum strains isolated from the faeces of a sheep with inapparent enteric infection (strain W73), from the synovial fluid of a sheep with polyarthritis (strain P787) and from a cervical swab taken from a cow with metritis (strain PV3056/3) were determined using Illumina/Solexa and Roche 454 genome sequencing.

Results

Gene order and synteny was almost identical between C. pecorum strains and C. psittaci. Differences between C. pecorum and other chlamydiae occurred at a number of loci, including the plasticity zone, which contained a MAC/perforin domain protein, two copies of a >3400 amino acid putative cytotoxin gene and four (PV3056/3) or five (P787 and W73) genes encoding phospholipase D. Chlamydia pecorum contains an almost intact tryptophan biosynthesis operon encoding trpABCDFR and has the ability to sequester kynurenine from its host, however it lacks the genes folA, folKP and folB required for folate metabolism found in other chlamydiae. A total of 15 polymorphic membrane proteins were identified, belonging to six pmp families. Strains possess an intact type III secretion system composed of 18 structural genes and accessory proteins, however a number of putative inc effector proteins widely distributed in chlamydiae are absent from C. pecorum. Two genes encoding the hypothetical protein ORF663 and IncA contain variable numbers of repeat sequences that could be associated with persistence of infection.

Conclusions

Genome sequencing of three C. pecorum strains, originating from animals with different disease manifestations, has identified differences in ORF663 and pseudogene content between strains and has identified genes and metabolic traits that may influence intracellular survival, pathogenicity and evasion of the host immune system.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-23) contains supplementary material, which is available to authorized users.  相似文献   

8.
The existence of peptidoglycan (PG) in chlamydiae has long been debated. Genome sequencing of members of the Chlamydiaceae family and Protochlamydia amoebophila has uncovered a nearly complete pathway for PG synthesis in these organisms. The recent use of microarray and proteomic analysis methods has revealed that PG synthesis genes are expressed primarily during reticulate body development and division. Furthermore, key genes in the chlamydial PG synthesis pathway encode functional PG synthesis enzymes, some of which provide the basis for the susceptibility of chlamydiae to PG inhibitors. Recent studies shed light on how the construction of a cell wall in chlamydiae is taking shape and why the wall is being built.  相似文献   

9.
Chlamydia spp. express a functional type III secretion system (T3SS) necessary for pathogenesis and intracellular growth. However, certain essential components of the secretion apparatus have diverged to such a degree as to preclude their identification by standard homology searches of primary protein sequences. One example is the needle subunit protein. Electron micrographs indicate that chlamydiae possess needle filaments, and yet database searches fail to identify a SctF homologue. We used a bioinformatics approach to identify a likely needle subunit protein for Chlamydia. Experimental evidence indicates that this protein, designated CdsF, has properties consistent with it being the major needle subunit protein. CdsF is concentrated in the outer membrane of elementary bodies and is surface exposed as a component of an extracellular needle-like projection. During infection CdsF is detectible by indirect immunofluorescence in the inclusion membrane with a punctuate distribution adjacent to membrane-associated reticulate bodies. Biochemical cross-linking studies revealed that, like other SctF proteins, CdsF is able to polymerize into multisubunit complexes. Furthermore, we identified two chaperones for CdsF, termed CdsE and CdsG, which have many characteristics of the Pseudomonas spp. needle chaperones PscE and PscG, respectively. In aggregate, our data are consistent with CdsF representing at least one component of the extended Chlamydia T3SS injectisome. The identification of this secretion system component is essential for studies involving ectopic reconstitution of the Chlamydia T3SS. Moreover, we anticipate that CdsF could serve as an efficacious target for anti-Chlamydia neutralizing antibodies.  相似文献   

10.
Chlamydiae are widespread Gram-negative pathogens of humans and animals. Salicylidene acylhydrazides, developed as inhibitors of type III secretion system (T3SS) in Yersinia spp., have an inhibitory effect on chlamydial infection. However, these inhibitors also have the capacity to chelate iron, and it is possible that their antichlamydial effects are caused by iron starvation. Therefore, we have explored the modification of salicylidene acylhydrazides with the goal to uncouple the antichlamydial effect from iron starvation. We discovered that benzylidene acylhydrazides, which cannot chelate iron, inhibit chlamydial growth. Biochemical and genetic analyses suggest that the derivative compounds inhibit chlamydiae through a T3SS-independent mechanism. Four single nucleotide polymorphisms were identified in a Chlamydia muridarum variant resistant to benzylidene acylhydrazides, but it may be necessary to segregate the mutations to differentiate their roles in the resistance phenotype. Benzylidene acylhydrazides are well tolerated by host cells and probiotic vaginal Lactobacillus species and are therefore of potential therapeutic value.  相似文献   

11.
The polymerase chain reaction (PCR) targeting the ompA gene of Chlamydia psittaci was evaluated for its ability to detect chlamydiae in fecal specimens of budgerigars as compared with isolation procedures using cell culture and embryonated egg inoculations. Several procedures for PCR template DNA preparation were compared so as to determine their detection levels for chlamydiae propagated in cell culture in the presence of fecal materials. Tween-20 and proteinase K treatments followed by centrifugation of the template DNA were found to be an appropriate procedure for DNA preparation for primary PCR. Subsequent nested PCR was shown to detect 4.8 IFU/ml or 84 particles/ml of chlamydiae. Chlamydiae in 50 fecal specimens from apparently healthy budgerigars were examined by nested PCR and several other methods. Nested PCR detected chlamydiae at a higher rate (12/50, 24%) than the isolation procedure in embryonated eggs (6/50, 12%). Primary PCR combined with the isolation procedure in cell culture gave a detection rate (5/50, 10%) similar to that of isolation from embryonated eggs. Detection rates by primary PCR (1/50, 2%) and in cell culture (0%) were inferior to the other procedures.  相似文献   

12.
Chlamydia trachomatis is an obligate intracellular pathogen that replicates in a vacuole termed the inclusion. Many of the interactions of chlamydiae with the host cell are dependent upon bacterial protein synthesis and presumably exposure of these proteins to the cytosol. Because of the dearth of genetic tools for chlamydiae, previous studies examining secreted proteins required the use of heterologous bacterial systems. Recent advances in genetic manipulation of chlamydia now allow for transformation of the bacteria with plasmids. We describe here a shuttle vector system, pBOMB4, that permits expression of recombinant proteins under constitutive or conditional promoter control. We show that the inclusion membrane protein IncD is secreted in a type III-dependent manner from Yersinia pseudotuberculosis and also secreted from C. trachomatis in infected cells where it localizes appropriately to the inclusion membrane. IncD truncated of the first 30 amino acids containing the secretion signal is no longer secreted and is retained by the bacteria. Cytosolic exposure of secreted proteins can be confirmed by using CyaA, GSK, or microinjection assays. A protein predicted to be retained within the bacteria, NrdB is indeed localized to the chlamydia. In addition, we have shown that the chlamydial effector protein, CPAF, which is secreted into the host cell cytosol by a Sec-dependent pathway, also accesses the cytosol when expressed from this system. These assays should prove useful to assess the secretion of other chlamydial proteins that are potentially exposed to the cytosol of the host cell.  相似文献   

13.
Under stress, chlamydiae can enter a non-infectious but viable state termed persistence. In the absence of a tractable genetic system, persistence induction provides an important experimental tool with which to study these fascinating organisms. This review will discuss examples of: i) persistence studies that have illuminated critical chlamydiae/host interactions; and ii) novel persistence models that will do so in the future.  相似文献   

14.
Chlamydia trachomatis and Herpes Simplex Virus-2 (HSV-2) genital tract co-infections have been reported in humans and studied in vitro but the clinical consequences are unknown. Limited epidemiologic evidence suggests that these co-infections could be more severe than single infections of either pathogen, but the host-pathogen interactions during co-infection remain uncharacterized. To determine whether disease progression and/or pathogen shedding differs between singly-infected and super-infected animals, we developed an in vivo super-infection model in which female BALB/c mice were vaginally infected with Chlamydia muridarum (Cm) followed later by HSV-2. Pre-infection with Chlamydia 3 or 9 days prior to HSV-2 super-infection conferred significant protection from HSV-2-induced neurologic disease and significantly reduced viral recovery compared to HSV-2 singly-infected controls. Neither protection from mortality nor reduced viral recovery were observed when mice were i) super-infected with HSV-2 on day 27 post Cm; ii) infected with UV-irradiated Cm and super-infected with HSV-2; or iii) azithromycin-treated prior to HSV-2 super-infection. Therefore, protection from HSV-2-induced disease requires active infection with viable chlamydiae and is not observed after chlamydial shedding ceases, either naturally or due to antibiotic treatment. Thus, Chlamydia-induced protection is transient and requires the continued presence of chlamydiae or their components. These data demonstrate that chlamydial pre-infection can alter progression of subsequent HSV-2 infection, with implications for HSV-2 transmission from co-infected humans.  相似文献   

15.
Chlamydia spp. utilize multiple secretion systems, including the type III secretion system (T3SS), to deploy host-interactive effector proteins into infected host cells. Elucidation of secreted proteins has traditionally required ectopic expression in a surrogate T3SS followed by immunolocalization of endogenous candidate effectors to confirm secretion by chlamydiae. The ability to transform Chlamydia and achieve stable expression of recombinant gene products has enabled a more direct assessment of secretion. We adapted TEM-1 β-lactamase as a reporter system for assessment of chlamydial protein secretion. We provide evidence that this system facilitates visualization of secretion in the context of infection. Specifically, our findings provide definitive evidence that C. trachomatis CT695 is secreted during infection. Follow-up indirect immunofluorescence studies confirmed CT695 secretion and indicate that this effector can be secreted at multiple points during the chlamydial developmental cycle. Our results indicate that the BlaM-fusion reporter assay will allow efficacious identification of novel secreted proteins. Moreover, this approach can easily be adapted to enable more sophisticated studies of the secretion process in Chlamydia.  相似文献   

16.
The Chlamydiae constitute an evolutionary well separated group of intracellular bacteria comprising important pathogens of humans as well as symbionts of protozoa. The amoeba symbiont Protochlamydia amoebophila lacks a homologue of the most abundant outer membrane protein of the Chlamydiaceae, the major outer membrane protein MOMP, highlighting a major difference between environmental chlamydiae and their pathogenic counterparts. We recently identified a novel family of putative porins encoded in the genome of P. amoebophila by in silico analysis. Two of these Protochlamydia outer membrane proteins, PomS (pc1489) and PomT (pc1077), are highly abundant in outer membrane preparations of this organism. Here we show that all four members of this putative porin family are toxic when expressed in the heterologous host Escherichia coli. Immunofluorescence analysis using antibodies against heterologously expressed PomT and PomS purified directly from elementary bodies, respectively, demonstrated the location of both proteins in the outer membrane of P. amoebophila. The location of the most abundant protein PomS was further confirmed by immuno-transmission electron microscopy. We could show that pomS is transcribed, and the corresponding protein is present in the outer membrane throughout the complete developmental cycle, suggesting an essential role for P. amoebophila. Lipid bilayer measurements demonstrated that PomS functions as a porin with anion-selectivity and a pore size similar to the Chlamydiaceae MOMP. Taken together, our results suggest that PomS, possibly in concert with PomT and other members of this porin family, is the functional equivalent of MOMP in P. amoebophila. This work contributes to our understanding of the adaptations of symbiotic and pathogenic chlamydiae to their different eukaryotic hosts.  相似文献   

17.
Genome reduction is a hallmark of obligate intracellular pathogens such as Chlamydia, where adaptation to intracellular growth has resulted in the elimination of genes encoding biosynthetic enzymes. Accordingly, chlamydiae rely heavily on the host cell for nutrients yet their specific source is unclear. Interestingly, chlamydiae grow within a pathogen-defined vacuole that is in close apposition to lysosomes. Metabolically-labeled uninfected host cell proteins were provided as an exogenous nutrient source to chlamydiae-infected cells, and uptake and subsequent labeling of chlamydiae suggested lysosomal degradation as a source of amino acids for the pathogen. Indeed, Bafilomycin A1 (BafA1), an inhibitor of the vacuolar H(+)/ATPase that blocks lysosomal acidification and functions, impairs the growth of C. trachomatis and C. pneumoniae, and these effects are especially profound in C. pneumoniae. BafA1 induced the marked accumulation of material within the lysosomal lumen, which was due to the inhibition of proteolytic activities, and this response inhibits chlamydiae rather than changes in lysosomal acidification per se, as cathepsin inhibitors also inhibit the growth of chlamydiae. Finally, the addition of cycloheximide, an inhibitor of eukaryotic protein synthesis, compromises the ability of lysosomal inhibitors to block chlamydial growth, suggesting chlamydiae directly access free amino acids in the host cytosol as a preferred source of these nutrients. Thus, chlamydiae co-opt the functions of lysosomes to acquire essential amino acids.  相似文献   

18.
The chlamydiae are important human and animal pathogens which form a phylogentically distinct lineage within the Bacteria. There is evidence that some genes in these obligate intracellular parasites have undergone lateral exchange with other free-living organisms. In the present work, we describe two interesting cases of lateral gene transfer between chlamydiae and actinobacteria, which have been identified based on the shared presence of conserved inserts in two important proteins. In the enzyme serine hydroxymethyltransferase (SHMT or GlyA protein), which links amino acid and nucleotide metabolisms by generating the key intermediate for one-carbon transfer reactions, two conserved inserts of 3 and 31 amino acids (aa) are uniquely present in various chlamydiae species as well as in a subset of Actinobacteria and in the Treponema species. Similarly, in the enzyme UDP-N-acetylglucosamine enolpyruvyl transferase (MurA), which is involved in the synthesis of cell wall peptidoglycan, a 16-aa conserved insert is specifically present in various sequenced chlamydiae and a subset of actinobacteria (i.e., Streptomyces, Actinomyces, Tropheryma, Bifidobacterium, Leifsonia, Arthrobacter, and Brevibacterium). To determine the phylogenetic depths of the GlyA and MurA inserts, the fragments of these genes from two chlamydiae-like species, Simkania negevensis and Waddlia chondrophila, were PCR amplified and sequenced. The presence of the corresponding inserts in both these species strongly indicates that these inserts are distinctive characteristics of the Chlamydiales order. In phylogenetic trees based on GlyA and MurA protein sequences, the chlamydiae species (and also the Treponema species in the case of GlyA) branched with a high affinity with various insert-containing actinobacteria within a clade of other actinobacteria. These results provide strong evidence that the shared presence of these indels in these bacteria is very likely a consequence of ancient lateral gene transfers from actinobacteria to chlamydiae. Pairwise sequence identity and the branching pattern of the GlyA homologues in the phylogenetic tree indicates that the glyA gene was initially transferred from an actinobacteria to an ancestor of the Treponema genus and from there it was acquired by the common ancestor of the Chlamydiales. [Reviewing Editor: Dr. Siv Andersson]  相似文献   

19.
The existence of a peptidoglycan cell wall in chlamydiae has been debated for several years. Several studies suggest that these organisms synthesize a cell wall, but some of the components and biosynthetic machinery seem to be missing and a bona fide cell wall has yet to be described. A recent study has revealed that a functional pathway for meso-diaminopimelate, one of the missing bricks for the wall, exists in chlamydiae. Here, I review the chlamydial cell wall paradox and discuss the importance of this new finding.  相似文献   

20.
As a model system for analysing interactions between chlamydiae and myeloid cells and their precursors, we have studied binding, ingestion and destruction of Chlamydia trachomatis (L2 serovar) by the human promyelocytic cell line HL-60. HL-60 cells were induced by phorbol myristate acetate (PMA) and dimethyl sulphoxide (DMSO) to differentiate along either the macrophage or the granulocyte pathway, respectively. Using an immunofluorescence assay and electron microscopy, we have shown that induced (differentiated) HL-60 cells, but not uninduced (undifferentiated) HL-60 or other cell lines treated with PMA or DMSO, exhibit increased binding, ingestion and elimination of C. trachomatis; these activities are associated with specific histochemical and antigenic markers of myeloid differentiation. These results suggest that myeloid cells acquire the ability to interact with and kill chlamydiae during cell development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号