首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The use of antibodies to treat neurodegenerative diseases has undergone rapid development in the past decade. To date, immunotherapeutic approaches to Alzheimer’s disease have mostly targeted amyloid beta as it is a secreted protein that can be found in plasma and CSF and is consequently accessible to circulating antibodies. Few recent publications have suggested the utility of treatment of tau pathology with monoclonal antibodies to tau. Our laboratory has begun a systematic study of different classes of tau monoclonal antibodies using mutant P301L mice. Three or seven months old mutant tau mice were inoculated weekly with tau monoclonal antibodies at a dose of 10 mg/Kg, until seven or ten months of age were reached respectively. Our data strongly support the notion that in P301L animals treated with MC1, a conformational monoclonal antibody specific for PHF-tau, the rate of development of tau pathology is effectively reduced, while injecting DA31, a high affinity tau sequence antibody, does not exert such benefit. MC1 appears superior to DA31 in overall effects, suggesting that specificity is more important than affinity in therapeutic applications. Unfortunately the survival rate of the P301L treated mice was not improved when immunizing either with MC1 or PHF1, a high affinity phospho-tau antibody previously reported to be efficacious in reducing pathological tau. These data demonstrate that passive immunotherapy in mutant tau models may be efficacious in reducing the development of tau pathology, but a great deal of work remains to be done to carefully select the tau epitopes to target.  相似文献   

2.
In neurodegenerative diseases, pathogenic proteins tend to misfold and form aggregates that are difficult to remove and able to induce excessive endoplasmic reticulum (ER) stress, leading to neuronal injury and apoptosis. Homocysteine-induced endoplasmic reticulum protein (Herp), an E3 ubiquitin ligase, is an important early marker of ER stress and is involved in the ubiquitination and degradation of many neurodegenerative proteins. However, in Huntington’s disease (HD), a typical polyglutamine disease, whether Herp is also involved in the metabolism and degradation of the pathogenic protein, mutant huntingtin, has not been reported. Therefore, we studied the relationship between Herp and N-terminal fragments of huntingtin (HttN-20Q and HttN-160Q). We found that Herp was able to bind to the overexpressed Htt N-terminal, and this interaction was enhanced by expansion of the polyQ fragment. Confocal microscopy demonstrated that Herp was co-localized with the HttN-160Q aggregates in the cytoplasm and tightly surrounded the aggregates. Overexpression of Herp significantly decreased the amount of soluble and insoluble HttN-160Q, promoted its ubiquitination, and inhibited its cytotoxicity. In contrast, knockdown of Herp resulted in more HttN-160Q protein, less ubiquitination, and stronger cytotoxicity. Inhibition of the autophagy-lysosomal pathway (ALP) had no effect on the function of Herp. However, blocking the ubiquitin-proteasome pathway (UPP) inhibited the reduction in soluble HttN-160Q caused by Herp. Interestingly, blocking the UPP did not weaken the ability of Herp to reduce HttN-160Q aggregates. Deletions of the N-terminal of Herp weakened its ability to inhibit HttN-160Q aggregation but did not result in a significant increase in its soluble form. However, loss of the C-terminal led to a significant increase in soluble HttN-160Q, but Herp still maintained the ability to inhibit aggregate formation. We further found that the expression level of Herp was significantly increased in HD animal and cell models. Our findings suggest that Herp is a newly identified huntingtin-interacting protein that is able to reduce the cytotoxicity of mutant huntingtin by inhibiting its aggregation and promoting its degradation. The N-terminal of Herp serves as the molecular chaperone to inhibit protein aggregation, while its C-terminal functions as an E3 ubiquitin ligase to promote the degradation of misfolded proteins through the UPP. Increased expression of Herp in HD models may be a pro-survival mechanism under stress.  相似文献   

3.
Progressive aggregation of protein Tau into oligomers and fibrils correlates with cognitive decline and synaptic dysfunction, leading to neurodegeneration in vulnerable brain regions in Alzheimer''s disease. The unmet need of effective therapy for Alzheimer''s disease, combined with problematic pharmacological approaches, led the field to explore immunotherapy, first against amyloid peptides and recently against protein Tau. Here we adapted the liposome-based amyloid vaccine that proved safe and efficacious, and incorporated a synthetic phosphorylated peptide to mimic the important phospho-epitope of protein Tau at residues pS396/pS404. We demonstrate that the liposome-based vaccine elicited, rapidly and robustly, specific antisera in wild-type mice and in Tau.P301L mice. Long-term vaccination proved to be safe, because it improved the clinical condition and reduced indices of tauopathy in the brain of the Tau.P301L mice, while no signs of neuro-inflammation or other adverse neurological effects were observed. The data corroborate the hypothesis that liposomes carrying phosphorylated peptides of protein Tau have considerable potential as safe and effective treatment against tauopathies, including Alzheimer''s disease.  相似文献   

4.
The microtubule associated protein tau causes primary and secondary tauopathies by unknown molecular mechanisms. Post-translational O-GlcNAc-ylation of brain proteins was demonstrated here to be beneficial for Tau.P301L mice by pharmacological inhibition of O-GlcNAc-ase. Chronic treatment of ageing Tau.P301L mice mitigated their loss in body-weight and improved their motor deficits, while the survival was 3-fold higher at the pre-fixed study endpoint at age 9.5 months. Moreover, O-GlcNAc-ase inhibition significantly improved the breathing parameters of Tau.P301L mice, which underpinned pharmacologically the close correlation of mortality and upper-airway defects. O-GlcNAc-ylation of brain proteins increased rapidly and stably by systemic inhibition of O-GlcNAc-ase. Conversely, biochemical evidence for protein Tau.P301L to become O-GlcNAc-ylated was not obtained, nor was its phosphorylation consistently or markedly affected. We conclude that increasing O-GlcNAc-ylation of brain proteins improved the clinical condition and prolonged the survival of ageing Tau.P301L mice, but not by direct biochemical action on protein tau. The pharmacological effect is proposed to be located downstream in the pathological cascade initiated by protein Tau.P301L, opening novel venues for our understanding, and eventually treating the neurodegeneration mediated by protein tau.  相似文献   

5.
6.

Background

Tauopathies, including Alzheimer''s Disease, are the most frequent neurodegenerative diseases in elderly people and cause various cognitive, behavioural and motor defects, but also progressive language disorders. For communication and social interactions, mice produce ultrasonic vocalization (USV) via expiratory airflow through the larynx. We examined USV of Tau.P301L mice, a mouse model for tauopathy expressing human mutant tau protein and developing cognitive, motor and upper airway defects.

Methodology/Principal Findings

At age 4–5 months, Tau.P301L mice had normal USV, normal expiratory airflow and no brainstem tauopathy. At age 8–10 months, Tau.P301L mice presented impaired USV, reduced expiratory airflow and severe tauopathy in the periaqueductal gray, Kolliker-Fuse and retroambiguus nuclei. Tauopathy in these nuclei that control upper airway function and vocalization correlates well with the USV impairment of old Tau.P301L mice.

Conclusions

In a mouse model for tauopathy, we report for the first time an age-related impairment of USV that correlates with tauopathy in midbrain and brainstem areas controlling vocalization. The vocalization disorder of old Tau.P301L mice could be, at least in part, reminiscent of language disorders of elderly suffering tauopathy.  相似文献   

7.
RNA结合蛋白(RNA binding proteins,RBPs)通过与RNA相互作用,广泛参与到RNA的剪切、转运、编辑、胞内定位及翻译调控等过程中。RNA领域尤其是非编码RNA(non-coding RNA,ncRNA)研究的快速发展,催生了多种RBPs RNAs相互作用鉴定技术。这些技术反之又推动了 RNA领域的研究进程。本文对紫外交联免疫沉淀(ultraviolet crosslinking and immunoprecipitation,CLIP),CLIP cDNA文库高通量测序 (high-throughput sequencing of CLIP cDNA library,HITS-CLIP),光活化核苷增强的CLIP(photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation,PAR-CLIP),单核苷酸分离CLIP (individual nucleotide resolution CLIP,iCLIP),TRIBE (targets of RNA-binding protein identified by editing),RNA 标记,相互作用组捕获(interactome capture,IC) 和SerIC (serial RNA interactome capture)等RBPs-RNAs相互作用鉴定技术的基本原理和优缺点以及应用进行综述。  相似文献   

8.
9.
Carbonyl compounds such as alpha-ketoglutarate, pyruvate, oxaloacetate, butyraldehyde, acetaldehyde or acetone react with NAD or NADP to give adducts. Binding studies of adducts to dehydrogenases are performed by means of ultraviolet differential spectroscopy, circular dichroism and spectrofluorimetry. The dehydrogenases show a high degree of binding specificity toward the adducts which contain their specific oxidized substrate and their specific coenzyme. The high selectivity of the dehydrogenases for adducts is evidenced by binding studies of NAD(P)-pyruvate and NAD(P)-alpha-ketoglutarate adducts on glutamate dehydrogenase at pH 7.6 and 8.9. Evidence is presented showing that adducts bind to the active site of the enzymes.  相似文献   

10.
11.
The Major histocompatibility complex (MHC) class I peptidome is thought to be generated mostly through proteasomal degradation of cellular proteins, a notion that is based on the alterations in presentation of selected peptides following proteasome inhibition. We evaluated the effects of proteasome inhibitors, epoxomicin and bortezomib, on human cultured cancer cells. Because the inhibitors did not reduce the level of presentation of the cell surface human leukocyte antigen (HLA) molecules, we followed their effects on the rates of synthesis of both HLA peptidome and proteome of the cells, using dynamic stable isotope labeling in tissue culture (dynamic-SILAC). The inhibitors reduced the rates of synthesis of most cellular proteins and HLA peptides, yet the synthesis rates of some of the proteins and HLA peptides was not decreased by the inhibitors and of some even increased. Therefore, we concluded that the inhibitors affected the production of the HLA peptidome in a complex manner, including modulation of the synthesis rates of the source proteins of the HLA peptides, in addition to their effect on their degradation. The collected data may suggest that the current reliance on proteasome inhibition may overestimate the centrality of the proteasome in the generation of the MHC peptidome. It is therefore suggested that the relative contribution of the proteasomal and nonproteasomal pathways to the production of the MHC peptidome should be revaluated in accordance with the inhibitors effects on the synthesis rates of the source proteins of the MHC peptides.The repertoires and levels of peptides, presented by the major histocompatibility complex (MHC)1 class I molecules at the cells'' surface, are modulated by multiple factors. These include the rates of synthesis and degradation of their source proteins, the transport efficacy of the peptides through the transporter associated with antigen processing (TAP) into the endoplasmic reticulum (ER), their subsequent processing and loading onto the MHC molecules within the ER, and the rates of transport of the MHC molecules with their peptide cargo to the cell surface. The off-rates of the presented peptides, the residence time of the MHC complexes at the cell surface, and their retrograde transport back into the cytoplasm, influence, as well, the presented peptidomes (reviewed in (1)). Even though significant portions of the MHC class I peptidomes are thought to be derived from newly synthesized proteins, including misfolded proteins, defective ribosome products (DRiPs), and short lived proteins (SLiPs), most of the MHC peptidome is assumed to originate from long-lived proteins, which completed their functional cellular roles or became defective (retirees), (reviewed in (2)).The main protease, supplying the MHC peptidome production pipeline, is thought to be the proteasome (3). It is also responsible for generation of the final carboxyl termini of the MHC peptides (4), (reviewed in (5)). The final trimming of the n-termini of the peptides, within the endoplasmic reticulum (ER), is thought to be performed by amino peptidases, such as ERAP1/ERAAP, which fit the peptides into their binding groove on the MHC molecules (6) (reviewed in (7)). Nonproteasomal proteolytic pathways were also suggested as possible contributors to the MHC peptidome, including proteolysis by the ER resident Signal peptide peptidase (8, 9), the cytoplasmic proteases Insulin degrading enzyme (10), Tripeptidyl peptidase (1113), and a number of proteases within the endolysosome pathway (reviewed recently in (1417)). In contrast to the mostly cytoplasmic and ER production of the MHC class I peptidome, the class II peptidome is produced in a special compartment, associated with the endolysosome pathway (1820). This pathway is also thought to participate in the cross presentation of class I peptides, derived from proteins up-taken by professional antigen presenting cells (21), (reviewed in (1517, 22)).The centrality of the proteasomes in the generation of the MHC peptidome was deduced mostly from the observed change in presentation levels of small numbers of selected peptides, following proteasome inhibition (3, 23). Even the location of some of the genes encoding the catalytic subunits of the immunoproteasome (LMP2 and LMP7) (24) within the MHC class II genomic locus, was suggested to support the involvement of the proteasome in the generation of the MHC class I peptidome (25). Similar conclusions were deduced from alterations in peptide presentation, following expression of the catalytic subunits of the immunoproteasome (26), (reviewed in (5)). Yet, although most of the reports indicated reductions in presentation of selected peptides by proteasome inhibition (3, 2729), others have observed only limited, and sometimes even opposite effects (23, 3032).The matter is further complicated by the indirect effects of proteasome inhibition used for such studies on the arrest of protein synthesis by the cells (3335), on the transport rates of the MHC molecules to the cell surface, and on their retrograde transport back to the vesicular system (36) (reviewed in (37)). Proteasome inhibition likely causes shortage of free ubiquitin, reduced supply of free amino acids, and induces an ER unfolded protein response (UPR), which signals the cells to block most (but not all) cellular protein synthesis (reviewed in (38)). Because a significant portion of the MHC peptidome originates from degradation of DRiPs and SLiPs (reviewed in (2)), arrest of new protein synthesis should influence the presentation of their derived MHC peptides. Taken together, these arguments may suggest that merely following the changes in the presentation levels of the MHC molecules, or even of specific MHC peptides, after proteasome inhibition, does not provide the full picture for deducing the relative contribution of the proteasomal pathway to the production of the MHC peptidome (reviewed in (7)).MHC peptidome analysis can be performed relatively easily by modern capillary chromatography combined with mass spectrometry (reviewed in (39)). The peptides are recovered from immunoaffinity purified MHC molecules after detergent solubilization of the cells (40, 41), from soluble MHC molecules secreted to the cells'' growth medium (42, 43) or from patients'' plasma (44). The purified peptides pools are resolved by capillary chromatography and the individual peptides are identified and quantified by tandem mass spectrometry (40), (reviewed in (4547)). In cultured cells, quantitative analysis can also be followed by metabolic incorporation of stable isotope labeled amino acids (SILAC) (48). Furthermore, the rates of de novo synthesis of both MHC peptides and their proteins of origin can be followed using the dynamic-SILAC proteomics approach (49) with its further adaptation to HLA peptidomics (5052).This study attempts to define the relative contribution of the proteasomes to the production of HLA class I peptidome by simultaneously following the effects of proteasome inhibitors, epoxomicin and bortezomib (Velcade), on the rates of de novo synthesis of both the HLA class I peptidome and the cellular proteome of the same MCF-7 human breast cancer cultured cells. The proteasome inhibitors did not reduce the levels of HLA presentations, yet affected the rates of production of both the HLA peptidome and cellular proteome, mostly decreasing, but also increasing some of the synthesis rates of the HLA peptides and cellular proteins. Thus, we suggest that the degree of contribution of the proteasomal pathway to the production of the HLA-I peptidome should be re-evaluated in accordance with their effects on the entire HLA class-I peptidome, while taking into consideration the inhibitors'' effects on the synthesis (and degradation) rates of the source proteins of each of the studied HLA peptides.  相似文献   

12.
Transgenic mice expressing mutant (P301L) tau develop paresis, neurofibrillary tangles and neuronal loss in spinal motor neurons beginning at 4 to 6 months of age. Astrocytes and oligodendrocytes acquire filamentous tau inclusions at later ages. Here we report pathology in the spinal white matter of these animals. Progressive white matter pathology, detected as early as 2 months of age, was most marked in lateral and anterior columns, with sparing of posterior columns until late in the disease. Early changes in Luxol fast blue/periodic acid Schiff (LFB/PAS) and toluidine blue stained sections were vacuolation of myelin followed by accumulation of myelin figures within previous axonal tubes and finally influx of PAS-positive macrophages. Myelin debris and vacuoles were found in macrophages. At the ultrastructural level, myelinated axons showed extensive vacuolation of myelin sheaths formed by splitting of myelin lamellae at the intra-period line, while axons were atrophic and contained densely packed neurofilaments. Other axons were lost completely, resulting in collapse and phagocytosis of myelin sheaths. Also present were spheroids derived from swollen axons with thin myelin sheaths containing neurofilaments, tau filaments and degenerating organelles. Many oligodendrocytes had membrane-bound cytoplasmic bodies composed of tightly stacked lamellae capped by dense material. The vacuolar myelopathy in this model to some extent resembles that reported in acquired immune deficiency syndrome and vitamin B12 deficiency. The progressive axonal pathology is most consistent with a dying-back process caused by abnormal accumulation of tau in upstream neurons, while vacuolar myelinopathy may be a secondary manifestation of neuroinflammation.  相似文献   

13.
14.
NAD(P)H:quinone oxidoreductase 1 (NQO1) is a flavoprotein that protects cells against radiation and chemical-induced oxidative stress. Disruption of NQO1 gene in mice leads to increased susceptibility to myeloproliferative disease. In this report, we demonstrate that NQO1 controls the stability of myeloid differentiation factor C/EBPα against 20S proteasomal degradation during radiation exposure stress. Co-immunoprecipitation studies showed that NQO1, C/EBPα, and 20S all interacted with each other. C/EBPα interaction with 20S led to the degradation of C/EBPα. NQO1 in presence of its cofactor NADH protected C/EBPα against 20S degradation. Deletion and site-directed mutagenesis demonstrated that NQO1 and 20S competed for the same binding region 268SGAGAGKAKKSV279 in C/EBPα. Mutagenesis studies also revealed that NQO1Y127/Y129 required for NADH binding is essential for NQO1 stabilization of C/EBPα. Exposure of mice and HL-60 cells to 3 Grays of γ-radiation led to increased NQO1 that stabilized C/EBPα against 20S proteasomal degradation. This mechanism of NQO1 regulation of C/EBPα may provide protection to bone marrow against adverse effects of radiation exposure. The studies have significance for human individuals carrying hetero- or homozygous NQO1P187S mutation and are deficient or lack NQO1 protein.  相似文献   

15.
采用PCR的方法对睫状神经营养因子(CNTF)基因进行改造,获得CNTF突变体基因(CNTFM) ,将CNTFM基因克隆入表达载体pBV2 2 0 ,在大肠杆菌BL 2 1(Gold)中进行了表达.目的蛋白占细胞总蛋白5 5 %左右,以包涵体形式存在,经Superdex 75凝胶过滤柱一步纯化和复性,获得纯度达90 %目的蛋白.纯化的重组CNTFM蛋白能促进培养的鸡胚背根神经节长出神经突起,能明显减轻实验小鼠的体重,表明CNTFM具有良好的体内、体外生物学活性,为开发新型高效的减肥药奠定了基础.  相似文献   

16.
目的构建新型人内毒素结合肽(a new endotoxin binding peptide consisting of 25 amino acid residues,EBP25)及其突变体(mutant of EBP25,mEBP25)的原核表达重组质粒,并在大肠埃希菌中诱导表达。方法采用PCR法,扩增EBP25基因,构建pET-30-EBP25.融合表达载体并转化Ecoli DH5α扩增。重组质粒经酶切和测序鉴定后,应用快速定点突变法将EBP25第2位缬氨酸和第5位谷氨酰胺所对应碱基均替换成赖氨酸所对应的碱基,突变后重组质粒再经测序鉴定后,将二者转化至E.coli BL21(DE3)PlysS后经IPTG诱导表达,表达产物采用Western印迹进行鉴定后,用His—Tag亲和层析对融合蛋白进行纯化。结果两次测序结果显示人EBP25,和mEBP25重组序列和理论设计序列完全一致后,经IPTG诱导表达获得目的融合蛋白,通过SDS—PAGE电泳、Western印迹证实蛋白表达的特异性,并对蛋白进行纯化,获得EBP25和mEBP25融合蛋白。结论构建、表达纯化了EBP25和mEBP25融合蛋白,为进一步研究其中和内毒素/月旨多糖活性奠定了基础。  相似文献   

17.
18.
Many human diseases are associated with aberrant regulation of phosphoprotein signaling networks. Src homology 2 (SH2) domains represent the major class of protein domains in metazoans that interact with proteins phosphorylated on the amino acid residue tyrosine. Although current SH2 domain prediction algorithms perform well at predicting the sequences of phosphorylated peptides that are likely to result in the highest possible interaction affinity in the context of random peptide library screens, these algorithms do poorly at predicting the interaction potential of SH2 domains with physiologically derived protein sequences. We employed a high throughput interaction assay system to empirically determine the affinity between 93 human SH2 domains and phosphopeptides abstracted from several receptor tyrosine kinases and signaling proteins. The resulting interaction experiments revealed over 1000 novel peptide-protein interactions and provided a glimpse into the common and specific interaction potentials of c-Met, c-Kit, GAB1, and the human androgen receptor. We used these data to build a permutation-based logistic regression classifier that performed considerably better than existing algorithms for predicting the interaction potential of several SH2 domains.Src homology 2 protein domains (SH2)1 are modular self-folding entities of about 100 amino acids that bind to tyrosine-phosphorylated peptide sequences contained within target proteins. The SH2 domain (13) was originally described nearly 20 years ago as an N-terminal region of the FES protein kinase that was not required for kinase activity but was important for its regulation. More recent studies have demonstrated that SH2 domains exist in many signaling molecules, including PLCγ1, Ras GAP, c-Src, and PI3KR. SH2 domains have been shown to enable the interaction of these signaling proteins with growth factor receptors such as FGFR1, EGFR, c-Met, and PDGFR in a phosphospecific manner (49). Subsequently, random peptide library screening approaches were used to define sequence motifs that resulted in the highest affinity interactions within particular SH2 domain classes (10, 11). For example, peptide sequences containing the pYEEI, pYXN, and pYMXM motifs were described to result in the highest affinity interactions with the SH2 domains from c-Src, Grb2, and the PI3KR SH2 domains, respectively. Data from such experiments have been used to generate predictions regarding the likelihood that any particular peptide sequence will interact with any particular SH2 domain (1214).Unfortunately, the predictive performance of these algorithms has not been thoroughly empirically tested or optimized for biologically derived peptide sequences. We and others reported the first comprehensive cloning, expression, and functional analysis of human genome-encoded SH2 domains using a protein microarray-based interaction analysis approach (1517). Similarly, peptide arrays have been used to query the interaction potential of SH2 domains with biologically derived peptide sequences in a semi-quantitative manner (18). These studies demonstrated that most biologically derived peptide sequences contained within RTKs and signaling proteins do not represent best fit sequence motifs and interact at a much lower affinity than with the optimal sequence motifs identified previously from random peptide libraries. Studies with biologically derived peptides indicated that context nonpermissive amino acids often contribute as much predictive information regarding interaction selectivity as positively contributing amino acids (19). Taken together, these results suggest that the collection of large quantitative protein interaction datasets between SH2 domains and biologically derived peptide sequences might be informative for building better algorithms that predict bona fide SH2 domain interaction sites within human protein sequences.Although protein microarrays enabled the first systems-level glimpse at SH2 domain selectivity (15, 17), they had several limitations that resulted in reduced ability to identify low affinity interactions in comparison with solution phase methods (20). We therefore designed a high throughput fluorescence polarization approach that allowed for lower affinity interactions to be defined between SH2 domains and phosphopeptides of the ErbB family of receptor tyrosine kinases (RTKs) than was possible with protein microarrays (20).RTKs are vital mediators of signal transduction in multicellular organisms. RTKs typically function as transmembrane receptors that contain a tyrosine kinase and other motifs that enable interaction with other intracellular proteins. Human cells often express many different RTK proteins from the set of 57 RTK genes encoded by the human genome (21). These RTKs may be activated in different combinations to transduce common and specific downstream signals (22). For a recent review of the complexity of RTK signaling networks, see Ref. 23. Following activation, RTKs are phosphorylated on several intracellular tyrosine residues that serve as recruitment sites for SH2 domains (1518, 20). Activation of RTK signaling networks may cause changes in cellular motility, proliferation, survival, and cytoskeletal arrangement. Definition of their signaling capacity represents an important and unsolved problem in cell biology. Although most studies to date have focused on the role of singular RTKs in cancer progression, co-activation of RTKs derived from several unique RTK genes has recently emerged as an important driver of cancer progression (2427). Co-activation of modules of RTKs may provide robustness against therapies designed to inhibit a single RTK (25).Herein, we profiled the interaction potential of two RTKs and two signaling proteins and compared them with the recruitment potential of the ErbB family that we have previously profiled (28). The ErbB family, c-Met, and c-Kit RTKs have been shown to drive the progression of many cancer types, including breast, head and neck, lung (29), gastrointestinal, and stomach cancers (30). Downstream adaptor proteins often augment the signaling potential of RTKs by acting as scaffolds for recruitment of many additional proteins (3133). Therefore, we also included peptides in our study derived from the Gab1 adaptor protein, which is critical for mediating signaling networks downstream of c-Met and potentially other RTKs (34).Finally, alternative oncogenic signaling networks may have points of cross-talk with tyrosine kinase signaling networks. Steroid hormone receptors such as the androgen receptor (AR) have been shown to associate with RTKs such as EGFR (35), to be substrates of tyrosine kinases (36, 37), and to drive the progression of prostate cancer (36). We therefore queried the interaction potential of phosphopeptides derived from AR with a set of 93 of the 120 SH2 domains encoded in the human genome. We subsequently used this interaction dataset to develop a permutation-based logistic regression classifier (PEBL) for predicting the interaction potential of SH2 domains and biologically derived phosphotyrosine-containing peptides.  相似文献   

19.
The β2-integrin lymphocyte function-associated antigen 1 (LFA-1) plays an important role in the migration, adhesion and intercellular communication of dendritic cells (DCs). During the differentiation of human DCs from monocyte precursors, LFA-1 ligand binding capacity is completely lost, even though its expression levels were remained constant. Yet LFA-1-mediated adhesive capacity on DCs can be regained by exposing DCs to the chemokine CCL21, suggesting a high degree of regulation of LFA-1 activity during the course of DC differentiation. The molecular mechanisms underlying this regulation of LFA-1 function in DCs, however, remain elusive. To get more insight we attempted to identify specific LFA-1 binding partners that may play a role in regulating LFA-1 activity in DCs. We used highly sensitive label free quantitative mass-spectrometry to identify proteins co-immunoprecipitated (co-IP) with LFA-1 from ex vivo generated DCs. Among the potential binding partners we identified not only established components of integrin signalling pathways and cytoskeletal proteins, but also several novel LFA-1 binding partners including CD13, galectin-3, thrombospondin-1 and CD44. Further comparison to the LFA-1 interaction partners in monocytes indicated that DC differentiation was accompanied by an overall increase in LFA-1 associated proteins, in particular cytoskeletal, signalling and plasma membrane (PM) proteins. The here presented LFA-1 interactome composed of 78 proteins thus represents a valuable resource of potential regulators of LFA-1 function during the DC lifecycle.  相似文献   

20.
Transgenic mice (JNPL3), which develop neurofibrillary degeneration and express four-repeat human tau with P301L missense mutation, were characterized biochemically to determine whether the development of aggregated tau from soluble tau involves an intermediate stage. Homogenates from mice of different ages were separated into buffer-soluble (S1), sarkosyl- and salt-extractable (S2) and sarkosyl-insoluble pellet (P3) fractions, and analyzed for human tau distribution, phosphorylation and filament formation. S1 and S2 fractions contained 50-60-kDa tau whereas the S2 fraction also had 64-kDa tau. The level of tau in the P3 fraction increased in an age-dependent manner and correlated positively with the soluble tau concentration. The P3 fraction from 2.5-6.5-month-old mice contained 64- and 50-60-kDa tau, whereas that from 8.5-month and older transgenic animals contained mostly 64-kDa and higher molecular weight tau. The S2 and P3 fractions contained comparable amounts of 64-kDa tau. The 64-kDa tau was predominantly human, and phosphorylated at multiple sites: Thr181, Ser202/Thr205, Thr212, Thr231, Ser262, Ser396/Ser404, Ser409 and Ser422. Most of these sites were phosphorylated to a lesser extent in S2 than in P3 fractions. Tau polymers were detected in P3 fractions from 3-month and older female JNPL3 mice, but not in non-transgenic controls. The results suggest that tau in S2 represents an intermediate from which insoluble tau is derived, and that phosphorylation may play a role in filament formation and/or stabilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号