首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the last decade the intensification of the pig and poultry industries has continued with increases in production unit size and in efficiency. This has come about as a response to rising costs, competition and reasonable end-product prices. The dairy industry has also expanded output through increasing milk yield per cow, encouraged by favourable market support. However, efficiency of feed conversion to milk production is still not directly selected for in dairy cattle. Developments in beef cattle have been away from intensive systems of production in an effort to reduce capital expenditure and increases in sheep productivity have been largely through increased stocking rates, greater fertilizer use and better grazing systems. In the next decade there are many feasible technological advances awaiting application. The use of computer simulation is likely to assist in predicting quantitative and qualitative body compositional responses to nutrition and in increasing the efficiency of grass utilization, while microprocessor technology will be developed into artificial aids to the stockman. Studies of reproductive physiology will continue to help increase output, especially with pigs and sheep. The building of sophisticated housing is likely to be justified for pigs, poultry, dairy cattle and calves, but not for suckler beef and sheep. There is likely to be greater use of centralized breeding schemes for dairy cattle, beef cattle and sheep. The future application of technology will be limited by a number of socio-economic factors. For example, the use of milk quotas to control surplus production will act as a powerful economic constraint to increased milk production and the growing public concern over animal welfare, pollution and health aspects of animal produce will exert increasing pressure on certain systems of production.  相似文献   

2.
Cattle are the world’s largest consumers of plant biomass. Digestion of this biomass by ruminants generates high methane emissions that affect global warming. In the last decades, the specialisation of cattle breeds and livestock systems towards either milk or meat has increased the milk production of dairy cows and the carcass weight of slaughtered cattle. At the animal level and farm level, improved animal performance decreases feed use and greenhouse gas emissions per kg of milk or carcass weight, mainly through a dilution of maintenance requirements per unit of product. However, increasing milk production per dairy cow reduces meat production from the dairy sector, as there are fewer dairy cows. More beef cows are then required if one wants to maintain the same meat production level at country scale. Meat produced from the dairy herd has a better feed efficiency (less feed required per kg of carcass weight) and emits less methane than the meat produced by the cow-calf systems, because the intake of lactating cows is largely for milk production and marginally for meat, whereas the intake of beef cows is entirely for meat. Consequently, the benefits of breed specialisation assessed at the animal level and farm level may not hold when milk and meat productions are considered together. Any change in the milk-to-meat production ratio at the country level affects the numbers of beef cows required to produce meat. At the world scale, a broad diversity in feed efficiencies of cattle products is observed. Where both productions of milk per dairy cow and meat per head of cattle are low, the relationship between milk and meat efficiencies is positive. Improved management practices (feed, reproduction, health) increase the feed efficiency of both products. Where milk and meat productivities are high, a trade-off between feed efficiencies of milk and meat can be observed in relation to the share of meat produced in either the dairy sector or the beef sector. As a result, in developing countries, increasing productivities of both dairy and beef cattle herds will increase milk and meat efficiencies, reduce land use and decrease methane emissions. In other regions of the world, increasing meat production from young animals produced by dairy cows is probably a better option to reduce feed use for an unchanged milk-to-meat production ratio.  相似文献   

3.
Surplus accounting is a method for evaluating trends in how a firm’s productivity factors (intermediate inputs, capital, land, labour) are performing and how the productivity gains are redistributed between agents in the economy. Here the surplus accounting method was applied on a database of 164 Charolais-area suckler cattle farms running from 1980 to 2015. Over this 36-year period – with differences per sub-period – the cumulative productivity surplus (PS) increased at a low rate of +0.17%/year (i.e. cumulative volume of outputs produced increased slightly more than cumulative volume of inputs used). This timid increase in PS is linked to the constant expansion in labour productivity whereas other factor productivities have shrunk. The observable period-wide macrotrends are that commercial farm businesses struggle to protect their revenues, we also observe a slight fall in input prices, land rent and financing costs, and a huge climb in direct support-policy payments. The bulk of the cumulative economic surplus has been captured downstream – 64% downstream of the cattle value chain as a drop in prices, and 22% downstream of other value chains (chiefly cereals). It emerges that the productivity gains in beef cattle farming mostly benefit the downstream value chain (packers–processors, distributors and consumers), whereas it is mainly government money backing this drop in prices of agricultural output. Here we see the principal of the 1992 ‘MacSharry’ reform at work, with a transfer from the taxpayer through direct support-policy payments through to the consumer via lower prices. The simple fact that farmers’ incomes are stagnating is a clear indication that they are net losers in this distribution of productivity gains, despite the improvement in labour factor productivity.  相似文献   

4.
Because of an increasing demand for animal-source foods, an increasing desire to reduce poverty and an increasing need to reduce the environmental impact of livestock production, tropical farming systems with livestock must increase their productivity. An important share of the global human and livestock populations are found within smallholder mixed-crop–livestock systems, which should, therefore, contribute significantly towards this increase in livestock production. The present paper argues that increased livestock production in smallholder mixed-crop–livestock systems faces many constraints at the level of the farm and the value chain. The present paper aims to describe and explain the impact of increased production from the farm and farmers’ perspective, in order to understand the constraints for increased livestock production. A framework is presented that links farming systems to livestock value chains. It is concluded that farming systems that pass from subsistence to commercial livestock production will: (1) shift from rural to urban markets; (2) become part of a different value chain (with lower prices, higher demands for product quality and increased competition from peri-urban producers and imports); and (3) have to face changes in within-farm mechanisms and crop–livestock relationships. A model study showed that feed limitation, which is common in tropical farming systems with livestock, implies that maximum herd output is achieved with small herd sizes, leaving low-quality feeds unutilised. Maximal herd output is not achieved at maximal individual animal output. Having more animals than required for optimal production – which is often the case as a larger herd size supports non-production functions of livestock, such as manure production, draught, traction and capital storage – goes at the expense of animal-source food output. Improving low-quality feeds by treatment allows keeping more animals while maintaining the same level of production. Ruminant methane emission per kg of milk produced is mainly determined by the level of milk production per cow. Part of the methane emissions, however, should be attributed to the non-production functions of ruminants. It was concluded that understanding the farm and farmers’ perceptions of increased production helps with the understanding of productivity increase constraints and adds information to that reported in the literature at the level of technology, markets and institutions.  相似文献   

5.
Prompted by current concerns about energy resources and greenhouse gas emissions, we sought to assess the impact of certain key factors on energy efficiency in sheep-for-meat production and to evaluate the main directions for improvement. We used a modelling approach to simulate the functioning and performances of sheep-for-meat production systems integrating an energy balance calculation module. In the first step of this study, we reconstructed system functions and technical and economic results of four typological groups of farms in plainland areas. This served as a basis for calculating their energy efficiency in order to focus on the main factors of energy efficiency, such as high levels of fodder self-sufficiency (low concentrate consumption) and high ewe productivity. The Graze system presented the highest energy efficiency (EE) for sheep unit (EEs = 0.62) with the lowest consumption of equivalent fuel litres requirements (FuReq) per kilogram of lamb carcass produced (1.47), while the 'sheep and cash crop' system had the lowest EEs (0.36) and the highest FuReq per kg carcass (2.54). We then took the 'mixed-farming system' (a 130 ha farm, including 610 ewes and 40 ha of cropland) and studied three adaptations designed to increase the EEs: improvement of feed self-sufficiency (increased proportion of concentrate produced on-farm), introduction of legumes into the rotation (removal of bought-in nitrogen fertilisers), and production of fuel-oil (from rapeseed) with the flock using oil cakes. The most effective adaptation was the removal of the nitrogen fertilisers. The successive adaptations make it possible to cut energy consumption from 2.2 FuReq/kg carcass down to 0.98 after the optimisations, thereby increasing EEs from 0.42 to 0.93. Finally, we went on to study the energy impact of four factors influencing flock functioning and farm structure, i.e. ewe productivity, lamb weight, distances between plots, and flock size. Ewe productivity and lamb weight had a strong positive impact on EEs. When ewe productivity switched from 0.80 to 1.70, EEs increased from 0.29 to 0.48 while FuReq per kilogram carcass dropped from 3.39 to 1.88. When flock size was increased to over 1000 ewes, there were little or no energy-related economies of scale, as farm area also increased and most of the systems required more equipment.  相似文献   

6.
In the last few decades, significant changes in livestock farming systems and land use were observed in European mountain areas with large implications for the sustainability of grazing agro-ecosystems. System dynamic studies become essential to understand these changes, identify the drivers involved and trying to anticipate what might happen in the future. The objectives of this study were as follows: (i) to analyse the main recent changes that occurred in mountain cattle farming in the Spanish Pyrenees; (ii) to typify diverse trajectories of evolution of these systems; and (iii) to establish drivers of change that might help understand the evolution of mountain agriculture. A constant sample of mountain cattle farms was analysed for the period 1990 to 2004. In total, 30% of farms have disappeared during this time interval. For the remaining farms, the most important general changes observed were as follows: increment of size; change of productive orientation from mixed beef-dairy to pure beef production; extensification of grazing management; reduction of family labour and increase of pluriactivity; reduction of unitary variable costs; and increase of labour productivity. After the elimination of common temporal effects between dates, multivariate techniques allowed for the identification of three patterns and six specific trajectories of evolution that are profiled in the text. Relationships between the patterns of evolution and other variables referring the farm, the household and the socio-economic environment were identified as drivers of change: (i) the specific location of the farm in relation to the capital village of the municipality and the evolution other sectors of the economy, in particular tourism; (ii) the size of the family labour, presence of successors and degree of dynamism of the farmer; and (iii) the initial orientation of production.  相似文献   

7.
The expected increase in the global demand for livestock products calls for insight in the scope to increase actual production levels across the world. This insight can be obtained by using theoretical concepts of production ecology. These concepts distinguish three production levels for livestock: potential (i.e. theoretical maximum) production, which is defined by genotype and climate only; feed-limited production, which is limited by feed quantity and quality; and actual production. The difference between the potential or limited production and the actual production is the yield gap. The objective of this paper, the first in a series of three, is to present a mechanistic, dynamic model simulating potential and feed-limited production for beef cattle, which can be used to assess yield gaps. A novelty of this model, named LiGAPS-Beef (Livestock simulator for Generic analysis of Animal Production Systems – Beef cattle), is the identification of the defining factors (genotype and climate) and limiting factors (feed quality and available feed quantity) for cattle growth by integrating sub-models on thermoregulation, feed intake and digestion, and energy and protein utilisation. Growth of beef cattle is simulated at the animal and herd level. The model is designed to be applicable to different beef production systems across the world. Main model inputs are breed-specific parameters, daily weather data, information about housing, and data on feed quality and quantity. Main model outputs are live weight gain, feed intake and feed efficiency (FE) at the animal and herd level. Here, the model is presented, and its use is illustrated for Charolais and Brahman × Shorthorn cattle in France and Australia. Potential and feed-limited production were assessed successfully, and we show that FE of herds is highest for breeds most adapted to the local climate conditions. LiGAPS-Beef also identified the factors that define and limit growth and production of cattle. Hence, we argue the model has scope to be used as a tool for the assessment and analysis of yield gaps in beef production systems.  相似文献   

8.
Selection for the wide range of traits for which most beef breed associations calculate expected progeny differences focus on increasing the outputs of the production system, thereby increasing the genetic potential of cattle for reproductive rates, weights, growth rates, and end-product yield. Feed costs, however, represent a large proportion of the variable cost of beef production and genetic improvement programs for reducing input costs should include traits related to feed utilization. Feed conversion ratio, defined as feed inputs per unit output, is a traditional measure of efficiency that has significant phenotypic and genetic correlations with feed intake, growth rate, and mature size. One limitation is that favorable decreases in feed to gain either directly or due to correlated response to increasing growth rate do not necessarily relate to improvement in efficiency of feed utilization. Residual feed intake is defined as the difference between actual feed intake and that predicted on the basis of requirements for maintenance of body weight and production. Phenotypic independence of residual feed intake with growth rate, body weight, and other energy depots can be forced. However, genetic associations may remain when a phenotypic prediction approach is used. Heritability estimates for phenotypic residual feed intake have been moderate, ranging from 0.26 to 0.43. Genetic correlations of phenotypic residual feed intake with feed intake have been large and positive, suggesting that improvement would produce a correlated response of decreased feed intake. Residual feed intake estimated by genetic regression results in a zero genetic correlation with its predictors, which reduces concerns over long-term antagonistic responses such as increased mature size and maintenance requirements. The genetic regression approach requires knowledge of genetic covariances of feed intake with weight and production traits. Cost of individual feed intake measurements on potential replacements must be considered in implementation of national cattle evaluations for efficiency of feed utilization. These costs need to be compared to expected, and, if possible, realized rates of genetic change and the associated reduction in feed input requirements.  相似文献   

9.
Milk and beef production cause 9% of global greenhouse gas (GHG) emissions. Previous life cycle assessment (LCA) studies have shown that dairy intensification reduces the carbon footprint of milk by increasing animal productivity and feed conversion efficiency. None of these studies simultaneously evaluated indirect GHG effects incurred via teleconnections with expansion of feed crop production and replacement suckler‐beef production. We applied consequential LCA to incorporate these effects into GHG mitigation calculations for intensification scenarios among grazing‐based dairy farms in an industrialized country (UK), in which milk production shifts from average to intensive farm typologies, involving higher milk yields per cow and more maize and concentrate feed in cattle diets. Attributional LCA indicated a reduction of up to 0.10 kg CO2e kg?1 milk following intensification, reflecting improved feed conversion efficiency. However, consequential LCA indicated that land use change associated with increased demand for maize and concentrate feed, plus additional suckler‐beef production to replace reduced dairy‐beef output, significantly increased GHG emissions following intensification. International displacement of replacement suckler‐beef production to the “global beef frontier” in Brazil resulted in small GHG savings for the UK GHG inventory, but contributed to a net increase in international GHG emissions equivalent to 0.63 kg CO2e kg?1 milk. Use of spared dairy grassland for intensive beef production can lead to net GHG mitigation by replacing extensive beef production, enabling afforestation on larger areas of lower quality grassland, or by avoiding expansion of international (Brazilian) beef production. We recommend that LCA boundaries are expanded when evaluating livestock intensification pathways, to avoid potentially misleading conclusions being drawn from “snapshot” carbon footprints. We conclude that dairy intensification in industrialized countries can lead to significant international carbon leakage, and only achieves GHG mitigation when spared dairy grassland is used to intensify beef production, freeing up larger areas for afforestation.  相似文献   

10.
Traditional mixed livestock cereal- and pasture-based sheep farming systems in Europe are threatened by intensification and specialisation processes. However, the intensification process does not always yield improved economic results or efficiency. This study involved a group of farmers that raised an autochthonous sheep breed (Ojinegra de Teruel) in an unfavourable area of North-East Spain. This study aimed to typify the farms and elucidate the existing links between economic performance and certain sustainability indicators (i.e. productivity, self-sufficiency and diversification). Information was obtained through direct interviews with 30 farms (73% of the farmers belonging to the breeders association). Interviews were conducted in 2009 and involved 32 indicators regarding farm structure, management and economic performance. With a principal component analysis, three factors were obtained explaining 77.9% of the original variance. This factors were named as inputs/self-sufficiency, which included the use of on-farm feeds, the amount of variable costs per ewe and economic performance; productivity, which included lamb productivity and economic autonomy; and productive orientation, which included the degree of specialisation in production. A cluster analysis identified the following four groups of farms: high-input intensive system; low-input self-sufficient system; specialised livestock system; and diversified crops-livestock system. In conclusion, despite the large variability between and within groups, the following factors that explain the economic profitability of farms were identified: (i) high feed self-sufficiency and low variable costs enhance the economic performance (per labour unit) of the farms; (ii) animal productivity reduces subsidy dependence, but does not necessarily imply better economic performance; and (iii) diversity of production enhances farm flexibility, but is not related to economic performance.  相似文献   

11.
The model LiGAPS-Beef (Livestock simulator for Generic analysis of Animal Production Systems – Beef cattle) has been developed to assess potential and feed-limited growth and production of beef cattle in different areas of the world and to identify the processes responsible for the yield gap. Sensitivity analysis and evaluation of model results with experimental data are important steps after model development. The first aim of this paper, therefore, is to identify which parameters affect the output of LiGAPS-Beef most by conducting sensitivity analyses. The second aim is to evaluate the accuracy of the thermoregulation sub-model and the feed intake and digestion sub-model with experimental data. Sensitivity analysis was conducted using a one-at-a-time approach. The upper critical temperature (UCT) simulated with the thermoregulation sub-model was most affected by the body core temperature and parameters affecting latent heat release from the skin. The lower critical temperature (LCT) and UCT were considerably affected by weather variables, especially ambient temperature and wind speed. Sensitivity analysis for the feed intake and digestion sub-model showed that the digested protein per kg feed intake was affected to a larger extent than the metabolisable energy (ME) content. Sensitivity analysis for LiGAPS-Beef was conducted for ¾ Brahman×¼ Shorthorn cattle in Australia and Hereford cattle in Uruguay. Body core temperature, conversion of digestible energy to ME, net energy requirements for maintenance, and several parameters associated with heat release affected feed efficiency at the herd level most. Sensitivity analyses have contributed, therefore, to insight which parameters are to be investigated in more detail when applying LiGAPS-Beef. Model evaluation was conducted by comparing model simulations with independent data from experiments. Measured heat production in experiments corresponded fairly well to the heat production simulated with the thermoregulation sub-model. Measured ME contents from two data sets corresponded well to the ME contents simulated with the feed intake and digestion sub-model. The relative mean absolute errors were 9.3% and 6.4% of the measured ME contents for the two data sets. In conclusion, model evaluation indicates the thermoregulation sub-model can deal with a wide range of weather conditions, and the feed intake and digestion sub-model with a variety of feeds, which corresponds to the aim of LiGAPS-Beef to simulate cattle in different beef production systems across the world.  相似文献   

12.
Efficiency in animal protein production can be defined in different ways, for example the amount of human-digestible essential amino acids (HDEAA) in the feed ration relative to the amount of HDEAA in the animal products. Cattle production systems are characterised by great diversity and a wide variety of feeds and feed ration compositions, due to ruminants’ ability to digest fibrous materials inedible to humans such as roughage and by-products from the food and biofuel industries. This study examined the upgrading of protein quality through cattle by determining the quantity of HDEAA in feeds and animal products and comparing different milk and beef production systems. Four different systems for milk and beef production were designed, a reference production system for milk and beef representing typical Swedish production systems today and three alternative improved systems: (i) intensive cattle production based on maize silage, (ii) intensive systems based on food industry by-products for dairy cows and high-quality forage for beef cattle, and (iii) extensive systems based on forage with only small amounts of concentrate. In all four production systems, the quantity of HDEAA in the products (milk and meat) generally exceeded the quantity of HDEAA in the feeds. The intensive production models for beef calves generally resulted in output of the same magnitude as input for most HDEAA. However, in beef production based on calves from dairy cows, the intensive rearing systems resulted in lower output than input of HDEAA. For the extensive models, the amounts of HDEAA in meat were of the same magnitude as the amounts in the feeds. The extensive models with beef calves from suckler cows resulted in higher output in meat than input in feeds for all HDEAA. It was concluded that feeding cattle plants for production of milk and meat, instead of using the plants directly as human food, generally results in an upgrading of both the quantity and quality of protein, especially when extensive, forage-based production models are used. The results imply that the key to efficiency is the utilisation of human-inedible protein by cattle and justifies their contribution to food production, especially in regions where grasslands and/or forage production has comparative benefits over plant food production. By fine-tuning estimation of the efficiency of conversion from human-edible protein to HDEAA, comparisons of different sources of protein production may be more complete and the magnitude of amino acid upgrading in plants through cattle more obvious.  相似文献   

13.
Improving feed efficiency in dairy cattle could result in more profitable and environmentally sustainable dairy production through lowering feed costs and emissions from dairy farming. In addition, beef production based on dairy herds generates fewer greenhouse gas emissions per unit of meat output than beef production from suckler cow systems. Different scenarios were used to assess the profitability of adding traits, excluded from the current selection index for Finnish Ayrshire, to the breeding goal for combined dairy and beef production systems. The additional breeding goal traits were growth traits (average daily gain of animals in the fattening and rearing periods), carcass traits (fat covering, fleshiness and dressing percentage), mature live weight (LW) of cows and residual feed intake (RFI) traits. A breeding scheme was modeled for Finnish Ayrshire under the current market situation in Finland using the deterministic simulation software ZPLAN+. With the economic values derived for the current production system, the inclusion of growth and carcass traits, while preventing LW increase generated the highest improvement in the discounted profit of the breeding program (3.7%), followed by the scenario where all additional traits were included simultaneously (5.1%). The use of a selection index that included growth and carcass traits excluding LW, increased the profit (0.8%), but reduced the benefits resulted from breeding for beef traits together with LW. A moderate decrease in the profit of the breeding program was obtained when adding only LW to the breeding goal (−3.1%), whereas, adding only RFI traits to the breeding goal resulted in a minor increase in the profit (1.4%). Including beef traits with LW in the breeding goal showed to be the most potential option to improve the profitability of the combined dairy and beef production systems and would also enable a higher rate of self-sufficiency in beef. When considering feed efficiency related traits, the inclusion of LW traits in the breeding goal that includes growth and carcass traits could be more profitable than the inclusion of RFI, because the marginal costs of measuring LW can be expected to be lower than for RFI and it is readily available for selection. In addition, before RFI can be implemented as a breeding objective, the genetic correlations between RFI and other breeding goal traits estimated for the studied population as well as information on the most suitable indicator traits for RFI are needed to assess more carefully the consequences of selecting for RFI.  相似文献   

14.
In response to the increased concern over agriculture’s contribution to greenhouse gas (GHG) emissions, more detailed assessments of current methane emissions and their variation, within and across individual dairy farms and cattle, are of interest for research and policy development. This assessment will provide insights into possible changes needed to reduce GHG emissions, the nature and direction of these changes, ways to influence farmer behavior and areas to maximize the adoption of emerging mitigation technologies. The objectives of this study were to (1) quantify the variation in enteric fermentation methane emissions within and among seasonal calving dairy farms with the majority of nutritional requirements met through grazed pasture; (2) use this variation to assess the potential of new individual animal emission monitoring technologies and their impact on mitigation policy. We used a large database of cow performance records for milk production and survival from 2 398 herds in New Zealand, and simulation to account for unobserved variation in feed efficiency and methane emissions per unit of feed. Results showed an average of 120 ± 31.4 kg predicted methane (CH4) per cow per year after accounting for replacement costs, ranging 8.9–323 kg CH4/cow per year. Whereas milk production, survival and predicted live weight were reasonably effective at predicting both individual and herd average levels of per cow feed intake, substantial within animal variation in emissions per unit of feed reduced the ability of these variables to predict variation in per animal methane output. Animal-level measurement technologies predicting only feed intake but not emissions per unit of feed are unlikely to be effective for advancing national policy goals of reducing dairy farming enteric methane output. This is because farmers seek to profitably utilize all farm feed resources available, so improvements in feed efficiency will not result in the reduction in feed utilization required to reduce methane emissions. At a herd level, average per cow milk production and live weight could form the basis of assigning a farm-level point of obligation for methane emissions. In conclusion, a comprehensive national database infrastructure that was tightly linked to animal identification and movement systems, and captured live weight data from existing farm-level recording systems, would be required to make this effective. Additional policy and incentivization mechanisms would still be required to encourage farmer uptake of mitigation interventions, such as novel feed supplements or vaccines that reduce methane emissions per unit of feed.  相似文献   

15.
In recent years, neosporosis has been identified as a major cause of abortion in dairy and beef cattle. Although the disease has been described worldwide, there is a Jack of information concerning the prevalence of this infection in different cattle production systems. The aim of this study was to investigate the seroprevalence of Neospora caninum infection in a representative area of beef and dairy cattle production in Spain. A cross-sectional study was undertaken in which herds constituted the initial sampling unit and two strata (dairy and beef herds) were considered. Using a 95% level of confidence and setting 5% (beef) and 5.4% (dairy) error limits, 216 beef and 143 dairy herds were randomly selected and sampled. Nine animals (> 1 year old) were randomly sampled in each herd to detect the presence of the infection. A herd was considered infected when at least one animal was seropositive. In total, serum samples from 1121 dairy and 1712 beef animals were collected and tested for specific anti-N. caninum IgG using an ELISA. Specific antibodies were detected in 55.1% (119/216) beef and 83.2% (119/143) dairy herds. Individual prevalences obtained were 17.9% (306/1712) for beef and 35.9% (402/1121) for dairy animals. Presence of N. caninum infection was higher in dairy than in beef herds and the association between infection and the cattle production system (dairy or beef) was statistically significant [(chi2)Y= 29.21, P < 0.001, OR = 4.04 (2.35-6.99)]. Herd size of dairy cattle did not appear to be associated with N. caninum infection. On the contrary, infection was associated with herd size in beef cattle (chi2 = 12.79, P < 0.01). Finally, no association was found between replacement or pasture management and infection in beef herds.  相似文献   

16.
To sustainably contribute to food security of a growing and richer world population, livestock production systems are challenged to increase production levels while reducing environmental impact, being economically viable, and socially responsible. Knowledge about the sustainability performance of current livestock production systems may help to formulate strategies for future systems. Our study provides a systematic overview of differences between conventional and organic livestock production systems on a broad range of sustainability aspects and animal species available in peer-reviewed literature. Systems were compared on economy, productivity, environmental impact, animal welfare and public health. The review was limited to dairy cattle, beef cattle, pigs, broilers and laying hens, and to Europe, North America and New Zealand. Results per indicators are presented as in the articles without performing additional calculations. Out of 4171 initial search hits, 179 articles were analysed. Studies varied widely in indicators, research design, sample size and location and context. Quite some studies used small samples. No study analysed all aspects of sustainability simultaneously. Conventional systems had lower labour requirements per unit product, lower income risk per animal, higher production per animal per time unit, higher reproduction numbers, lower feed conversion ratio, lower land use, generally lower acidification and eutrophication potential per unit product, equal or better udder health for cows and equal or lower microbiological contamination. Organic systems had higher income per animal or full time employee, lower impact on biodiversity, lower eutrophication and acidification potential per unit land, equal or lower likelihood of antibiotic resistance in bacteria and higher beneficial fatty acid levels in cow milk. For most sustainability aspects, sometimes conventional and sometimes organic systems performed better, except for productivity, which was consistently higher in conventional systems. For many aspects and animal species, more data are needed to conclude on a difference between organic and conventional livestock production systems.  相似文献   

17.
Improvements in feed efficiency of beef cattle have the potential to increase producer profitability and simultaneously lower the environmental footprint of beef production. Although there are many different approaches to measuring feed efficiency, residual feed intake (RFI) has increasingly become the measure of choice. Defined as the difference between an animal’s actual and predicted feed intake (based on weight and growth), RFI is conceptually independent of growth and body size. In addition, other measurable traits related to energy expenditure such as estimates of body composition can be included in the calculation of RFI to also force independence from these traits. Feed efficiency is a multifactorial and complex trait in beef cattle and inter-animal variation stems from the interaction of many biological processes influenced, in turn, by physiological status and management regimen. Thus, the purpose of this review was to summarise and interpret current published knowledge and provide insight into research areas worthy of further investigation. Indeed, where sufficient suitable reports exist, meta-analyses were conducted in order to mitigate ambiguity between studies in particular. We have identified a paucity of information on the contribution of key biological processes, including appetite regulation, post-ruminal nutrient absorption, and cellular energetics and metabolism to the efficiency of feed utilisation in cattle. In addition, insufficient information exists on the relationship between RFI status and productivity-related traits at pasture, a concept critical to the overall lifecycle of beef production systems. Overall, published data on the effect of RFI status on both terminal and maternal traits, coupled with the moderate repeatability and heritability of the trait, suggest that breeding for improved RFI, as part of a multi-trait selection index, is both possible and cumulative, with benefits evident throughout the production cycle. Although the advent of genomic selection, with associated improved prediction accuracy, will expedite the introgression of elite genetics for feed efficiency within beef cattle populations, there are challenges associated with this approach which may, in the long-term, be overcome by increased international collaborative effort but, in the short term, will not obviate the on-going requirement for accurate measurement of the primary phenotype.  相似文献   

18.
Mammalian Genome - Feed-efficient cattle selection is among the most leading solutions to reduce cost for beef cattle production. However, technical difficulties in measuring feed efficiency traits...  相似文献   

19.
Feed efficiency is an economically important trait in beef cattle. Net feed efficiency, measured as residual feed intake (RFI), is the difference between actual feed intake and the predicted feed intake required for maintenance and gain of the animal. SNPs that show associations with RFI may be useful quantitative trait nucleotides for marker-assisted selection. This study identified associations between SNPs underlying five RFI QTL on five bovine chromosomes (BTA2, 5, 10, 20 and 29) with measures of dry matter intake (DMI), RFI and feed conversion ratio (FCR) in beef cattle. Six SNPs were found to have effects on RFI (P < 0.05). The largest single SNP allele substitution effect for RFI was -0.25 kg/day located on BTA2. The combined effects of the SNPs found significant in this experiment explained 6.9% of the phenotypic variation of RFI. Not all the RFI SNPs showed associations with DMI and FCR even though these traits are highly correlated with RFI (r = 0.77 and r = 0.62 respectively). This shows that these SNPs may be affecting the underlying biological mechanisms of feed efficiency beyond feed intake control and weight gain efficiency. These SNPs can be used in marker-assisted selection but first it will be important to verify these effects in independent populations of cattle.  相似文献   

20.
Hohenboken WD 《Theriogenology》1999,52(8):1421-1433
Sexed semen will contribute to increased profitability of dairy and beef cattle production in a variety of ways. It could be used to produce offspring of the desired sex from a particular mating to take advantage of differences in value of males and females for specific marketing purposes. Commercial dairy farmers, those who produce and market milk, could use sexed semen to produce replacement daughters from genetically superior cows and beef crossbred sons from the remainder of their cow population. To increase the rate of response to selection, seedstock dairy cattle breeders could produce bulls for progeny testing from a smaller number of elite dams by using sexed semen to ensure that all of them produced a son. Using sexed semen could then reduce the cost of progeny testing those bulls, because fewer matings would be necessary to produce any required number of daughters. Commercial beef cattle farmers, producing animals for eventual slaughter, could use sexed semen to capitalize on the higher value of male than female offspring for meat production. They could also use sexed semen to produce specialized, genetically superior replacement heifers from as small a proportion of the herd as possible. This would allow the remainder of the herd to produce male calves from bulls or breeds with superior genetic merit for growth, feed conversion efficiency, and carcass merit. Single-sex, bred-heifer systems, in which each female is sold for slaughter soon after weaning her replacement daughter, would be possible with the use of X-chromosome-sorted semen. Use of sexed semen would make terminal crossbreeding systems more efficient and sustainable in beef cattle. Fewer females would be required to produce specialized maternal crossbred daughters, and more could be devoted to producing highly efficient, terminal crossbred sons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号