首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PurposeThe aim of this study was to evaluate a new system based on transperineal ultrasound (TP-US) acquisitions for prostate and post-prostatectomy pre-treatment positioning by comparing this device to cone-beam computed tomography (CBCT).MethodsThe differences between CBCT/CT and TP-US/TP-US registrations were analyzed on 427 and 453 sessions for 13 prostate and 14 post-prostatectomy patients, respectively. The inter-operator variability (IOV) of the registration process, and the impact and variability of the probe pressure were also evaluated.ResultsCBCT and TP-US shift agreements at ± 5 mm were 76.6%, 95.1%, 96.3% and 90.3%, 85.0%, 97.6% in anterior-posterior, superior-inferior and left-right directions, for prostate and post-prostatectomy patients, respectively. IOV values were similar between the 2 modalities. Displacements above 5 mm due to strong pressures were observed on both localizations, but such pressures were rarely reproduced during treatment courses.ConclusionsHigh concordance between CBCT/CT and TP-US/TP-US localization of prostates or prostatic beds was found in this study. TP-US based prepositioning is a feasible method to ensure accurate treatment delivery, and represents an attractive alternative to invasive and/or irradiating imaging modalities.  相似文献   

2.
PurposeThe purpose of this work is to compare the positioning accuracy achieved by three different imaging techniques and planar vs. CBCT imaging for two common IGRT indications.MethodsA collective of prostate cancer and head-and-neck cancer patients treated at our institution during the year 2013 was retrospectively analyzed. For all treatment fractions (3078 in total), the kind of acquired set-up image and the performed couch shift before treatment were assessed. The distribution of couch corrections was compared for three different imaging systems available at our institution: the treatment beam line operating at 6 MV, a dedicated imaging beam line of nominally 1 MV, and the kVision system at 70–121 kV. Shifts were analyzed for planar and cone-beam CT images. Based on the set-up corrections, CTV to PTV expansion margins were calculated.ResultsThe difference in set-up corrections performed for the three energies and both techniques (planar vs. CBCT) was not significant for head-and-neck cancer patients. For prostate cancer all shifts had equal variance. Averages ranged from −0.7 to +0.7 mm. The set-up margins calculated on the basis of the observed shifts are 4.0 mm (AP) and 3.8 mm (SI, LR) for the head-and-neck PTV and 6.6 mm (SI), 6.7 mm (AP) and 7.9 mm (LR) for the prostate cancer patients.ConclusionsFor three different linac-based imaging energies and planar/CBCT imaging, no relevant differences in set-up shifts were observed. The suggested set-up margins for these indications are of the order of 4 mm for head-and-neck and 6–8 mm for prostate treatment.  相似文献   

3.
The aim of this study was to evaluate the localization accuracy of electromagnetic (EM) tracking systems RayPilot (Micropos Medical AB) and Calypso (Varian Medical Systems) in prostate cancer radiotherapy. The accuracy was assessed by comparing couch shifts obtained with the EM methods to the couch shifts determined by simultaneous fiducial marker (FM) based orthogonal kilovoltage (kV) imaging. Agreement between the methods was compared using Bland-Altman analysis. Interfractional positional stability of the FMs, RayPilot transmitters and Calypso transponders was investigated. 582 fractions from 22 RayPilot patients and 335 fractions from 26 Calypso patients were analyzed. Mean (± standard deviation (SD)) differences between RayPilot and kV imaging were 0.3 ± 2.2, −2.2 ± 2.4 and −0.0 ± 1.0 mm in anterior-posterior (AP), superior-inferior (SI) and left-right (LR) directions, respectively. Corresponding 95% limits of agreement (LOA) were ±4.3, ±4.7 and ±2.1 mm around the mean. Mean (±SD) differences between Calypso and kV imaging were −0.2 ± 0.6, 0.1 ± 0.5 and −0.1 ± 0.4 mm in AP, SI and LR directions, respectively, and corresponding LOAs were ±1.3, ±1.0 and ±0.8 mm around the mean. FMs and transponders were stable: SD of intermarker and intertransponder distances was 0.5 mm. Transmitters were unstable: mean caudal transmitter shift of 1.8 ± 2.0 mm was observed. Results indicate that the localization accuracy of the Calypso is comparable to kV imaging of fiducials and the methods could be used interchangeably. The localization accuracy of the RayPilot is affected by transmitter instability and the positioning of the patient should be verified by other setup techniques. The study is part of clinical trial NCT02319239.  相似文献   

4.
Background and purposeTo compare the accuracy of the Block Matching deformable registration (DIR) against rigid image registration (RIR) for head-and-neck multi-modal images CT to cone-beam CT (CBCT) registration.Material and methodsPlanning-CT and weekly CBCT of 10 patients were used for this study. Several volumes, including medullary canal (MC), thyroid cartilage (TC), hyoid bone (HB) and submandibular gland (SMG) were transposed from CT to CBCT images using either DIR or RIR. Transposed volumes were compared with the manual delineation of these volumes on every CBCT. The parameters of similarity used for analysis were: Dice Similarity Index (DSI), 95%-Hausdorff Distance (95%-HD) and difference of volumes (cc).ResultsWith DIR, the major mean difference of volumes was −1.4 cc for MC, revealing limited under-segmentation. DIR limited variability of DSI and 95%-HD. It significantly improved DSI for TC and HB and 95%-HD for all structures but SMG. With DIR, mean 95%-HD (mm) was 3.01 ± 0.80, 5.33 ± 2.51, 4.99 ± 1.69, 3.07 ± 1.31 for MC, TC, HB and SMG, respectively. With RIR, it was 3.92 ± 1.86, 6.94 ± 3.98, 6.44 ± 3.37 and 3.41 ± 2.25, respectively.ConclusionBlock Matching is a valid algorithm for deformable multi-modal CT to CBCT registration. Values of 95%-HD are useful for ongoing development of its application to the cumulative dose calculation.  相似文献   

5.
PurposeAccurate localization is crucial in delivering safe and effective stereotactic body radiation therapy (SBRT). The aim of this study was to analyse the accuracy of image-guidance using the cone-beam computed tomography (CBCT) of the VERO system in 57 patients treated for lung SBRT and to calculate the treatment margins.Materials and methodsThe internal target volume (ITV) was obtained by contouring the tumor on maximum and mean intensity projection CT images reconstructed from a respiration correlated 4D-CT. Translational and rotational tumor localization errors were identified by comparing the manual registration of the ITV to the motion-blurred tumor on the CBCT and they were corrected by means of the robotic couch and the ring rotation. A verification CBCT was acquired after correction in order to evaluate residual errors.ResultsThe mean 3D vector at initial set-up was 6.6 ± 2.3 mm, which was significantly reduced to 1.6 ± 0.8 mm after 6D automatic correction. 94% of the rotational errors were within 3°. The PTV margins used to compensate for residual tumor localization errors were 3.1, 3.5 and 3.3 mm in the LR, SI and AP directions, respectively.ConclusionsOn-line image guidance with the ITV–CBCT matching technique and automatic 6D correction of the VERO system allowed a very accurate tumor localization in lung SBRT.  相似文献   

6.
PurposeTo evaluate the utility of the use of iterative cone-beam computed tomography (CBCT) for machine log file-based dose verification during volumetric modulated arc therapy (VMAT) for prostate cancer patients.MethodsAll CBCT acquisition data were used to reconstruct images with the Feldkamp-Davis-Kress algorithm (FDK-CBCT) and the novel iterative algorithm (iCBCT). The Hounsfield unit (HU)-electron density curves for CBCT images were created using the Advanced Electron Density Phantom. The I’mRT and anthropomorphic phantoms were irradiated with VMAT after CBCT registration. Subsequently, fourteen prostate cancer patients received VMAT after CBCT registration. Machine log files and both CBCT images were exported to the PerFRACTION software, and a 3D patient dose was reconstructed. Mean dose for planning target volume (PTV), the bladder, and rectum and the 3D gamma analysis were evaluated.ResultsFor the phantom studies, the variation of HU values was observed at the central position surrounding the bones in FDK-CBCT. There were almost no changes in the difference of doses at the isocenter between measurement and reconstructed dose for planning CT (pCT), FDK-CBCT, and iCBCT. Mean dose differences of PTV, rectum, and bladder between iCBCT and pCT were approximately 2% lower than those between FDK-CBCT and pCT. For the clinical study, average gamma analysis for 2%/2 mm was 98.22% ± 1.07 and 98.81% ± 1.25% in FDK-CBCT and iCBCT, respectively.ConclusionsA similar machine log file-based dose verification accuracy is obtained for FDK-CBCT and iCBCT during VMAT for prostate cancer patients.  相似文献   

7.
摘要 目的:探究锥形束CT(CBCT)引导放疗摆位误差对中上段食管癌患者受照射剂量的影响。方法:选取2017年5月~2019年5月于我院收治的60例中上段食管癌患者为研究对象,所有患者均行CBCT图像、计划CT图像采集。在患者放疗前进行CBCT扫描,将CBCT图像与计划CT图像匹配,得到左右(x轴)、头脚(y轴)、前后(z轴)三个方向的线性误差,分析出现的误差及误差的分布规律。利用模拟实际照射系统,进行模拟计划,得到实际照射靶区及正常组织受照射剂量,将其与治疗前计划比较,研究摆位误差对患者受照剂量的影响。结果:患者整体摆位误差为x轴(2.91±2.20)mm,y轴(3.89±2.17)mm,z轴(2.44±1.64)mm,x轴的MPTV为4.054 mm,y轴的MPTV为8.183 mm,z轴的MPTV为3.482 mm。模拟计划的CI、PTV的Dmin、Dmean、D95%均低于标准计划差异显著(P均<0.05),而模拟计划的HI低于标准计划(P<0.05)。模拟计划的脊髓Dmax高于标准计划(P<0.05),而标准计划与模拟计划的双肺V20、Dmean,心脏V40差异比较无统计学意义(P均>0.05)。结论:CBCT引导放疗摆位误差对中上段食管癌患者影响较小,提高PTV受照射剂量及治疗准确程度,对脊髓有保护效果。摆位误差对心、肺的剂量分布无明显影响。  相似文献   

8.
The aims of this study were to introduce and validate a novel computationally-efficient subject-specific tibiofemoral joint model. Subjects performed a quasi-static lunge while micro-dose radiation bi-planar X-rays (EOS Imaging, Paris, France) were captured at roughly 0°, 20°, 45°, 60°, and 90° of tibiofemoral flexion. Joint translations and rotations were extracted from this experimental data through 2D-to-3D bone reconstructions, using an iterative closest point optimization technique, and employed during model calibration and validation. Subject-specific moving-axis and hinge models for comparisons were constructed in the AnyBody Modeling System (AMS) from Magnetic Resonance Imaging (MRI)-extracted anatomical surfaces and compared against the experimental data. The tibiofemoral axis of the hinge model was defined between the epicondyles while the moving-axis model was defined based on two tibiofemoral flexion angles (0° and 90°) and the articulation modeled such that the tibiofemoral joint axis moved linearly between these two positions as a function of the tibiofemoral flexion. Outside this range, the joint axis was assumed to remain stationary. Overall, the secondary joint kinematics (ML: medial–lateral, AP: anterior-posterior, SI: superior-inferior, IE: internal-external, AA: adduction-abduction) were better approximated by the moving-axis model with mean differences and standard errors of (ML: −1.98 ± 0.37 mm, AP: 6.50 ± 0.82 mm, SI: 0.05 ± 0.20 mm, IE: 0.59 ± 0.36°, AA: 1.90 ± 0.79°) and higher coefficients of determination (R2) for each clinical measure. While the hinge model achieved mean differences and standard errors of (ML: −0.84 ± 0.45 mm, AP: 10.11 ± 0.88 mm, SI: 0.66 ± 0.62 mm, IE: −3.17 ± 0.86°, AA: 11.60 ± 1.51°).  相似文献   

9.
PurposeTo define optimal planning target volume (PTV) margins for intensity modulated radiotherapy (IMRT) ± knee-heel support (KHS) in patients treated with adjuvant radiotherapy.MethodsComputed tomography (CT) scans ± KHS of 10 patients were taken before and at 3rd and 5th week of treatment, fused and compared with initial IMRT plans.ResultsA PTV margin of 15 mm in anteroposterior (AP) and superoinferior (SI) directions and 5 mm in lateral directions were found to be adequate without any difference between ± KHS except for the SI shifts in CTV-primary at the 3rd week. Five mm margin for iliac CTV was found to be inadequate in 10–20% of patients in SI directions however when 7 mm margin was given for iliac PTV, it was found to be adequate. For presacral CTV, it was found that the most striking shift of the target volume was in the direction of AP. KHS caused significantly less volume of rectum and bladder in the treated volume.ConclusionsPTV margin of 15 mm in SI and AP, and 5 mm in lateral directions for CTV-primary were found to be adequate. A minimum of 7 mm PTV margin should be given to iliac CTV. The remarkable shifting in presacral CTV was believed to be due to the unforeseen hip malposition of obese patients. The KHS seems not to provide additional beneficial effect in decreasing the shifts both in CTV-primary and lymphatic, however it may have a beneficial effect of decreasing the OAR volume in PTV margins.  相似文献   

10.
PurposeIn this study, a 3D phase correlation algorithm was investigated to test feasibility for use in determining the anatomical changes that occur throughout a patient's radiotherapy treatment. The algorithm determines the transformations between two image volumes through analysis in the Fourier domain and has not previously been used in radiotherapy for 3D registration of CT and CBCT volumes.MethodsVarious known transformations were applied to a patient's prostate CT image volume to create 12 different test cases. The mean absolute error and standard deviation were determined by evaluating the difference between the known contours and those calculated from the registration process on a point-by-point basis. Similar evaluations were performed on images with increasing levels of noise added. The improvement in structure overlap offered by the algorithm in registering clinical CBCT to CT images was evaluated using the Dice Similarity Coefficient (DSC).ResultsA mean error of 2.35 (σ = 1.54) mm was calculated for the 12 deformations applied. When increasing levels of noise were introduced to the images, the mean errors were observed to rise up to a maximum increase of 1.77 mm. For CBCT to CT registration, maximum improvements in the DSC of 0.09 and 0.46 were observed for the bladder and rectum, respectively.ConclusionsThe Fourier-based 3D phase correlation registration algorithm investigated displayed promising results in CT to CT and CT to CBCT registration, offers potential in terms of efficiency and robustness to noise, and is suitable for use in radiotherapy for monitoring patient anatomy throughout treatment.  相似文献   

11.
PurposeTo introduce volumetric modulated arc therapy treatments (VMAT) with simultaneous integrated boost (SIB) for pancreatic cancer and describe dosimetric results on a large patient series.Methods and materials45 patients with pancreatic malignancies were treated with 18 MV single-arc VMAT. Image guidance was performed with daily online kilo-volt cone-beam computed tomography (CBCT). The conformity index (CI) and homogeneity index (HI) to the target volumes, PTV45Gy and PTV54Gy, and dose–volume indices to OARs from the QUANTEC task group were reported. The risk of clinical nephritis was evaluated using normal tissue complication probability (NTCP). Treatments were verified in-phantom with the Delta4 system.ResultsAverage CI was 1.06 with 95% confidence intervals (95% CI) of 0.97–1.22 for PTV45Gy and 1.17 (0.66–1.61) for PTV54Gy. HI of PTV54Gy was 1.06 (1.04–1.10). OAR constraints were achieved in all patients, except for kidneys V12Gy of 48 (35.4–72.3)%. NTCP of the kidneys was 0.98 (0.6–1.7)%. Kidneys V12Gy and V20Gy were inversely related to PTV54Gy CI and maximum dose. All in-phantom tests had gamma pass rates exceeding 95% with global 3% dose difference and 3 mm distance to agreement. Patient shifts measured with CBCT had 95% CI of −0.8, +0.8 in the RL, −0.7, +0.8 in the SI, and −0.8, +0.7 cm in the AP directions.ConclusionsDosimetric results of VMAT were excellent on PTVs and organs at risk. The kidneys represent the dose-limiting organ at risk for this technique. NTCP indicates that this technique is safe from radiation-induced side effects to the kidneys.  相似文献   

12.
Voluntary moderate deep inspiration breath hold (vmDIBH) in left-sided breast cancer radiotherapy reduces cardiac dose. The aim of this study was to investigate heart position variability in vmDIBH using CBCT and to compare this variability with differences in heart position between vmDIBH and free breathing (FB).For 50 patients initial heart position with respect to the field edge (HP-FE) was measured on a vmDIBH planning CT scan. Breath-hold was monitored using an in-house developed vertical plastic stick. On pre-treatment CBCT scans, heart position variability with respect to the field edge (ΔHP-FE) was measured, reflecting heart position variability when using an offline correction protocol. After registering the CBCT scan to the planning CT, heart position variability with respect to the chest wall (ΔHP-CW) was measured, reflecting heart position variability when using an online correction protocol. As a control group, vmDIBH and FB computed tomography (CT) scans were acquired for 30 patients and registering both scans on the chest wall.For 34 out of 50 patients, the average HP-FE and HP-CW increased over the treatment course in comparison to the planning CT. Averaged over all patients and all treatment fractions, the ΔHP-FE and the ΔHP-CW was 0.8 ± 4.2 mm (range −9.4–+10.6 mm) and 1.0 ± 4.4 mm (range −8.3–+10.4 mm) respectively. The average gain in heart to chest wall distance was 11.8 ± 4.6 mm when using vmDIBH instead of FB. In conclusion, substantial variability in heart position using vmDIBH was observed during the treatment course.  相似文献   

13.
PurposeThe aim of this study was to assess the reproducibility of patient shoulder position immobilized with a novel and innovative prototype mask (E-Frame, Engineering System).MethodsThe E-frame mask fixes both shoulders and bisaxillary regions compared with that of a commercial mask (Type-S, CIVCO). Thirteen and twelve patients were immobilized with the Type-S and E-Frame mask systems, respectively. For each treatment fraction, cone-beam CT (CBCT) images of the patient were acquired and retrospectively analyzed. The CBCT images were registered to the planning CT based on the cervical spine, and then the displacements of the acromial extremity of the clavicle were measured.ResultsThe systematic and random errors between the two mask systems were evaluated. The differences of the systematic errors between the two mask systems were not statistically significant. The mean random errors in the three directions (AP, SI and LR) were 2.7 mm, 3.1 mm and 1.5 mm, respectively for the Type-S mask, and 2.8 mm 2.5 mm and 1.4 mm, respectively for the E-Frame mask. The random error of the E-Frame masks in the SI direction was significantly smaller than that of the Type-S. The number of cases showing displacements exceeding 10 mm in the SI direction for at least one fraction was eight (61% of 13 cases) and three (25% of 12 cases) for Type-S and E-Frame masks, respectively.ConclusionsThe E-Frame masks reduced the random displacements of patient’s shoulders in the SI direction, effectively preventing large shoulder shifts that occurred frequently with Type-S masks.  相似文献   

14.
PurposeThis study aims to evaluate the accuracy of a hybrid approach combining the histogram matching (HM) and the multilevel threshold (MLT) to correct the Hounsfield Unit (HU) distribution in cone-beam CT (CBCT) images.Methods and MaterialsCBCT images acquired for ten prostate cancer patients were processed by matching their histograms to those of deformed planning CT (pCT) images obtained after applying a deformable registration (DR) process. Then, HU values corresponding to five tissue types in the pCT were assigned to the obtained CBCT images (CBCTHM-MLT). Finally, the CBCTHM-MLT images were compared to the deformed pCT visually and using different statistical metrics.ResultsThe visual assessment and the profiles comparison showed that the high discrepancies in the CBCT images were significantly reduced when using the proposed approach. Furthermore, the correlation values indicated that the CBCTHM-MLT were in good agreement with the deformed pCT with correlation values ranging from 0.9893 to 0.9962. In addition, the root mean squared error (RMSE) over the entire volume was reduced from 64.15 ± 9.50 to 51.20 ± 6.76 HU. Similarly, the mean absolute error in specific tissue classes was significantly reduced especially in the soft tissue-air interfaces. These results confirmed that applying MLT after HM worked better than using only HM for which the correlation values were ranging from 0.9878 to 0.9955 and the RMSE was 55.95 ± 10.43 HU.ConclusionEvaluation of the proposed approach showed that the HM + MLT correction can improve the HU distribution in the CBCT images and generate corrected images in good agreement with the pCT.  相似文献   

15.
PurposeTo implement a daily CBCT based dose accumulation technique in order to assess ideal robust optimization (RO) parameters for IMPT treatment of prostate cancer.MethodsTen prostate cancer patients previously treated with VMAT and having daily CBCT were included. First, RO-IMPT plans were created with ± 3 mm and ± 5 mm patient setup and ± 3% proton range uncertainties, respectively. Second, the planning CT (pCT) was deformably registered to the CBCT to create a synthetic CT (sCT). Both daily and weekly sampling strategies were employed to determine optimal dose accumulation frequency. Doses were recalculated on sCTs for both ± 3 mm/±3% and ± 5 mm/±3% uncertainties and were accumulated back to the pCT. Accumulated doses generated from ± 3 mm/±3% and ± 5 mm/±3% RO-IMPT plans were evaluated using the clinical dose volume constraints for CTV, bladder, and rectum.ResultsDaily accumulated dose based on both ± 3mm/±3% and ±5 mm/±3% uncertainties for RO-IMPT plans resulted in satisfactory CTV coverage (RO-IMPT3mm/3% CTVV95 = 99.01 ± 0.87% vs. RO-IMPT5mm/3% CTVV95 = 99.81 ± 0.2%, P = 0.002). However, the accumulated dose based on ± 3 mm/3% RO-IMPT plans consistently provided greater OAR sparing than ±5 mm/±3% RO-IMPT plans (RO-IMPT3mm/3% rectumV65Gy = 2.93 ± 2.39% vs. RO-IMPT5mm/3% rectumV65Gy = 4.38 ± 3%, P < 0.01; RO-IMPT3mm/3% bladderV65Gy = 5.2 ± 7.12% vs. RO-IMPT5mm/3% bladderV65Gy = 7.12 ± 9.59%, P < 0.01). The gamma analysis showed high dosimetric agreement between weekly and daily accumulated dose distributions.ConclusionsThis study demonstrated that for RO-IMPT optimization, ±3mm/±3% uncertainty is sufficient to create plans that meet desired CTV coverage while achieving superior sparing to OARs when compared with ± 5 mm/±3% uncertainty. Furthermore, weekly dose accumulation can accurately estimate the overall dose delivered to prostate cancer patients.  相似文献   

16.
PurposeAim of this work was to study how the detector resolution can affect the clinical significance of SBRT pre-treatment volumetric modulated arc therapy (VMAT) verification results.MethodsThree detectors (PTW OCTAVIUS 4D 729, 1500 and 100 SRS) used in five configurations with different resolution were compared: 729, 729 merged, 1500, 1500 merged and 1000 SRS. Absolute local gamma passing rates of 3D pre-treatment quality assurance (QA) were evaluated for 150 dose distributions in 30 plans. Five different kinds of error were introduced in order to establish the detection sensitivity of the three devices. Percentage dosimetric differences were evaluated between planned dosevolume histogram (DVH) and patients’ predicted DVH calculated by PTW DVH 4D® software. Results:The mean gamma passing rates and the standard deviations were 92.4% ± 3.7%, 94.6% ± 1.8%, 95.3% ± 4.2%, 97.4% ± 2.5% and 97.6% ± 1.4 respectively for 729, 729 merged, 1500, 1500 merged and 1000 SRS with 2% local dose/2mm criterion. The same trend was found on the sensitivity analysis: using a tight gamma analysis criterion (2%L/1mm) only the 1000 SRS detected every kind of error, while 729 and 1500 merged detected three and four kinds of error respectively. Regarding dose metrics extracted from DVH curves, D50% was within the tolerance level in more than 90% of cases only for the 1000 SRS.ConclusionsThe detector resolution can significantly affect the clinical significance of SBRT pre-treatment verification results. The choice of a detector with resolution suitable to the investigated field size is of main importance to avoid getting false positive.  相似文献   

17.
The aim of this study was to evaluate the dosimetric effect of continuous motion monitoring based localization (Calypso, Varian Medical Systems), gating and intrafraction motion correction in prostate SBRT. Delivered doses were modelled by reconstructing motion inclusive dose distributions for different localization strategies. Actually delivered dose (strategy A) utilized initial Calypso localization, CBCT and additional pre-treatment motion correction by kV-imaging and Calypso, and gating during the irradiation. The effect of gating was investigated by simulating non-gated treatments (strategy B). Additionally, non-gated and single image-guided (CBCT) localization was simulated (strategy C). A total of 308 fractions from 22 patients were reconstructed. The dosimetric effect was evaluated by comparing motion inclusive target and risk organ dose-volume parameters to planned values. Motion induced dose deficits were seen mainly in PTV and CTV to PTV margin regions, whereas CTV dose deficits were small in all strategies: mean ± SD difference in CTVD99% was –0.3 ± 0.4%, −0.4 ± 0.6% and –0.7 ± 1.2% in strategies A, B and C, respectively. Largest dose deficits were seen in individual fractions for strategy C (maximum dose reductions were −29.0% and –7.1% for PTVD95% and CTVD99%, respectively). The benefit of gating was minor, if additional motion correction was applied immediately prior to irradiation. Continuous motion monitoring based localization and motion correction ensured the target coverage and minimized the OAR exposure for every fraction and is recommended to use in prostate SBRT. The study is part of clinical trial NCT02319239.  相似文献   

18.
PurposeWe propose a methodology to evaluate the stoichiometric calibration method on MVCT against the corresponding kVCT calibration using patient data.MethodsStoichiometric calibrations were conducted for a MVCT and a kVCT scanner, respectively. We retrospectively analyzed kVCT and MVCT images of 21 patients by picking small tissue volumes in kVCT images and performing image registration to locate the tissue volumes in corresponding MVCT images. We computed the difference between the mean proton stopping power derived through kVCT and MVCT calibration, taking into account the uncertainties in calibration, imaging, and image registration.ResultskVCT and MVCT calibration curves were in good agreement for soft tissues such as muscle and brain, but showed statistically significant difference (p < 0.05) in stopping power of adipose (2.4 ± 1.7%) and bony structures such as spongiosa, and cranium (−3.2 ± 1.4 and −3.1 ± 2.1%, respectively).ConclusionThe MVCT calibration might not agree with the corresponding kVCT calibration for some tissues.  相似文献   

19.
PurposeWe presented a feasibility study to extract the diaphragm motion from the inferior contrast cone beam computed tomography (CBCT) projection images using a constrained linear regression optimization algorithm.MethodsThe shape of the diaphragm was fitted by a parabolic function which was initialized by five manually placed points on the diaphragm contour of a pre-selected projection. A constrained linear regression model by exploiting the spatial, algebraic, and temporal constraints of the diaphragm, approximated by a parabola, was employed to estimate the parameters. The algorithm was assessed by a fluoroscopic movie acquired at anterior-posterior (AP) fixed direction and kilovoltage CBCT projection image sets from four lung and two liver patients using the Varian 21iX Clinac. The automatic tracing by the proposed algorithm and manual tracking were compared in both space and frequency domains for the algorithm evaluations.ResultsThe error between the results estimated by the proposed algorithm and those by manual tracking for the AP fluoroscopic movie was 0.54 mm with standard deviation (SD) of 0.45 mm. For the detected projections the average error was 0.79 mm with SD of 0.64 mm for all six enrolled patients and the maximum deviation was 2.5 mm. The mean sub-millimeter accuracy outcome exhibits the feasibility of the proposed constrained linear regression approach to track the diaphragm motion on rotational fluoroscopic images.ConclusionThe new algorithm will provide a potential solution to rendering diaphragm motion and possibly aiding the tumor target tracking in radiation therapy of thoracic/abdominal cancer patients.  相似文献   

20.
Superimposition of serial Cone Beam Computed Tomography (CBCT) scans has become a valuable tool for three dimensional (3D) assessment of treatment effects and stability. Voxel based image registration is a newly developed semi-automated technique for superimposition and comparison of two CBCT scans. The accuracy and reproducibility of CBCT superimposition on the anterior cranial base or the zygomatic arches using voxel based image registration was tested in this study. 16 pairs of 3D CBCT models were constructed from pre and post treatment CBCT scans of 16 adult dysgnathic patients. Each pair was registered on the anterior cranial base three times and on the left zygomatic arch twice. Following each superimposition, the mean absolute distances between the 2 models were calculated at 4 regions: anterior cranial base, forehead, left and right zygomatic arches. The mean distances between the models ranged from 0.2 to 0.37 mm (SD 0.08-0.16) for the anterior cranial base registration and from 0.2 to 0.45 mm (SD 0.09-0.27) for the zygomatic arch registration. The mean differences between the two registration zones ranged between 0.12 to 0.19 mm at the 4 regions. Voxel based image registration on both zones could be considered as an accurate and a reproducible method for CBCT superimposition. The left zygomatic arch could be used as a stable structure for the superimposition of smaller field of view CBCT scans where the anterior cranial base is not visible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号