首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relationship between brain aging and Alzheimer's disease (AD) is contentious. One view holds AD results when brain aging surpasses a threshold. The other view postulates AD is not a consequence of brain aging. This review discusses this conundrum from the perspective of different investigative lines that have tried to address it, as well as from the perspective of the mitochondrion, an organelle that appears to play a role in both AD and brain aging. Specific issues addressed include the question of whether AD and brain aging should be conceptually lumped or split, the extent to which AD and brain aging potentially share common molecular mechanisms, whether beta amyloid should be primarily considered a marker of AD or simply brain aging, and the definition of AD itself.  相似文献   

2.
Alzheimer's disease (AD) is a common neurodegenerative disease that affects cognitive function in the elderly. Large extracellular beta-amyloid (Abeta) plaques and tau-containing intraneuronal neurofibrillary tangles characterize AD from a histopathologic perspective. However, the severity of dementia in AD is more closely related to the degree of the associated neuronal and synaptic loss. It is not known how neurons die and synapses are lost in AD; the current review summarizes what is known about this issue. Most evidence indicates that amyloid precursor protein (APP) processing is central to the AD process. The Abeta in plaques is a metabolite of the APP that forms when an alternative (beta-secretase and then gamma-secretase) enzymatic pathway is utilized for processing. Mutations of the APP gene lead to AD by influencing APP metabolism. One leading theory is that the Abeta in plaques leads to AD because Abeta is directly toxic to the adjacent neurons. Other theories advance the notion that neuronal death is triggered by intracellular events that occur during APP processing or by extraneuronal preplaque Abeta oligomers. Some investigators speculate that in many cases there is a more general disorder of protein processing in neurons that leads to cell death. In the later models, Abeta plaques are a byproduct of the disease process, rather than the direct cause of neuronal death. A direct correlation between Abeta plaque burden and neuronal (or synaptic) loss should occur in AD if Abeta plaques cause AD through a direct toxic effect. However, histopathologic studies indicate that the correlation between Abeta plaque burden and neuronal (or synaptic) loss is poor. We conclude that APP processing and Abeta formation is important to the AD process, but that neuronal alterations that underlie symptoms of AD are not due exclusively to a direct toxic effect of the Abeta deposits that occur in plaques. A more general problem with protein processing, damage due to the neuron from accumulation of intraneuronal Abeta or extracellular, preplaque Abeta may also be important as underlying factors in the dementia of AD.  相似文献   

3.
Extracellular-signal-regulated kinase (ERK) has been implicated in the pathogenesis of Alzheimer's disease (AD), but the upstream cascade leading to ERK activation has not been elucidated. In this study, we focused on one of the physiological activators of ERK, mitogen-activated protein kinase (MAPK)/ERK kinase 1 (MEK1). Although there was no significant difference in the level and distribution of total MEK1 between AD and age-matched control cases, increased levels of activated phospho-MEK1 were specifically localized to neuronal intracytoplasmic granular structures in severe AD (Braak stage V-VI). The considerable overlap between MEK1 and its downstream effector, phospho-ERK, suggests both a functional and mechanistic link. Nuclear localization of phospho-MEK1 was a prominent feature in both mild AD cases (Braak stage III-IV) and control cases with limited pathology (Braak stage I-II). Since MEK1 is normally cytoplasmic due to the active export from nucleus because of the presence of nuclear export signal in its amino-terminus, we suspect that the apparent nuclear accumulation of phospho-MEK1 in AD patients at early stages suggests that abnormal nuclear trafficking may contribute to the pathogenesis of AD. By immunoblot analyses, phospho-MEK1 was significantly increased in AD over control cases. Together, these findings lend further credence to the notion that the ERK pathway is dysregulated in AD and also indicate an active role for this pathway in disease pathogenesis.  相似文献   

4.
A continuous inflammatory state is associated with Alzheimer's disease (AD) evidenced by an increase in proinflammatory cytokines around beta-amyloid (Abeta) deposits. In addition, functional loss of CD40L is shown to result in diminished Amyloid precursor proton (APP) processing and microglial activation, supporting a prominent role of CD40-CD40L in AD etiology. We therefore hypothesize that a peripheral increase in Abeta may result in corresponding increase of sCD40 and sCD40L further contributing to AD pathogenesis. We measured plasma Abeta, sCD40 and sCD40L levels in 73 AD patients and compared to 102 controls matched on general demographics. We demonstrated that Abeta(1-40), levels of sCD40 and sCD40L are increased in AD and declining MMSE scores correlated with increasing sCD40L, which in turn, correlated positively with Abeta(1-42). We then combined sCD40, sCD40L, Abeta and APOE and found that this biomarker panel has high sensitivity and specificity (>90%) as a predictor of clinical AD diagnosis. Given the imminent availability of potentially disease modifying therapies for AD, a great need exists for peripheral diagnostic markers of AD. Thus, we present preliminary evidence for potential usefulness for combination of plasma sCD40, sCD40L along with Abeta(1-40) and APOE epsilon4 in improving the clinical diagnosis of AD.  相似文献   

5.
Prior to the identification of the various abnormal proteins deposited as fibrillar aggregates in the Alzheimer's disease (AD) brain, there was tremendous controversy over the importance of the various lesions with respect to primacy in the pathology of AD. Nevertheless, based on analogy to systemic amyloidosis, many investigators believed that the amyloid deposits in AD played a causal role and that characterization of these deposits would hold the key to understanding this complex disease. Indeed, in retrospect, it was the initial biochemical purifications of the approximately 4 kDa amyloid beta-peptide (Abeta) from amyloid deposits in the mid 1980s that launched a new era of AD research (Glenner and Wong, Biochem. Biophys. Res. Commun. 122 (1984) 1121-1135; Wong et al., Proc. Natl. Acad Sci. USA 82 (1985) 8729 8732; and Masters et al., Proc. Natl. Acad Sci. USA 82 (1985) 4245-4249). Subsequent studies of the biology of Abeta together with genetic studies of AD have all supported the hypothesis that altered Abeta metabolism leading to aggregation plays a causal role in AD. Although there remains controversy as to whether Abeta deposited as classic amyloid or a smaller, aggregated, form causes AD, the relevance of studying the amyloid deposits has certainly been proven. Despite the significant advances in our understanding of the role of Abeta in AD pathogenesis, many important aspects of Abeta biology remain a mystery. This review will highlight those aspects of Abeta biology that have led to our increased understanding of the pathogenesis of AD as well as areas which warrant additional study.  相似文献   

6.
The incidence of Alzheimer disease (AD) and diabetes mellitus (DM) is increasing at an alarming rate and has become a major public health concern worldwide. Recent epidemiological studies have provided direct evidence that DM is a strong risk factor for AD; this finding is now attracting attention. However, the underlying mechanisms for this association remain largely unknown. Previous in vitro and in vivo studies reported that diabetic conditions could cause an increase in the beta-amyloid peptide (Aβ) levels, which exhibits neurotoxic properties and plays a causative role in AD. However, unexpectedly, recent clinicopathological studies have shown no evidence that the pathological hallmarks of AD, including amyloid plaque, were increased in the brains of diabetic patients, suggesting that DM could affect the pathogenesis of AD through mechanisms other than modulation of Aβ metabolism. One possible mechanism is the alteration in brain insulin signaling. It has been shown that insulin signaling is involved in a variety of neuronal functions, and that it also plays a significant role in the pathophysiology of AD. Thus, the modification of neuronal insulin signaling by diabetic conditions may contribute to AD progression. Another possible mechanism is cerebrovascular alteration, a common pathological change observed in both diseases. Accumulating evidence has suggested the importance of Aβ-induced cerebrovascular dysfunction in AD, and indicated that pathological interactions between the receptor for advanced glycation end products (RAGE) and Aβ peptides may play a role in this dysfunction. Our study has provided a further understanding of the potential underlying mechanisms linking DM and AD by establishing novel mouse models showing pathological manifestations of both diseases. The current review summarizes the results from recent studies on the pathological relationship between DM and AD while focusing on brain insulin signaling and cerebrovascular alteration. It also discusses the therapeutic potential of these findings and future treatment strategies for AD.  相似文献   

7.
In an effort to identify astrocyte-derived molecules that may be intimately associated with progression of Alzheimer's disease (AD), Lib, a type I transmembrane protein belonging to leucine-rich repeat superfamily, has been identified as a distinctly inducible gene, responsive to beta-amyloid as well as pro-inflammatory cytokines in astrocytes. To evaluate the roles of Lib in AD, we investigated Lib expression in AD brain. In non-AD brain, Lib mRNA has been detected in neurons but not in quiescent astrocytes. On the contrary, in AD brain, Lib mRNA is expressed in activated astrocytes associated with senile plaques, but not expressed in neurons around lesions. Lib-expressing glioma cells displayed promotion of migration ability through reconstituted extracellular matrix and recombinant Lib protein bound to constituents of extracellular matrix. These observations suggest that Lib may contribute to regulation of cell-matrix adhesion interactions with respect to astrocyte recruitment around senile plaques in AD brain.  相似文献   

8.
A total of 290 tree-ring samples, collected from six sites in the West Qinling Mountains of China, were used to develop six new standard tree-ring chronologies. In addition, 73 proxy records were assembled in collaboration with Chinese and international scholars, from 27 publically available proxy records and 40 tree-ring chronologies that are not available in public datasets. These records were used to reconstruct annual mean temperature variability in the West Qinling Mountains over the past 500 years (AD 1500–1995), using a modified point-by-point regression (hybrid PPR) method. The results demonstrate that the hybrid PPR method successfully integrates the temperature signals from different types of proxies, and that the method preserves a high degree of low-frequency variability. The reconstruction shows greater temperature variability in the West Qinling Mountains than has been found in previous studies. Our temperature reconstruction for this region shows: 1) five distinct cold periods, at approximately AD 1520–1535, AD 1560–1575, AD 1610–1620, AD 1850–1875 and AD 1965–1985, and four warm periods, at approximately AD 1645–1660, AD 1705–1725, AD 1785–1795 and AD 1920–1945; 2) that in this region, the 20th century was not the warmest period of the past 500 years; and 3) that a dominant and persistent oscillation of ca. 64 years is significantly identified in the 1640–1790 period.  相似文献   

9.
10.
11.
Oxidative stress plays an important role in the progression of neurodegenerative and age-related diseases, causing damage to proteins, DNA, and lipids. A novel thiol N-acetylcysteine amide (AD4), the amide form of N-acetylcysteine (NAC) and a Cu(2+) chelator, was assessed for its antioxidant and protective effects using human red blood cells (RBCs) as a model. AD4 was shown by flow cytometry to inhibit tert.-butylhydroxyperoxide (BuOOH)-induced intracellular oxidation in RBCs stained with the oxidant-sensitive probe 2',7'-dichlorofluorescein diacetate. In addition, AD4 retarded BuOOH-induced thiol depletion and hemoglobin oxidation. Restoration of the thiol-depleted RBCs by externally applied AD4 was significantly greater compared with NAC and, unlike NAC, was accompanied by hemoglobin protection from oxidation. In a cell-free system we have demonstrated that AD4 reacted with oxidized glutathione (GSSG) to generate reduced glutathione (GSH). The formation of GSH was determined enzymatically using GSH peroxidase and by HPLC. Based on these results a thiol-disulfide exchange between AD4 and GSSG is proposed as the mechanism underlying the antioxidant effects of AD4 on BuOOH-treated RBCs. Together, these studies demonstrate that AD4 readily crosses cell membranes, replenishes intracellular GSH, and, by incorporating into the redox machinery, defends the cell from oxidation. These results provide further evidence for the efficient membrane permeation of AD4 over NAC, and support the possibility that it could be explored for treatment of neurodegeneration and other oxidation-mediated disorders.  相似文献   

12.
L1AD3 is a small cyclic synthetic peptide designed to resemble the first loop of a cobra venom cytotoxin. Instead of inducing membrane disruption similar to that caused by the parent toxin, L1AD3 promotes extensive and unusually rapid apoptosis in leukemic T-cells without making the plasma membrane permeable to small fluorescent dyes. Within 4 h, micromolar concentrations of L1AD3 almost totally inhibit thymidine incorporation, and ATP levels decrease significantly. By contrast, normal human white blood cells are not affected by L1AD3, nor is heart cell function affected by it. If L1AD3 kills by interacting with targets that are different from those of currently applied agents, this peptide, or a derivative of it, could become a useful adjunct for cancer chemotherapy.  相似文献   

13.
Alzheimer's disease (AD) is an age-related neurodegenerative disorder. A number of hypotheses have been proposed to explain AD pathogenesis. One such hypothesis proposed to explain AD pathogenesis is the oxidative stress hypothesis. Increased levels of oxidative stress markers including the markers of lipid peroxidation such as acrolein, 4-hydroxy-2-trans-nonenal (HNE), malondialdehyde, etc. are found in brains of AD subjects. In this review, we focus principally on research conducted in the area of HNE in the central nervous system (CNS) of AD and mild cognitive impairment (MCI), and further, we discuss likely consequences of lipid peroxidation with respect to AD pathogenesis and progression. Based on the research conducted so far in the area of lipid peroxidation, it is suggested that lipid accessible antioxidant molecules could be a promising therapeutic approach to treat or slow progression of MCI and AD.  相似文献   

14.
Down syndrome (DS) is the main genetic cause of intellectual disability worldwide. The overexpression of the Amyloid Precursor Protein, present in chromosome 21, leads to β‐amyloid deposition that results in Alzheimer disease (AD) and, in most cases, also to cerebral amyloid angiopathy (CAA) neuropathology. People with DS invariably develop the neuropathological hallmarks of AD at the age of 40, and they are at an ultra high risk for suffering AD‐related cognitive impairment thereafter. In the general population, cerebrovascular disease is a significant contributor to AD‐related cognitive impairment, while in DS remains understudied. This review describes the current knowledge on cerebrovascular disease in DS and reviews the potential biomarkers that could be useful in the future studies, focusing on CAA. We also discuss available evidence on sporadic AD or other genetically determined forms of AD. We highlight the urgent need of large biomarker‐characterized cohorts, including neuropathological correlations, to study the exact contribution of CAA and related vascular factors that play a role in cognition and occur with aging, their characterization and interrelationships. DS represents a unique context in which to perform these studies as this population is relatively protected from some conventional vascular risk factors and they develop significant CAA, DS represents a particular atheroma‐free model to study AD‐related vascular pathologies. Only deepening on these underlying mechanisms, new preventive and therapeutic strategies could be designed to improve the quality of life of this population and their caregivers and lead to new avenues of treatment also in the general AD population.  相似文献   

15.
Wu C  Zhou D  Wen C  Zhang L  Como P  Qiao Y 《Life sciences》2003,72(10):1125-1133
To investigate the relationship between hypertension and Alzheimer's disease(AD) and the change of Alzheimer's patients' blood pressure(BP) before and after the onset of AD, we conducted this epidemiological study. Subjects for this study were individuals who participated in a large scale, randomized controlled trial of nutritional intervention from 1984 to 1991. Participants were initially screened for dementia using Chinese Mini-Mental State Examination (CMMS) and Activities of Daily Living (ADL). Positive subjects were subsequently administered a detailed neuropsychological and neurobehavioral examination. The diagnosis of AD was made by a consensus conference of psychiatrists using Diagnostic And Statistical Manual Of Mental Disorders-Fourth Edition(DSM-IV) criteria. 16488 subjects were examined and 301 were diagnosed as AD. We compared the prevalence of AD in different populations that were stratified with 1984's systolic or diastolic blood pressure(those four stratifications being high blood pressure, borderline blood pressure, normal, low blood pressure), and compared the change of blood pressure of 301 AD patients between 1984 and 1999-2000, which is before and after the onset of AD respectively. Multiple Logistic Regression (1:1 nested case-control study) was used to assess if hypertension is an independent risk factor for AD, and Trend test was used to assess the relationship between blood pressure and AD. Here we demonstrate that there was a significant difference in AD prevalence among different populations stratified by systolic or diastolic blood pressure (P < 0.01).The prevalence is highest in hypertension group, and lowest in hypotension group. Multiple Logistic Regression identified high blood pressure as a risk factor for AD (OR = 1.97, 95%CI:1.09-3.54, P = 0.02). Trend test showed that there is a significant dose-response relationship between blood pressure and AD (P < 0.0002). For hypertensive AD patients, there was no significant difference in systolic blood pressure(SBP) before and after the onset of AD, but diastolic blood pressure(DBP) decreased dramatically after the onset of AD (P < 0.01); however, the result also showed that DBP decrease occurred in the non-demented group. Based on this, we think the DBP decrease is not related to AD. We further investigated whether BP values differed crossed-sectionally between the AD-patients and non-demented individuals. We found that regardless of SBP or DBP, the BP values of the AD group were all significantly higher than that of non-demented. In summary, these data suggest there is a strong relationship between hypertension and AD; however, the mechanism remains to be studied.  相似文献   

16.
In this special issue about biofactors causing cognitive impairment, we present evidence for and discuss two such biofactors. One is excess copper, causing neuronal toxicity. The other is zinc deficiency, causing neuronal damage. We present evidence that Alzheimer's disease (AD) has become an epidemic in developed, but not undeveloped, countries and that the epidemic is a new disease phenomenon, beginning in the early 1900s and exploding in the last 50 years. This leads to the conclusion that something in the developed environment is a major risk factor for AD. We hypothesize that the factor is inorganic copper, leached from the copper plumbing, the use of which coincides with the AD epidemic. We present a web of evidence supporting this hypothesis. Regarding zinc, we have shown that patients with AD are zinc deficient when compared with age-matched controls. Zinc has critical functions in the brain, and lack of zinc can cause neuronal death. A nonblinded study about 20 years ago showed considerable improvement in AD with zinc therapy, and a mouse AD model study also showed significant cognitive benefit from zinc supplementation. In a small blinded study we carried out, post hoc analysis revealed that 6 months of zinc therapy resulted in significant benefit relative to placebo controls in two cognitive measuring systems. These two factors may be linked in that zinc therapy significantly reduced free copper levels. Thus, zinc may act by lowering copper toxicity or by direct benefit on neuronal health, or both.  相似文献   

17.
Alzheimer’s disease is a neurodegenerative disorder where the cognitive deficit is the hallmark symptom reflecting the progression of the disease. Synaptic dysfunction is a sensitive parameter of the AD pathology. Rho GTPases and the Rho kinases, ROCK1/2, and PAK1-3, are important regulators of synaptic plasticity, especially in maintaining the actin cytoskeleton of dendritic spines. Recent studies have revealed that β-amyloid oligomers can inhibit PAK and stimulate ROCK-mediated signaling. Both of these effects enhance the disassembly of synaptic actin filaments and ultimately evoke synaptic loss. Brain tissue in AD recognizes the β-amyloid peptide oligomers as foreign protein particles and mounts an inflammatory defense via Toll-like receptor (TLR) signaling which causes synaptic impairment. We will review here the dysfunction of ROCK, PAK, and Toll signaling associated with AD pathology. The protection of synapses in AD may provide new therapeutic approaches to combatting the cognitive impairment in AD.  相似文献   

18.
19.
Alzheimer disease (AD) is a progressive neurodegenerative disorder whose clinical manifestations appear in old age. The sporadic nature of 90% of AD cases, the differential susceptibility to and course of the illness, as well as the late age onset of the disease suggest that epigenetic and environmental components play a role in the etiology of late-onset AD. Animal exposure studies demonstrated that AD may begin early in life and may involve an interplay between the environment, epigenetics, and oxidative stress. Early life exposure of rodents and primates to the xenobiotic metal lead (Pb) enhanced the expression of genes associated with AD, repressed the expression of others, and increased the burden of oxidative DNA damage in the aged brain. Epigenetic mechanisms that control gene expression and promote the accumulation of oxidative DNA damage are mediated through alterations in the methylation or oxidation of CpG dinucleotides. We found that environmental influences occurring during brain development inhibit DNA-methyltransferases, thus hypomethylating promoters of genes associated with AD such as the β-amyloid precursor protein (APP). This early life imprint was sustained and triggered later in life to increase the levels of APP and amyloid-β (Aβ). Increased Aβ levels promoted the production of reactive oxygen species, which damage DNA and accelerate neurodegenerative events. Whereas AD-associated genes were overexpressed late in life, others were repressed, suggesting that these early life perturbations result in hypomethylation as well as hypermethylation of genes. The hypermethylated genes are rendered susceptible to Aβ-enhanced oxidative DNA damage because methylcytosines restrict repair of adjacent hydroxyguanosines. Although the conditions leading to early life hypo- or hypermethylation of specific genes are not known, these changes can have an impact on gene expression and imprint susceptibility to oxidative DNA damage in the aged brain.  相似文献   

20.
Immunohistochemistry of formalin-fixed human Alzheimer's disease (AD) tissue using an anti-tau antibody (Tau-1) reveals staining of neurofibrillary tangles (NFTs) and neuritic plaques (NPs), whereas normal axonal staining is less apparent. In this study, we used a combined biochemical and histochemical approach to assess effects of formalin on immunoreactivity of AD tau. Nitrocellulose blots were treated with fixative to mimic conditions used with tissue sections, a method that might be generally useful for assessing antigen sensitivity to different fixatives. A progressive decrease in Tau-1 immunoreactivity of the tau bands on a Western blot was observed with increasing times of formalin fixation. Phosphatase-digested blots demonstrated an increase in Tau-1 immunoreactivity compared to control blots. These results mimic the phosphatase-sensitive Tau-1 immunohistochemical staining of formalin-fixed AD tissue slices previously reported. Fixation of AD tissue with periodate-lysine-paraformaldehyde (PLP) preserves axonal tau antigenicity. Phosphatase digestion of PLP-fixed AD tissue enhances Tau-1 immunoreactivity of NFTs and NPs but does not alter axonal staining. These results indicate that axonal form(s) of tau are more sensitive to formalin fixation than pathology-associated tau. In addition, a modification of AD tau in pathological structures may protect it from the effects of formalin with regard to Tau-1 antigenicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号