首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
PurposeIterative algorithms introduce new challenges in the field of image quality assessment. The purpose of this study is to use a mathematical model to evaluate objectively the low contrast detectability in CT.Materials and methodsA QRM 401 phantom containing 5 and 8 mm diameter spheres with a contrast level of 10 and 20 HU was used. The images were acquired at 120 kV with CTDIvol equal to 5, 10, 15, 20 mGy and reconstructed using the filtered back-projection (FBP), adaptive statistical iterative reconstruction 50% (ASIR 50%) and model-based iterative reconstruction (MBIR) algorithms. The model observer used is the Channelized Hotelling Observer (CHO). The channels are dense difference of Gaussian channels (D-DOG). The CHO performances were compared to the outcomes of six human observers having performed four alternative forced choice (4-AFC) tests.ResultsFor the same CTDIvol level and according to CHO model, the MBIR algorithm gives the higher detectability index. The outcomes of human observers and results of CHO are highly correlated whatever the dose levels, the signals considered and the algorithms used when some noise is added to the CHO model. The Pearson coefficient between the human observers and the CHO is 0.93 for FBP and 0.98 for MBIR.ConclusionThe human observers' performances can be predicted by the CHO model. This opens the way for proposing, in parallel to the standard dose report, the level of low contrast detectability expected. The introduction of iterative reconstruction requires such an approach to ensure that dose reduction does not impair diagnostics.  相似文献   

3.
This technical note proposes a method to reduce radiation dose for spine interventions under CT guidance without compromising the successful outcome of the procedure. Two consecutive periods of 14 months before and after optimization were investigated with 162 and 440 patients, respectively. By optimizing the acquisition parameters (decreased kV and mAs) and appropriately adjusting the reconstruction (kernels, slice thickness, etc) and visualization parameters, image quality was maintained suitable to perform the procedure. By reducing both kV and mAs, dose was reduced by 72% on fluoroscopy mode (i-fluoro) and sequential mode (i-sequence). Moreover, dose was reduced by 58% on helical mode (i-spiral). Depending on the radiologist, the fluoroscopy time was decreased by between 37% and 56%. Acquisitions with i-sequence were less irradiating than the i-fluoro or the i-spiral modes. Radiation doses were reduced by 65% for infiltrations, 51% for vertebral expansions, and 56% for bone biopsies. Median (1st quartile; 3rd quartile) effective dose were 2.1 (1.3; 3.5) mSv, 10.8 (6.7; 18.3) mSv for and 3.0 (2.4; 4.3) mSv, respectively. Radiologists reported “satisfactory” image quality. During interventional spine procedures under CT scan, reducing kV and mAs associated with the use of i-sequence substantially reduces patient dose.  相似文献   

4.

Aim

To investigate the potential of reducing the radiation dose in prospectively electrocardiogram-triggered coronary computed tomography angiography (CCTA) while maintaining diagnostic image quality using an iterative reconstruction technique (IRT).

Methods and Materials

Prospectively-gated CCTA were first performed on a phantom using 256-slice multi-detector CT scanner at 120 kVp, with the tube output gradually reduced from 210 mAs (Group A) to 125, 105, 84, and 63 mAs (Group B–E). All scans were reconstructed using filtered back projection (FBP) algorithm and five IRT levels (L2-6), image quality (IQ) assessment was performed. Based on the IQ assessment, Group D(120 kVp, 84 mAs) reconstructed with L5 was found to provide IQ comparable to that of Group A with FBP. In the patient study, 21 patients underwent CCTA using 120 kV, 210 mAs with FBP reconstruction (Group 1) followed by 36 patients scanned with 120 kV, 84 mAs with IRT L5 (Group 2). Subjective and objective IQ and effective radiation dose were compared between two groups.

Results

In the phantom scans, there were no significant differences in image noise, contrast-to-noise ratio (CNR) and modulation transfer function (MTF) curves between Group A and the 84 mAs, 63 mAs groups (Groups D and E). Group D (120 kV, 84 mAs and L5) provided an optimum balance, producing equivalent image quality to Group A, at the lowest possible radiation dose. In the patient study, there were no significant difference in image noise, signal-to-noise ratio (SNR) and CNR between Group 1 and Group 2 (p = 0.71, 0.31, 0.5, respectively). The effective radiation dose in Group 2 was 1.21±0.14 mSv compared to 3.20±0.58 mSv (Group 1), reflecting dose savings of 62.5% (p<0.05).

Conclusion

iterative reconstruction technique used in prospectively ECG-triggered 256-slice coronary CTA can provide radiation dose reductions of up to 62.5% with acceptable image quality.  相似文献   

5.
PurposeTo measure the combined errors due to geometric inaccuracy and image co-registration on secondary images (dynamic CT angiography (dCTA), 3D DynaCT angiography (DynaCTA), and magnetic resonance images (MRI)) that are routinely used to aid in target delineation and planning for stereotactic radiosurgery (SRS).MethodsThree phantoms (one commercial and two in-house built) and two different analysis approaches (commercial and MATLAB based) were used to quantify the magnitude of geometric image distortion and co-registration errors for different imaging modalities within CyberKnife’s MultiPlan treatment planning software. For each phantom, the combined errors were reported as a mean target registration error (TRE). The mean TRE’s for different intramodality imaging parameters (e.g., mAs, kVp, and phantom set-ups) and for dCTA, DynaCTA, and MRI systems were measured.ResultsOnly X-ray based imaging can be performed with the commercial phantom, and the mean TRE ± standard deviation values were large compared to the in-house analysis using MATLAB. With the 3D printed phantom, even drastic changes in treatment planning CT imaging protocols did not greatly influence the mean TRE (<0.5 mm for a 1 mm slice thickness CT). For all imaging modalities, the largest mean TRE was found on DynaCT, followed by T2-weighted MR images (albeit all <1 mm).ConclusionsThe user may overestimate the mean TRE if the commercial phantom and MultiPlan were used solely. The 3D printed phantom design is a sensitive and suitable quality assurance tool for measuring 3D geometric inaccuracy and co-registration errors across all imaging modalities.  相似文献   

6.

Objectives

To utilize a novel objective approach combining a software phantom and an image quality metric to systematically evaluate the influence of sinogram affirmed iterative reconstruction (SAFIRE) of multidetector computed tomography (MDCT) data on image noise characteristics and low-contrast detectability (LCD).

Materials and Methods

A low-contrast and a high-contrast phantom were examined on a 128-slice scanner at different dose levels. The datasets were reconstructed using filtered back projection (FBP) and SAFIRE and virtual low-contrast lesions (-20HU) were inserted. LCD was evaluated using the multiscale structural similarity index (MS-SIM*). Image noise texture and spatial resolution were objectively evaluated.

Results

The use of SAFIRE led to an improvement of LCD for all dose levels and lesions sizes. The relative improvement of LCD was inversely related to the dose level, declining from 208%(±37%), 259%(±30%) and 309%(±35%) at 25mAs to 106%(±6%), 119%(±9%) and 123%(±8%) at 200mAs for SAFIRE filter strengths of 1, 3 and 5 (p<0.05). SAFIRE reached at least the LCD of FBP at a relative dose of 50%. There was no statistically significant difference in spatial resolution. The use of SAFIRE led to coarser image noise granularity.

Conclusion

A novel objective approach combining a software phantom and the MS-SSIM* image quality metric was used to analyze the detectability of virtual low-contrast lesions against the background of image noise as created using SAFIRE in comparison to filtered back-projection. We found, that image noise characteristics using SAFIRE at 50% dose were comparable to the use of FBP at 100% dose with respect to lesion detectability. The unfamiliar imaging appearance of iteratively reconstructed datasets may in part be explained by a different, coarser noise characteristic as demonstrated by a granulometric analysis.  相似文献   

7.
AimTo evaluate the usefulness of a low dose SPECT/CT and the added value of an additional “diagnostic” centred CT-scan in cancer patients with a solitary focus observed on planar whole-body bone scintigraphy (PWBS) and classified as indeterminate or suspicious.Material and methodsSixty consecutive patients underwent a low dose SPECT/CT acquisition (120 kV, 30 mAs, 3 mm slice thickness) followed by a “diagnostic” CT-scan (120 kV, 100 mAs, 1.25 mm slice thickness) centred on the focus. The first observer considered prospectively WBS, low-dose SPECT/CT and finally the centred SPECT/CT. A blinded review was performed by a second observer.ResultsPWBS depicted solitary indeterminate or suspicious foci in 38 and 22 patients, respectively. SPECT/CT acquisitions clarified 73% (44/60) of the foci. Additional diagnostic CT-scan altered low-dose SPECT/CT results in nine patients. Additional foci (not found by PWBS) located outside the scanning area of the centred diagnostic CT-scan were found in 20 patients. Inter observer agreement for PWBS, low-dose SPECT/CT and diagnostic SPECT/CT was equal to 0.542, 0.68 and 0.694, respectively. ROC analysis showed no difference between low-dose SPECT/CT and diagnostic SPECT/CT for observer 1 and observer 2.ConclusionThis study shows that a conventional low-dose SPECT/CT in patients presenting with a solitary focus on PWBS is sufficient to improve both accuracy and inter observer variability of bone scanning. A CT volume session should not be limited to the area of the solitary focus since additional foci located outside the centred CT-scan frequently occurred.  相似文献   

8.

Purpose

Evaluation of a new software tool for generation of simulated low-dose computed tomography (CT) images from an original higher dose scan.

Materials and Methods

Original CT scan data (100 mAs, 80 mAs, 60 mAs, 40 mAs, 20 mAs, 10 mAs; 100 kV) of a swine were acquired (approved by the regional governmental commission for animal protection). Simulations of CT acquisition with a lower dose (simulated 10–80 mAs) were calculated using a low-dose simulation algorithm. The simulations were compared to the originals of the same dose level with regard to density values and image noise. Four radiologists assessed the realistic visual appearance of the simulated images.

Results

Image characteristics of simulated low dose scans were similar to the originals. Mean overall discrepancy of image noise and CT values was −1.2% (range −9% to 3.2%) and −0.2% (range −8.2% to 3.2%), respectively, p>0.05. Confidence intervals of discrepancies ranged between 0.9–10.2 HU (noise) and 1.9–13.4 HU (CT values), without significant differences (p>0.05). Subjective observer evaluation of image appearance showed no visually detectable difference.

Conclusion

Simulated low dose images showed excellent agreement with the originals concerning image noise, CT density values, and subjective assessment of the visual appearance of the simulated images. An authentic low-dose simulation opens up opportunity with regard to staff education, protocol optimization and introduction of new techniques.  相似文献   

9.
This study investigates the superficial dose from FFF beams in comparison with the conventional flattened ones using a Monte Carlo (MC) method. Published phase-space files which incorporated real geometry of a TrueBeam accelerator were used for the dose calculation in phantom and clinical cases. The photon fluence on the central axis is 3 times that of a flattened beam for a 6 MV FFF beam and 5 times for a 10 MV beam. The mean energy across the field in air at the phantom surface is 0.92–0.95 MeV for the 6 MV FFF beam and 1.18–1.30 MeV for the corresponding flattened beam. At 10 MV, the values are 1.52–1.72 and 2.15–2.87 MeV for the FFF and flattened beams, respectively. The phantom dose at the depth of 1 mm in the 6 MV FFF beam is 6% ± 2.5% (of the maximum dose) higher compared to the flattened beam for a 25 × 25 cm2 field and 14.6% ± 1.9% for the 2 × 2 cm2 field. For the 10 MV beam, the corresponding differences are 3.4% ± 1.5% and 10.7% ± 0.6%. The skin dose difference at selected points on the patient's surface between the plans using FFF and flattened beams in the head-and-neck case was 6.5% ± 2.3% (1SD), and for the breast case it was 6.4% ± 2.3%. The Monte Carlo simulations showed that due to the lower mean energy in the FFF beam, the clinical superficial dose is higher without the flattening filter compared to the flattened beam.  相似文献   

10.
PurposeTo provide an experimental basis for spectral optimization of iodine-enhanced CT by a quantitative analysis of image quality and radiation dose characteristics consistently measured for a large variety of scan settings at an anthropomorphic phantom.MethodsCT imaging and thermoluminescent dosimetry were performed at an anthropomorphic whole-body phantom with iodine inserts for different tube voltages (U, 70–140 kV) and current-time products (Q, 60–300 mAs). For all U-Q combinations, the iodine contrast (C), the noise level (N) and, from these, the contrast-to-noise ratio (CNR) of reconstructed CT images were determined and parameterized as a function of U, Q or the measured absorbed dose (D). Finally, two characteristic curves were derived that give the relative increase of CNR at constant D and the relative decrease of D at constant CNR when lowering U.ResultsLowering U affects the measured CNR only slightly but markedly reduces D. For example, reducing U from 120 kV to 70 kV increases the CNR at constant D by a factor of nearly 1.8 or, alternatively, reduces D at constant CNR by a factor of nearly 5.ConclusionSpectral optimization by lowering U is an effective approach to attain the necessary CNR for a specific diagnostic task at hand while at the same time reducing radiation exposure as far as practically achievable. The characteristic curves derived in this study from extensive measurements at a reference ‘person’ can support CT users in an easy-to-use manner to select an appropriate voltage for various clinical scenarios.  相似文献   

11.
PurposeTo investigate within phantoms the minimum CT dose allowed for accurate attenuation correction of PET data and to quantify the effective dose reduction when a CT for this purpose is incorporated in the clinical setting.MethodsThe NEMA image quality phantom was scanned within a large parallelepiped container. Twenty-one different CT images were acquired to correct attenuation of PET raw data. Radiation dose and image quality were evaluated.Thirty-one patients with proven multiple myeloma who underwent a dual tracer PET/CT scan were retrospectively reviewed. 18F-fluorodeoxyglucose PET/CT included a diagnostic whole-body low dose CT (WBLDCT: 120 kV-80mAs) and 11C-Methionine PET/CT included a whole-body ultra-low dose CT (WBULDCT) for attenuation correction (100 kV-40mAs). Effective dose and image quality were analysed.ResultsOnly the two lowest radiation dose conditions (80 kV-20mAs and 80 kV-10mAs) produced artifacts in CT images that degraded corrected PET images. For all the other conditions (CTDIvol ≥ 0.43 mGy), PET contrast recovery coefficients varied less than ± 1.2%.Patients received a median dose of 6.4 mSv from diagnostic CT and 2.1 mSv from the attenuation correction CT. Despite the worse image quality of this CT, 94.8% of bone lesions were identifiable.ConclusionPhantom experiments showed that an ultra-low dose CT can be implemented in PET/CT procedures without any noticeable degradation in the attenuation corrected PET scan. The replacement of the standard CT for this ultra-low dose CT in clinical PET/CT scans involves a significant radiation dose reduction.  相似文献   

12.
The objective of the present study was to optimize a radiographic technique for hand examinations using a computed radiography (CR) system and demonstrate the potential for dose reductions compared with clinically established technique. An exposure index was generated from the optimized technique to guide operators when imaging hands. Homogeneous and anthropomorphic phantoms that simulated a patient's hand were imaged using a CR system at various tube voltages and current settings (40–55 kVp, 1.25–2.8 mAs), including those used in clinical routines (50 kVp, 2.0 mAs) to obtain an optimized chart. The homogeneous phantom was used to assess objective parameters that are associated with image quality, including the signal difference-to-noise ratio (SdNR), which is used to define a figure of merit (FOM) in the optimization process. The anthropomorphic phantom was used to subjectively evaluate image quality using Visual Grading Analysis (VGA) that was performed by three experienced radiologists. The technique that had the best VGA score and highest FOM was considered the gold standard (GS) in the present study. Image quality, dose and the exposure index that are currently used in the clinical routine for hand examinations in our institution were compared with the GS technique. The effective dose reduction was 67.0%. Good image quality was obtained for both techniques, although the exposure indices were 1.60 and 2.39 for the GS and clinical routine, respectively.  相似文献   

13.
PurposeDose to the rectum during brachytherapy treatment may differ from an approved treatment plan which can be quantified with in vivo dosimetry (IVD). This study compares the planned with in vivo doses measured with MOSkin and PTW 9112 rectal probe in patients undergoing CT based HDR cervical brachytherapy with Co-60 source.MethodsDose measurement of a standard pear-shaped plan carried out in phantom to verify the MOSkin dose measurement accuracy. With MOSkin attached to the third diode, RP3 of the PTW 9112, both detectors were inserted into patients’ rectum. The RP3 and MOSkin measured doses in 18 sessions as well as the maximum measured doses from PTW 9112, RPmax in 48 sessions were compared to the planned doses.ResultsPercentage dose differences ΔD (%) in phantom study for two MOSkin found to be 2.22 ± 0.07% and 2.5 ± 0.07%. IVD of 18 sessions resulted in ΔD(%) of −16.3% to 14.9% with MOSkin and ΔD(%) of −35.7% to −2.1% with RP3. In 48 sessions, RPmax recorded ΔD(%) of −37.1% to 11.0%. MOSkin_measured doses were higher in 44.4% (8/18) sessions, while RP3_measured were lower than planned doses in all sessions. RPmax_measured were lower in 87.5% of applications (42/47).ConclusionsThe delivered doses proven to deviate from planned doses due to unavoidable shift between imaging and treatment as measured with MOSkin and PTW 9112 detectors. The integration of MOSkin on commercial PTW 9112 surface found to be feasible for rectal dose IVD during cervical HDR ICBT.  相似文献   

14.
PurposeTo investigate how various generations of iterative reconstruction (IR) algorithms impact low-contrast detectability (LCD) in abdominal computed tomography (CT) for different patient effective diameters, using a quantitative task-based approach.MethodsInvestigations were performed using an anthropomorphic abdominal phantom with two optional additional rings to simulate varying patient effective diameters (25, 30, and 35 cm), and containing multiple spherical targets (5, 6, and 8 mm in diameter) with a 20-HU contrast difference. The phantom was scanned using routine abdominal protocols (CTDIvol, 5.9–16 mGy) on four CT systems from two manufacturers. Images were reconstructed using both filtered back-projection (FBP) and various IR algorithms: ASiR 50%, SAFIRE 3 (both statistical IRs), ASiR-V 50%, ADMIRE 3 (both partial model-based IRs), or Veo (full model-based IR). Section thickness/interval was 2/1 mm or 2.5/1.25 mm, except 0.625/0.625 mm for Veo. We assessed LCD using a channelized Hotelling observer with 10 dense differences of Gaussian channels, with the area under the receiver operating characteristic curve (AUC) as a figure of merit.ResultsFor the smallest phantom (25-cm diameter) and smallest lesion size (5-mm diameter), AUC for FBP and the various IR algorithms did not significantly differ for any of the tested CT systems. For the largest phantom (35-cm diameter), Veo yielded the highest AUC improvement (8.5%). Statistical and partial model-based IR algorithms did not significantly improve LCD.ConclusionIn abdominal CT, switching from FBP to IR algorithms offers limited possibilities for achieving significant dose reductions while ensuring a constant objective LCD.  相似文献   

15.
PurposeTo determine the suitable kVp pair for optimal image quality of the virtual monochromatic images (VMIs) and iodine quantification accuracy at low concentration, using a third generation dual-source CT (DSCT).Materials and methodsMulti-energy CT phantoms with and without body rings were scanned with a DSCT using four kVp pairs (tube “A”/“B” voltage): 100/Sn150, 90/Sn150, 80/Sn150 and 70/Sn150 kVp. The reference mAs was adjusted to obtain a CTDIvol close to 11 mGy. HU values accuracy (RMSDHU), noise (SD) and contrast-to-noise ratio (CNR) of iodine inserts of 0.5, 1, 2 and 5 mg/mL concentrations were assessed on VMIs at 40/50/60/70 keV. Iodine quantification accuracy was assessed using the RMSDiodine and iodine bias (IBiodine).ResultsThe RMSDHU decreased when the tube “A” voltage increased. The mean noise value increased significantly with tube “A” voltage (p < 0.001) but decreased between 80/Sn150 and 90/Sn150 kVp for the small phantom (1.1 ± 0.1%; p = 0.047). The CNR significantly decreased with tube “A” voltage (p < 0.001), except between 80/Sn150 and 90/Sn150 kVp for all inserts and between 90/Sn150 kVp and 100/Sn150 kVp for the 1.0 and 0.5 mg/mL inserts in the large phantom. In the small phantom, no significant difference was found between 80/Sn150 kVp and 90/Sn150 kVp for all inserts and between 80/Sn150, 90/Sn150 and 100/Sn150 kVp for the 1 and 0.5 mg/mL inserts. The RMSDiodine and IBiodine decreased as the tube “A” voltage of the kVp pair increased.ConclusionThe kVp pair of 70/Sn150 led to better image quality in VMIs and sufficient iodine accuracy.  相似文献   

16.
PurposeTo evaluate the use of pseudo-monoenergetic reconstructions (PMR) from dual-energy computed tomography, combined with the iterative metal artefact reduction (iMAR) method.MethodsPseudo-monoenergetic CT images were obtained using the dual-energy mode on the Siemens Somatom Definition AS scanner. A range of PMR combinations (70–130 keV) were used with and without iMAR. A Virtual Water™ phantom was used for quantitative assessment of error in the presence of high density materials: titanium, alloys 330 and 600. The absolute values of CT number differences (AD) and normalised standard deviations (NSD) were calculated for different phantom positions. Image quality was assessed using an anthropomorphic pelvic phantom with an embedded hip prosthesis. Image quality was scored blindly by five observers.ResultsAD and NSD values revealed differences in CT number errors between tested sets. AD and NSD were reduced in the vicinity of metal for images with iMAR (p < 0.001 for AD/NSD). For ROIs away from metal, with and without iMAR, 70 keV PMR and pCT AD values were lower than for the other reconstructions (p = 0.039). Similarly, iMAR NSD values measured away from metal were lower for 130 keV and 70 keV PMR (p = 0.002). Image quality scores were higher for 70 keV and 130 keV PMR with iMAR (p = 0.034).ConclusionThe use of 70 keV PMR with iMAR allows for significant metal artefact reduction and low CT number errors observed in the vicinity of dense materials. It is therefore an attractive alternative to high keV imaging when imaging patients with metallic implants, especially in the context of radiotherapy planning.  相似文献   

17.
AimDeveloping and assessing the feasibility of using a three-dimensional (3D) printed patient-specific anthropomorphic pelvis phantom for dose calculation and verification for stereotactic ablative radiation therapy (SABR) with dose escalation to the dominant intraprostatic lesions.Material and methodsA 3D-printed pelvis phantom, including bone-mimicking material, was fabricated based on the computed tomography (CT) images of a prostate cancer patient. To compare the extent to which patient and phantom body and bones overlapped, the similarity Dice coefficient was calculated. Modular cylindrical inserts were created to encapsulate radiochromic films and ionization chamber for absolute dosimetry measurements at the location of prostate and at the boost region. Gamma analysis evaluation with 2%/2mm criteria was performed to compare treatment planning system calculations and measured dose when delivering a 10 flattening filter free (FFF) SABR plan and a 10FFF boost SABR plan.ResultsDice coefficients of 0.98 and 0.91 were measured for body and bones, respectively, demonstrating agreement between patient and phantom outlines. For the boost plans the gamma analysis yielded 97.0% of pixels passing 2%/2mm criteria and these results were supported by the chamber average dose difference of 0.47 ± 0.03%. These results were further improved when overriding the bone relative electron density: 97.3% for the 2%/2mm gamma analysis, and 0.05 ± 0.03% for the ionization chamber average dose difference.ConclusionsThe modular patient-specific 3D-printed pelvis phantom has proven to be a highly attractive and versatile tool to validate prostate SABR boost plans using multiple detectors.  相似文献   

18.
PurposeTo determine the variation between Catphan image quality CT phantoms, specifically for use in a future multi-centre image quality audit.Method14 Catphan phantoms (models 503, 504 and 604) were scanned on a Canon Aquilion Prime CT scanner using a single scan protocol. Measurements were made of noise in the uniformity section, visibility of low contrast targets and contrast, x-ray attenuation and CT number for 5 materials in the sensitometry section. Scans were also acquired using one phantom and varying reconstruction field of view, image slice thickness, effective tube-current-time product and iterative reconstruction settings to determine how the degree of inter-phantom variability compared with the magnitude of changes from scan parameter alteration.ResultsAcross all phantoms the mean CT value in the uniformity section was 7.0 (SD 0.9) range: 4.9–8.1 HU. For the different materials the CT numbers were air: −1004 ± 5, Polymethylpentene: −190 ± 2, Polystyrene: −42 ± 2, Delrin: 321 ± 5 and Teflon: 898 ± 8 HU. Consistency of low contrast targets through visual scoring was good. Measured contrast was lower (p < 0.001) with more variability for 504 versus 604 models. All phantoms produced identical tube current settings with x-ray tube current modulation, indicating no x-ray attenuation differences. The degree of change in image quality metrics between phantoms was small compared with results when scan parameters were varied.ConclusionCatphan phantoms model 604 showed minimal differences and will be used for multi-centre inter-comparison work, with the consistency between phantoms appropriate for measuring possible variations in image quality.  相似文献   

19.

Objectives

The aim of this phantom study was to minimize the radiation dose by finding the best combination of low tube current and low voltage that would result in accurate volume measurements when compared to standard CT imaging without significantly decreasing the sensitivity of detecting lung nodules both with and without the assistance of CAD.

Methods

An anthropomorphic chest phantom containing artificial solid and ground glass nodules (GGNs, 5–12 mm) was examined with a 64-row multi-detector CT scanner with three tube currents of 100, 50 and 25 mAs in combination with three tube voltages of 120, 100 and 80 kVp. This resulted in eight different protocols that were then compared to standard CT sensitivity (100 mAs/120 kVp). For each protocol, at least 127 different nodules were scanned in 21–25 phantoms. The nodules were analyzed in two separate sessions by three independent, blinded radiologists and computer-aided detection (CAD) software.

Results

The mean sensitivity of the radiologists for identifying solid lung nodules on a standard CT was 89.7%±4.9%. The sensitivity was not significantly impaired when the tube and current voltage were lowered at the same time, except at the lowest exposure level of 25 mAs/80 kVp [80.6%±4.3% (p = 0.031)]. Compared to the standard CT, the sensitivity for detecting GGNs was significantly lower at all dose levels when the voltage was 80 kVp; this result was independent of the tube current. The CAD significantly increased the radiologists’ sensitivity for detecting solid nodules at all dose levels (5–11%). No significant volume measurement errors (VMEs) were documented for the radiologists or the CAD software at any dose level.

Conclusions

Our results suggest a CT protocol with 25 mAs and 100 kVp is optimal for detecting solid and ground glass nodules in lung cancer screening. The use of CAD software is highly recommended at all dose levels.  相似文献   

20.
PurposeTo assess the quality of images obtained on a dual energy computed tomography (CT) scanner.MethodsImage quality was assessed on a 64 detector-row fast kVp-switching dual energy CT scanner (Revolution GSI, GE Medical Systems). The Catphan phantom and a low contrast resolution phantom were employed. Acquisitions were performed at eight different radiation dose levels that ranged from 9 mGy to 32 mGy. Virtual monochromatic spectral images (VMI) were reconstructed in the 40–140 keV range using all available kernels and iterative reconstruction (IR) at four different blending levels. Modulation Transfer Function (MTF) curves, image noise, image contrast, noise power spectrum and contrast to noise ratio were assessed.ResultsIn-plane spatial resolution at the 10% of the MTF curve was 0.60 mm−1. In-plane spatial resolution was not modified with VMI energy and IR blending level. Image noise was reduced from 16.6 at 9 mGy to 6.7 at 32 mGy, while peak frequency remained within 0.14 ± 0.01 mm−1. Image noise was reduced from 14.3 at IR 10% to 11.5 at IR 50% at a constant peak frequency. The lowest image noise and maximum peak frequency were recorded at 70 keV.ConclusionsOur results have shown how objective image quality is varied when different levels of radiation dose and different settings in IR are applied. These results provide CT operators an in depth understanding of the imaging performance characteristics in dual energy CT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号