首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The objective of this study was to assess effects of feed intake and NDF content of highly digestible grass-clover silage on chewing behavior, fecal particle size distribution and apparent digestibility in restrictively fed heifers. Four grass-clover silages (Lolium perenne, Trifolium pratense and Trifolium repens) were harvested in 2009 at different regrowth stages, resulting in silages with NDF contents of 312, 360, 371 and 446 g/kg dry matter (DM), respectively. Four rumen-fistulated Jersey heifers (343±32 kg BW) were fed silage at 90% of ad libitum levels in a 4×4 Latin square design, replicated with further restricted feeding levels (50%, 60%, 70% or 80% of ad libitum) in a balanced 4×4×4 Greco-Latin square design. Eating activity was estimated from test meal observations, while rumination activity was estimated from jaw movements logged by a jaw recorder system. Total tract digestibility was estimated from chromic oxide marker and fecal spot sampling, and fecal particle size distribution in washed and freeze-dried particulate DM was determined by dry sieving (2.36, 1.0, 0.5, 0.212 and 0.106 mm, and bottom bowl). Higher NDF content of silage stimulated longer eating time per kg DM intake (P<0.001), while reduced feeding level caused a reduction in eating time per kg DM intake (P<0.001) and NDF (P<0.001). Rumination time per kg DM intake (P<0.01) increased with reduced feeding level, with less effect of feeding level at lower NDF contents (P<0.01) and more rumination with greater NDF content (P<0.01). Relative to NDF intake, rumination time increased with greater NDF content (P<0.01), at a higher rate with reduced feeding level (P<0.05). Digestibility of potentially digestible NDF (DNDF) decreased with greater NDF content (P<0.001) and increased with reduced feeding level (P<0.05). Increasing NDF content resulted in more particulate DM in feces (g/kg DM; P<0.05) and larger mean particle size (P<0.001). In conclusion, feeding heifers with grass-clover silages of decreasing NDF content increased chewing time relative to NDF intake, reduced mean fecal particle size, and increased DNDF digestibility. Restricting feeding level made heifers eat for a shorter time period while rumination and total chewing was increased, causing the ratio between eating and rumination time to decrease with lower intake of forage fiber. Particle size reduction and digestibility depended mostly on changes in NDF content, especially the indigestible NDF content.  相似文献   

2.
The objective of this study was to evaluate in lactating cows the effect of either chopping or ensiling of wheat roughage on: intake, digestibility, lactation performance and animal behavior. Three groups of 14 lactating cows each, were fed total mixed rations (TMRs) based on either long wheat hay (HL), short wheat hay (HS) or wheat silage (SI), as the sole roughage source (30% of TMR dry matter (DM)). Parameters examined: sorting behavior, DM intake, milk yield and composition, rumination, recumbence, average daily rumen pH, digesta passage rate, and in-vivo digestibility. Performance data was summarized by day and analyzed using a proc-mixed model. The content of physically effective neutral detergent fiber (peNDF) was similar in the HL and SI and lower in the HS, resulting in similar differences among the three corresponding TMRs. In vitro DM digestibility of wheat silage was higher than that of the two hays (65.6% v. 62.8%) resulting in higher in vitro DM digestibility of the SI-TMR compared with the hay-based TMRs (79.3 v. 77.0%). HS-TMR was better than HL- or SI-TMRs at preventing feed sorting by cows after 12 or 24 h eating of the diets. Cows fed HS-TMR consumed more DM and NDF but less peNDF than the other two groups. Average daily rumen pH was similar in the three groups, but daily rumination time was highest in the cows fed HS-TMR. Rumen retention time was longest in cows fed HL-TMR. DM digestibility in cows fed SI-TMR was higher than that of HS and HL groups (65.2%, 61.8% and 62.4%, respectively), but NDF digestibility was similar in the three treatments. The highest intake of digestible DM was observed in cows fed SI-TMR, HS cows were intermediate and HL cows were the lowest. Consequently, cows fed SI-TMR had higher yields of milk, 4% fat corrected milk and energy-corrected milk (47.1, 42.9 and 43.2 kg/day, respectively) than cows fed HS-TMR (45.7, 41.0 and 41.0 kg/day, respectively) or HL-TMR (44.1, 40.3 and 40.3 kg/day, respectively). Net energy production (NEL+M+gain) per kg DM intake was highest in the SI-TMR, lowest in the HS-TMR and intermediate in the HL-TMR (1.52, 1.40 and 1.45, respectively). Animal welfare, as expressed in daily recumbence time and BW gain was similar in the SI and HS groups and higher than the HL cows.  相似文献   

3.
Twenty-four lactating Holstein dairy cows (12 first lactation and 12 multiparous; day in milk = 11 ± 5 days) were allotted to a randomised complete block design in a 2 × 3 factorial with four replicates per treatment to evaluate the effects of two methods of alfalfa feeding (dry and reconstituted to achieve a theoretical dry matter (DM) content of 350 g/kg) and three geometric mean (GM) particle sizes of alfalfa (9.13, 4.51 and 1.20 mm) on performance of dairy cows for a period of 28 days. Diets were offered for ad libitum intake as total mixed rations (TMR). The GM particle size, its standard deviation, and the values of physical effectiveness factor of alfalfa and TMR decreased as alfalfa particle size decreased. Reduction of particle size and reconstitution of alfalfa increased the bulk density and the functional specific gravity of alfalfa and rations. Reduction of particle size decreased insoluble dry matter, water-holding capacity, and hydration rate of alfalfa. As particle size decreased, the amount of physically effective NDF in the ration (g/kg) decreased but the daily intake of physically effective NDF (kg/day) increased. Reduction of particle size and reconstitution increased dry matter intake (DMI) and ruminal passage rate, but reduced NDF and ash digestibilities, ruminal pH, N-NH3, milk fat, total chewing activity, rumination and eating time, total and ruminal mean retention time, and time delay of marker. Increased functional specific gravity, from reduced forage particle size and the reconstitution of alfalfa, was the most important factor influencing DMI, milk composition, and chewing activity.  相似文献   

4.
The study examined the effects of harvest time of red and white clover silage on eating and ruminating activity and particle size distribution in feed boli, rumen content and faeces in cows. The clover crops were harvested at two stages of growth and ensiled in bales. Red clover crops had 36% and 45% NDF in dry matter (DM) at early (ER) and late (LR) harvest, respectively, and the white clover crops had 19% and 29% NDF in DM at the early (EW) and late (LW) harvest, respectively. The silages were fed restrictively (80% of ad libitum intake) twice daily to four rumen cannulated non-lactating Jersey cows (588 ± 52 kg) in a 4 × 4 Latin square design. Jaw movements (JM) were recorded for 96 h continuously. Swallowed boli, rumen mat, rumen fluid and faeces samples were collected, washed in nylon bags (0.01 mm pore size) and freeze-dried before dry sieving through 4.750, 2.360, 1.000, 0.500, 0.212 and 0.106 mm into seven fractions. The length (PL) and width (PW) values of rumen and faeces particles within each fraction were measured by use of image analysis. The eating activity (min/kg DM intake; P < 0.05) was higher in LR compared with the other treatments. The eating activity (min/kg NDF intake; P < 0.05) was affected by clover type with highest values for white clover silage. The mean ruminating time (min/kg DM), daily ruminating cycles (P < 0.001) and JM during ruminating (P < 0.05) were affected by treatment with increasing values at later harvest time. The proportion of washed particle DM of total DM in boli (P < 0.001), rumen mat (P < 0.001), rumen fluid (P < 0.01) and faeces was (P < 0.001) highest by feeding LR. There were identified two peaks (modes 1 and 2) on the probability density distribution (PDF) of PW values of rumen mat and faeces, but only one peak (mode 1) for PL values. There was no difference in the mean and mode 1 PW and PL value in rumen mat between the four treatments. The mean PL, mode PL, mode 2 PW and mean PW in faeces were highest for LR (P < 0.05). The mean particle size in boli measured by sieving was higher at white clover compared with red clover treatments (P < 0.001) and the highest value in faeces was found in LR (P < 0.01). The two peaks on PDF for width values of rumen mat and faeces particles are most likely related to the leaves and the stems/petioles. In conclusion, the mean total chewing activity per kg DM was lowest for the white clover silage and increased for both silages due to later harvest time. The mean particle size in boli was smallest for LR, whereas the mean PL and PW in faeces were highest for the LR.  相似文献   

5.
The particle size of the forage has been proposed as a key factor to ensure a healthy rumen function and maintain dairy cow performance, but little work has been conducted on ryegrass silage (GS). To determine the effect of chop length of GS and GS:maize silage (MS) ratio on the performance, reticular pH, metabolism and eating behaviour of dairy cows, 16 multiparous Holstein-Friesian cows were used in a 4×4 Latin square design with four periods each of 28-days duration. Ryegrass was harvested and ensiled at two mean chop lengths (short and long) and included at two ratios of GS:MS (100:0 or 40:60 dry matter (DM) basis). The forages were fed in mixed rations to produce four isonitrogenous and isoenergetic diets: long chop GS, short chop GS, long chop GS and MS and short chop GS and MS. The DM intake (DMI) was 3.2 kg/day higher (P<0.001) when cows were fed the MS than the GS-based diets. The short chop length GS also resulted in a 0.9 kg/day DM higher (P<0.05) DMI compared with the long chop length. When fed the GS:MS-based diets, cows produced 2.4 kg/day more (P<0.001) milk than when fed diets containing GS only. There was an interaction (P<0.05) between chop length and forage ratio for milk yield, with a short chop length GS increasing yield in cows fed GS but not MS-based diets. An interaction for DM and organic matter digestibility was also observed (P<0.05), where a short chop length GS increased digestibility in cows when fed the GS-based diets but had little effect when fed the MS-based diet. When fed the MS-based diets, cows spent longer at reticular pH levels below pH 6.2 and pH 6.5 (P<0.01), but chop length had little effect. Cows when fed the MS-based diets had a higher (P<0.05) milk fat concentration of C18 : 2n-6 and total polyunsaturated fatty acids compared with when fed the GS only diets. In conclusion, GS chop length had little effect on reticular pH, but a longer chop length reduced DMI and milk yield but had little effect on milk fat yield. Including MS reduced reticular pH, but increased DMI and milk performance irrespective of the GS chop length.  相似文献   

6.
The effect of the forage source on ruminal fermentation in vitro was investigated for fine (F) and coarse (C) milled diets, using a modified Hohenheim gas production test and a semi-continuous rumen simulation technique (Rusitec). It was hypothesised that the replacement of maize silage by grass silage might lead to associative effects and that interactions related to particle size variation could occur. Five diets with a maize silage to grass silage ratio of 100 : 0, 79 : 21, 52 : 48, 24 : 76 and 0 : 100 differed in their content of CP and carbohydrate fractions, as well as digestible crude nutrients, derived from a digestibility trial with wether sheep. For in vitro investigations, the diets were ground to pass a sieve of either 1 mm (F) or 4 mm (C) perforation. Cumulative gas production was recorded during 93 h of incubation and its capacity decreased with increasing proportion of grass silage in the diet. Across all diets, gas production was delayed in C treatments compared with F treatments. Degradation of crude nutrients and detergent fibre fractions was determined in a Rusitec system. Daily amounts of NH3-N and short-chain fatty acids (SCFA) were measured in the effluent. Degradation of organic matter (OM) and fibre fractions, as well as amounts of NH3-N, increased with stepwise replacement of maize silage by grass silage. Degradability of CP was unaffected by diet composition, as well as total SCFA production. In contrast to the results of the gas production test, degradation of OM and CP was higher in C than in F treatments, accompanied by higher amounts of NH3-N and SCFA. Interactions of silage ratio and particle size were rare. It was concluded that the stepwise replacement of maize silage by grass silage might lead to a linear response of most fermentation characteristics in vitro. This linear effect was also supported by total tract digestibility data. However, further investigations with silages of variable quality seem to be necessary.  相似文献   

7.
This study investigated the effect of forage type (grass or red clover) and harvesting time (primary growth or regrowth) of silage on energy and N utilisation by sheep fed at maintenance level. Specifically, the assumption of constant loss of energy of digestible organic matter from energy losses in urine and CH4 applied in evaluation of silage metabolisable energy (ME) was investigated. Urinary excretion of high-energy phenolic compounds related to solubilisation of lignin was assumed to affect urinary energy (UE) losses from sheep fed highly digestible grass silage (GS). A total of 25 primary growth and regrowth silages of timothy (Phleum pratense) and meadow fescue (Festuca pratensis) grass mixtures and red clover (Trifolium pratense) samples collected in digestibility trials with sheep, including faecal and urine samples, were used for energy and N determinations. Urinary concentration of monophenolic compounds and CH4 emissions in vitro were also analysed. Daily faecal N output, CH4 yield (MJ/kg DM intake), proportion of CH4 energy in digestible energy (DE) and proportion of UE in DE were greater (P ≤ 0.03) in sheep fed red clover silage (RCS) than GS. Furthermore, less (P = 0.01) energy was lost as UE of DE in sheep fed primary growth GS compared with the other treatments. The relationship between UE and silage N intake or urinary N output for both silage types (i.e. grass v. red clover) was strong, but the fit of the regressions was better for GS than RCS. The CH4/DE ratio decreased (P < 0.05) and the UE/DE ratio increased (P < 0.05) with increasing organic matter digestibility in RCS. These relationships were not significant (P < 0.05) for the GS diets. The regression coefficient was higher (P < 0.05) for GS than RCS when regressing ME concentration on digestible organic matter. The results of this study imply that ME/DE ratio is not constant across first-cut GS of different maturities. The ME production response may be smaller from highly digestible first-cut GS but could not be clearly related to urinary excretion of monophenols derived from solubilisation of lignin. Furthermore, energy lost in urine was not clearly defined for RCS and was much more predictable for GS from silage N concentration.  相似文献   

8.
Aims: To investigate the effect of the forage source and feed particle size (FPS) in ruminant rations on the composition of the ruminal Firmicutes community in vitro. Methods and Results: Three diets, varying in maize silage to grass silage ratio and FPS, were incubated in a rumen simulation system. Microbial samples were taken from the liquid fermenter effluents. Microbial community analysis was performed by 16S rRNA‐based techniques. Clostridia‐specific single‐strand conformation polymorphism profiles revealed changes of the community structure in dependence on both factors tested. The coarse grass silage–containing diets seemed to enhance the occurrence of different Roseburia species. As detected by real‐time quantitative PCR, Ruminococcus albus showed a higher abundance with decreasing FPS. A slightly lower proportion of Bacilli was found with increasing grass silage to maize silage ratio by fluorescence in situ hybridization (FISH). In contrast, a slightly higher proportion of bacterial species belonging to the Clostridium‐clusters XIV a and b was detected by FISH with increasing grass silage contents in the diet. Conclusions: The ruminal Firmicutes community is affected by the choice of the forage source and FPS. Significance and Impact of the Study: This study supplies fundamental knowledge about the response of ruminal microbial communities to changing diets. Moreover, the data suggest a standardization of grinding of feeds for in vitro studies to facilitate the comparison of results of different laboratories.  相似文献   

9.
The objective was to investigate the effect of variation in forage source and feed particle size of a diet, including interactions, on the amount and the composition of microbial crude protein (CP) in a semi-continuous culture system (Rusitec). Different microbial CP fractions were compared. Five diets with mean forage proportion of 0.88 and different maize silage to grass silage ratios (100 : 0, 79 : 21, 52 : 48, 24 : 76 and 0 : 100) were used. Diets were ground through sieves with a pore size of either 1 or 4 mm, matching the particle size of fine (F) and coarse (C), respectively. Diets were characterised by increasing concentrations of CP and fibre fractions, and decreasing concentrations of starch with ascending inclusion rates of grass silage. Microbial mass was isolated from feed residues after incubation from the liquid phase of the fermenter and from the liquid effluent. The amount of synthesised microbial CP was determined on the basis of 15N balance. It increased quite linearly by the stepwise replacement of maize silage by grass silage, and was higher in C treatments compared to F treatments. Efficiency of microbial CP synthesis (EMPS) was improved from 29 to 43 mg microbial N/g degraded organic matter (OM) by increasing the proportion of grass silage in the diet, but was unaffected by particle size. The N content as well as the profiles of amino acids of the three microbial fractions was affected by diet composition and particle size. The ratio of solid- to liquid-associated microbes was affected by diet composition and feed particle size. The amount and EMPS seemed to be improved by degradation of OM from grass silage and an increasing availability of N. Moreover, the results of this study indicated a shift in the composition of the microbial community caused by variation in forage composition and feed particle size.  相似文献   

10.
The study evaluated the effects of three different theoretical particle lengths (TPL) of grass silage on the distribution of particle fractions of the diet and the resulting effects on fermentation profile and concentrations of protozoa and mixed bacterial mass in the rumen of three lactating Holstein cows fed total mixed rations (45% grass silage, 5% grass hay and 50% concentrate) ad libitum. Decreasing TPL of grass silage (long, medium, short) reduced particles retained on the 19-mm sieve of the Penn State Particle Separator, while particle fractions from 8 mm to 19 mm and smaller than 8 mm were increased. Different TPL did not affect pH and the concentration of volatile fatty acids in the rumen. However, lowering the TPL from long to medium increased significantly the bicarbonate concentration, acetate proportion and protozoal number in the rumen, whereas the proportion of bacterial protein in ruminal digesta and its amino acid concentration were significantly increased by the short TPL. For the current feeding conditions, it can be concluded that increasing the fraction of particles between 8 and 19 mm and probably even the fraction below 8 mm by decreasing TPL of grass silage do not adversely affect rumen conditions and can be beneficial in terms of optimising concentration and activity of ruminal microbiota in high-yielding dairy cows.  相似文献   

11.
The effects of (i) medium and high feed value (MFV and HFV) maize silages and (ii) MFV and HFV grass silages, each in combination with a range of concentrate feed levels, on the performance of finishing lambs were evaluated using 280 Suffolk-X lambs (initial live weight 36.1 kg). The MFV and HFV maize silages represented crops with dry matter (DM) concentrations of 185 and 250 g/kg, respectively, at harvest, and had starch and metabolisable energy (ME) concentrations of 33 and 277 g/kg DM and 9.6 and 11.0 MJ/kg, respectively. HFV and MFV grass silages had DM and ME concentrations of 216 and 294 g/kg and 11.0 and 11.5 MJ/kg DM, respectively. A total of 13 treatments were involved. The four silages were offered ad libitum with daily concentrate supplements of 0.2, 0.5 or 0.8 kg per lamb. A final treatment consisted of concentrate offered ad libitum with 0.5 kg of the HFV grass silage daily. Increasing the feed value of grass silage increased (P < 0.001) forage intake, daily carcass and live weight gains, final live weight and carcass weight. Increasing maize silage feed value tended to increase (P = 0.07) daily carcass gain. Increasing concentrate feed level increased total food and ME intakes, and live weight and carcass gains. There was a significant interaction between silage feed value and the response to concentrate feed level. Relative to the HFV grass silage, the positive linear response to increasing concentrate feed level was greater with lambs offered the MFV grass silage for daily live weight gain (P < 0.001), daily carcass gain (P < 0.01) and final carcass weight (P < 0.01). Relative to the HFV maize silage, there was a greater response to increasing concentrate feed level from lambs offered the MFV maize silage in terms of daily carcass gain (P < 0.05) and daily live weight gain (P = 0.06). Forage type had no significant effect on the response to increased concentrate feed level. Relative to the MFV grass silage supplemented with 0.2 kg concentrate, the potential concentrate-sparing effect of the HFV grass silage, and the MFV and HFV maize silages was 0.41, 0.09 and 0.25 kg daily per lamb, respectively. It is concluded that increasing forage feed value increased forage intake and animal performance, and maize silage can replace MFV grass silage in the diet of finishing lambs as performance was equal to or better (depending on maturity of maize at harvest) than that for MFV grass silage.  相似文献   

12.
The aim of this experiment was to, under typical Swedish production conditions, evaluate the effects of grass silages subjected to different N-fertilisation regimes fed to dairy cows on the fatty acid (FA) composition of their milk, and to compare the grass silages in this respect to red clover-dominated silage. Grass silages made from first year Phleum pratense L. leys subjected to three N-fertilisation regimes (30, 90 and 120 kg N/ha, designated G-30, G-90 and G-120, respectively) and a mixed red clover–grass silage (Trifolium pratense L. and P. pratense L.; 60/40 on dry matter (DM) basis, designated RC–G) were produced. The experiment was conducted as a change-over design, including 24 primiparous and multiparous dairy cows of the Swedish Red breed, each of which was allocated to three of the four diets. The cows were offered 11 kg DM of silage and 7 kg concentrates. The silages had similar DM and energy concentrations. The CP concentration increased with increase in N-fertilisation level. There was a linear increase in DM intake of the different silages with increased N fertilisation. There were also differences in concentrations of both individual and total FAs amongst silages. The daily milk production (kg/day) did not significantly differ between treatments, but G-30 silage resulted in higher concentrations of 18:2n-6 in the milk compared with the other two grass silages. The highest concentrations of 18:3n-3 and cis-9, trans-11 18:2 were found in milk from cows offered the RC–G silage. The G-30 diet resulted in higher concentration of 18:2n-6 and the same concentration of 18:3n-3 in the milk as the other grass silages, despite lower intake levels of these FAs. The apparent recoveries of 18:3n-3 from feed to milk were 5.74%, 4.27%, 4.10% and 5.31% for G-30, G-90, G-120 and RC–G, respectively. A higher recovery when red clover is included in the diet confirms previous reports. The higher apparent recovery of 18:3n-3 on the G-30 treatment may be related to the lower silage DM intake, which led to a higher relative proportion of ingested FAs originating from concentrates compared with the G-90 and G-120 diets. With the rates and types of concentrates used in this study, the achieved differences in FA composition among the silages were not enough to influence the concentrations of unsaturated FAs in milk.  相似文献   

13.
Adding corn silage (CS) instead of alfalfa hay (AH) to the finely ground starter diet would improve calf performance if feed intake or feed efficiency is increased. We investigated the effects of replacing AH with CS in the starter diet on nutrient intake, digestibility, growth performance, rumen fermentation and selected blood metabolites in Holstein calves. Newborn male calves (n = 30; 3 days of age; 40.2 ± 1.28 kg BW) were assigned randomly to three groups receiving starter diets containing chopped AH (10% dry matter (DM) basis; AH diet), CS (10% DM, CS diet) or their combination (each at 5% level; AHCS diet). The starter diets had the same nutrient composition but differed in DM content (91.2%, 87.5% and 83.8% for AH, AHCS and CS, respectively). The calves were weaned on day 50, and the study continued until day 70. Nutrient intake, BW (at weaning and at the end of the study) and body measurements were not affected by the diet. During the post-weaning period, average daily gain tended to be greater on CS than on AH diet. Feed efficiency was greater in CS than in AH or AHCS calves during the post-weaning period. Digestibility of neutral detergent fiber was greater in AHCS and CS compared with AH during the post-weaning period. Concentration and profile of volatile fatty acids and ruminal fluid pH were not affected by the diet. Replacing AH with CS in the starter diet had no effect on feed intake, growth performance and general health of the calves. These results indicate that AH and CS can be used interchangeably in dairy calf starter diets until 70 days of age, allowing dairy producers more choices in selecting the feed ingredients.  相似文献   

14.
The effects of rapeseed and soya bean expeller (SBE) supplementation on digestion and milk production responses in dairy cows were investigated in an incomplete Latin square design using five cows and four 3-week periods. The experimental diets consisted of five concentrate treatments fed at a rate of 9 kg/day: a mixture of barley and oats, which was replaced with rapeseed or SBE at two levels (CP concentration (g/kg dry matter (DM)) of 130 for the control concentrate and 180 and 230 for the two protein supplemented levels). A mixture of grass and red clover silage (1:1) was fed ad libitum and it had a CP concentration of 157 g/kg DM. Supply of nutrients to the lower tract was measured using the omasal canal sampling technique, and total digestion from total faecal collection. Protein supplementation increased omasal canal amino acid (AA) flows and plasma concentrations of AA, and was also reflected as increased milk production. However, N use efficiency (NUE) decreased with increased protein supplementation. Rapeseed expeller (RSE) tended to increase silage DM intake and elicited higher milk production responses compared with SBE and also resulted in a higher NUE. The differences between the protein supplements in nitrogen metabolism were relatively small, for example, there were no differences in the efficiency of microbial protein synthesis or omasal canal flows of nitrogenous components between them, but plasma methionine concentration was lower for soya bean-fed cows at the high CP level in particular. The lower milk protein production responses to SBE than to RSE supplementation were at least partly caused by increased silage DM and by the lower methionine supply, which may further have been amplified by the use of red clover in the basal diet. Although feed intake, diet digestion, AA supply and milk production were all consistently improved by protein supplementation, there was a simultaneous decrease in NUE. In the current study, the milk protein production increased only 9% and energy-corrected milk production by 7% when high level of protein supplementation (on average 2.9 kg DM/day) was compared with the control diet without protein supplementation showing that dairy production could be sustained at a high level even without external protein supplements, at least in the short term. The economic and environmental aspects need to be carefully evaluated when decisions about protein supplementation for dairy cows are taken.  相似文献   

15.
A dual-flow continuous culture fermenter system was used to investigate ruminal fermentation in response to increased by-product gypsum application rate of three forages. The treatments included 0, 22, 45, and 90 tonnes/ha by-product gypsum applied to grass plots and 0, 22, and 45 tonnes/ha by-product gypsum applied to corn plots. Forage was harvested to represent grass pasture (GP), grass hay (GH), and corn silage (CS), dried, ground, and fed to fermenters at a rate of 60 g dry matter (DM)/day. Organic matter (OM) and neutral detergent fiber (aNDF) digestibilities, rumen pH, total volatile fatty acid (VFA) production, and N metabolism were not affected by gypsum application rate for all forage types. The GH had greater sulfur content than recommended as the maximum tolerable level by the National Research Council (NRC). The results of this study indicate that ruminal fermentation was not compromised when by-product gypsum was applied to GP, GH, or CS at rates up to 90 tonnes/ha. By-product gypsum application to pastures and crops shows promise as an economical soil amendment to reduce dissolved phosphorus loss in runoff, although potential animal health issues should be further evaluated.  相似文献   

16.
This study investigated the effects of, and interactions between, dietary grain source and marginal changes in alfalfa hay (AH) particle size (PS) on digestive processes of dairy cows. A total of eight Holstein dairy cows (175 days in milk) were allocated in a replicated 4 × 4 Latin square design with four 21-day periods. The experiment was a 2 × 2 factorial arrangement with two levels of theoretical PS of AH (fine = 15 mm or long = 30 mm) each combined with two different sources of cereal grains (barley grain alone or barley plus corn grain in a 50 : 50 ratio). Results showed that cows consuming diets supplemented with corn had greater dry matter and nutrient intakes (P < 0.01), independent of forage PS. In addition, the apparent digestibility of fiber fractions was greater for diets supplemented with corn (P = 0.01). The feeding of barley grain-based diets was associated with greater apparent digestibility of non-fiber carbohydrates, and this variable was even greater when long AH was fed (P = 0.04). Moreover, the feeding of long AH resulted in longer time spent eating (P = 0.03) and higher pH (P < 0.01), as well as a tendency for higher acetate-to-propionate ratio in the rumen fluid (P = 0.06) at 3 h post feeding. In conclusion, the results indicated that the marginal increase of PS of AH may prolong eating time and improve rumen fermentation, particularly in diets based on barley grain. Partial substitution of barley grain by corn can improve feed intake and fiber digestibility in mid-lactation dairy cows.  相似文献   

17.
Grain-rich diets often lead to subacute ruminal acidosis (SARA) impairing rumen and systemic cattle health. Recent data suggest beneficial effects of a clay mineral (CM)- based product on the rumen microbiome of cattle during SARA. This study sought to investigate whether the CM supplementation can counteract SARA-induced perturbations of the bovine systemic health. The study used an intermittent diet-induced SARA-model with eight dry Holstein cows receiving either no additive as control or CM via concentrates (n=8 per treatment). Cows received first a forage diet (Baseline) for 1 week, followed by a 1-week SARA-challenge (SARA 1), a 1-week recovery phase (Recovery) and finally a second SARA-challenge for 2 weeks (SARA 2). Cows were monitored for feed intake, reticular pH and chewing behavior. Blood samples were taken and analyzed for metabolites related to glucose and lipid metabolism as well as liver health biomarkers. In addition, a targeted electrospray ionization-liquid chromatography-MS-based metabolomics approach was carried out on the plasma samples obtained at the end of the Baseline and SARA 1 phase. Data showed that supplementing the cows’ diet with CM improved ruminating chews per regurgitated bolus by 16% in SARA 1 (P=0.01) and enhanced the dry matter intake during the Recovery phase (P=0.05). Moreover, the SARA-induced decreases in several amino acids and phosphatidylcholines were less pronounced in cows receiving CM (P≤0.10). The CM-supplemented cows also had lower concentrations of lactate (P=0.03) and biogenic amines such as histamine and spermine (P<0.01) in the blood. In contrast, the concentration of acylcarnitines with key metabolic functions was increased in the blood of treated cows (P≤0.05). In SARA 2, the CM-cows had lower concentrations of the liver enzymes aspartate aminotransferase and γ-glutamyltransferase (P<0.05). In conclusion, the data suggest that supplementation of CM holds the potential to alleviate the negative effects of high-grain feeding in cattle by counteracting multiple SARA-induced perturbations in the systemic metabolism and liver health.  相似文献   

18.
The fate of marked sections of stolons of white clover (Trifolium repens) over a 50-week period from May 1987 was followed in grazed grass/clover swards maintained at 5-cm sward surface height with and without N fertiliser. There was little effect of N treatment on the pattern of survival of stolon sections. The proportion of live stolons recovered decreased during the experiment, and in May 1988 on average only 29% of the marked sections remained alive. At all harvests only a small percentage of stolon sections showed signs of senescence; the maximum percentage, on average 20% of those marked, occurred in autumn, 15–20 weeks after marking. Following this period, i.e. in late autumn/winter, the most rapid increase in percentage of decomposed stolons was measured. Over 50% of stolon sections were buried within the 5-week period following marking and nearly all were buried after 20 weeks; generally a much smaller proportion of stolon tips was buried. Nutrient concentrations of N, P and K fell to their lowest levels in autumn, before increasing in the following spring. Results are discussed in relation to the cycling of nutrients via stolon senescence.  相似文献   

19.
This study examined the effects on intake, diurnal rumen pH changes, rumination and digestibility of feeding ruminally cannulated non-lactating cows in a Latin square design (four cows×four periods) with four total mixed rations (TMRs) typical for lactating cows. TMRs were based on: long wheat hay or short wheat hay, wheat silage or wheat silage+1.5% NaHCO3 buffer, as the sole roughage source (30% of TMR dry matter (DM)). The level of physically effective NDF remaining above the 8 mm screen (peNDF) was similar in the long hay and silage-based TMRs (9.45% to 9.64% of DM) and lower in the short hay TMR (7.47% of DM). The four TMRs were offered individually at 95% of ad libitum intake to avoid orts within 24 h. Cows fed long hay consumed less DM than the short hay and silage groups (9.6 v. 10.5 and 10.8 kg/day, respectively) and sorted against large hay particles at 12 h post-feeding. Under the limitations of this study (non-lactating cows fed at restricted intake) short hay TMR prevented sorting within 12 h post-feeding, encouraged rumination per kg peNDF ingested, and had higher average rumen pH (6.24), whereas preventing sub acute ruminal acidosis (SARA, defined as pH<5.8 for at least 5 h/day). In contrast, the long hay and silage-based groups were under SARA. In vitro methane production of rumen fluid was higher in the hay-fed cows than in their silage-fed counterparts, and in all treatments lower at 1 h pre-feeding than at 6 h post-feeding. In vivo DM and NDF digestibility were similar for the short hay and silage TMRs, and higher than those of the long hay TMR. Under the conditions of this study, addition of 1.5% buffer to the wheat silage TMR had no effect on intake, rumen pH, creation of SARA and digestibility.  相似文献   

20.
E. J. Asteraki 《BioControl》1993,38(2):193-198
Experiments conducted in sward boxes under controlled conditions showed that the carabid beetlesAbax parallelepipedus (Piller &; Mitterpacher) andPterostichus madidus F. controlled slugs in a grass/clover sward. Control was shown to be as good as that by the molluscicide, methiocarb.A. parallelepipedus proved to be more successful thanP. madidus at controlling the slugs, damage to the clover being kept to a minimum.P. madidus controlled the slugs only after some damage to the clover was sustained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号