首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dysregulated immune responses to gut microbes are central to inflammatory bowel disease (IBD), and gut microbial activity can fuel chronic inflammation. Examining how IBD-directed therapies influence gut microbiomes may identify microbial community features integral to mitigating disease and maintaining health. However, IBD patients often receive multiple treatments during disease flares, confounding such analyses. Preclinical models of IBD with well-defined disease courses and opportunities for controlled treatment exposures provide a valuable solution. Here, we surveyed the gut microbiome of the T-bet−/− Rag2−/− mouse model of colitis during active disease and treatment-induced remission. Microbial features modified among these conditions included altered potential for carbohydrate and energy metabolism and bacterial pathogenesis, specifically cell motility and signal transduction pathways. We also observed an increased capacity for xenobiotics metabolism, including benzoate degradation, a pathway linking host adrenergic stress with enhanced bacterial virulence, and found decreased levels of fecal dopamine in active colitis. When transferred to gnotobiotic mice, gut microbiomes from mice with active disease versus treatment-induced remission elicited varying degrees of colitis. Thus, our study provides insight into specific microbial clades and pathways associated with health, active disease and treatment interventions in a mouse model of colitis.  相似文献   

2.
Analysis of microbiota in various biological and environmental samples under a variety of conditions has recently become more practical due to remarkable advances in next-generation sequencing. Changes leading to specific biological states including some of the more complex diseases can now be characterized with relative ease. It is known that gut microbiota is involved in the pathogenesis of inflammatory bowel disease (IBD), mainly Crohn''s disease and ulcerative colitis, exhibiting symptoms in the gastrointestinal tract. Recent studies also showed increased frequency of oral manifestations among IBD patients, indicating aberrations in the oral microbiota. Based on these observations, we analyzed the composition of salivary microbiota of 35 IBD patients by 454 pyrosequencing of the bacterial 16S rRNA gene and compared it with that of 24 healthy controls (HCs). The results showed that Bacteroidetes was significantly increased with a concurrent decrease in Proteobacteria in the salivary microbiota of IBD patients. The dominant genera, Streptococcus, Prevotella, Neisseria, Haemophilus, Veillonella, and Gemella, were found to largely contribute to dysbiosis (dysbacteriosis) observed in the salivary microbiota of IBD patients. Analysis of immunological biomarkers in the saliva of IBD patients showed elevated levels of many inflammatory cytokines and immunoglobulin A, and a lower lysozyme level. A strong correlation was shown between lysozyme and IL-1β levels and the relative abundance of Streptococcus, Prevotella, Haemophilus and Veillonella. Our data demonstrate that dysbiosis of salivary microbiota is associated with inflammatory responses in IBD patients, suggesting that it is possibly linked to dysbiosis of their gut microbiota.  相似文献   

3.
Probiotics such as Lactobacillus spp. play an important role in human health as they embark beneficial effect on the human gastrointestinal microflora composition and immune system. Dysbiosis in the gastrointestinal microbial composition has been identified as a major contributor to chronic inflammatory conditions, such as inflammatory bowel disease (IBD). Higher prevalence of IBD is often recorded in most of the developed Western countries, but recent data has shown an increase in previously regarded as lower risk regions, such as Japan, Malaysia, Singapore, and India. Although the IBD etiology remains a subject of speculation, the disease is likely to have developed because of interaction between extrinsic environmental elements; the host’s immune system, and the gut microbial composition. Compared to conventional treatments, probiotics and probiotic-based interventions including the introduction of specific prebiotics, symbiotic and postbiotic products had been demonstrated as more promising therapeutic measures. The present review discusses the association between gut dysbiosis, the pathogenesis of IBD, and risk factors leading to gut dysbiosis. In addition, it discusses recent studies focused on the alteration of the gastrointestinal microbiome as an effective therapy for IBD. The impact of the COVID-19 pandemic and other viral infections on IBD are also discussed in this review. Clinical and animal-based studies have shown that probiotic-based therapies can restore the gastrointestinal microbiota balance and reduce gut inflammations. Therefore, this review also assesses the status quo of these microbial-based therapies for the treatment of IBD. A better understanding of the mechanisms of their actions on modulating altered gut microbiota is required to enhance the effectiveness of the IBD therapeutics.  相似文献   

4.
Recent studies have linked human gut microbes to obesity and inflammatory bowel disease, but consistent signals have been difficult to identify. Here we test for indicator taxa and general features of the microbiota that are generally consistent across studies of obesity and of IBD, focusing on studies involving high-throughput sequencing of the 16S rRNA gene (which we could process using a common computational pipeline). We find that IBD has a consistent signature across studies and allows high classification accuracy of IBD from non-IBD subjects, but that although subjects can be classified as lean or obese within each individual study with statistically significant accuracy, consistent with the ability of the microbiota to experimentally transfer this phenotype, signatures of obesity are not consistent between studies even when the data are analyzed with consistent methods. The results suggest that correlations between microbes and clinical conditions with different effect sizes (e.g. the large effect size of IBD versus the small effect size of obesity) may require different cohort selection and analysis strategies.  相似文献   

5.
Dysregulation of the gut microbiota/gut hormone axis contributes to the pathogenesis of irritable bowel syndrome (IBS). Melatonin plays a beneficial role in gut motility and immunity. However, altered expression of local mucosal melatonin in IBS and its relationship with the gut microbiota remain unclear. Therefore, we aimed to detect the colonic melatonin levels and microbiota profiles in patients with diarrhea-predominant IBS (IBS-D) and explore their relationship in germ-free (GF) rats and BON-1 cells. Thirty-two IBS-D patients and twenty-eight healthy controls (HCs) were recruited. Fecal specimens from IBS-D patients and HCs were separately transplanted into GF rats by gavage. The levels of colon mucosal melatonin were assessed by immunohistochemical methods, and fecal microbiota communities were analyzed using 16S rDNA sequencing. The effect of butyrate on melatonin synthesis in BON-1 cells was evaluated by ELISA. Melatonin levels were significantly increased and negatively correlated with visceral hypersensitivity in IBS-D patients. GF rats inoculated with fecal microbiota from IBS-D patients had high colonic melatonin levels. Butyrate-producing Clostridium cluster XIVa species, such as Roseburia species and Lachnospira species, were positively related to colonic mucosal melatonin expression. Butyrate significantly increased melatonin secretion in BON-1 cells. Increased melatonin expression may be an adaptive protective mechanism in the development of IBS-D. Moreover, some Clostridium cluster XIVa species could increase melatonin expression via butyrate production. Modulation of the gut hormone/gut microbiota axis offers a promising target of interest for IBS in the future.  相似文献   

6.
Inflammatory bowel disease (IBD) is a common disease, includes Crohn''s disease (CD) and ulcerative colitis (UC), and is determined by altered gut bacterial populations and aberrant host immune response. Peptidoglycan recognition proteins (PGLYRP) are innate immunity bactericidal proteins expressed in the intestine. In mice, PGLYRPs modulate bacterial populations in the gut and sensitivity to experimentally induced UC. The role of PGLYRPs in humans with CD and/or UC has not been previously investigated. Here we tested the hypothesis that genetic variants in PGLYRP1, PGLYRP2, PGLYRP3 and PGLYRP4 genes associate with CD and/or UC and with gender and/or age of onset of disease in the patient population. We sequenced all PGLYRP exons in 372 CD patients, 77 UC patients, 265 population controls, 210 familial CD controls, and 24 familial UC controls, identified all polymorphisms in these populations, and analyzed the variants for significant association with CD and UC. We identified 16 polymorphisms in the four PGLYRP genes that significantly associated with CD, UC, and/or subgroups of patient populations. Of the 16, 5 significantly associated with both CD and UC, 6 with CD, and 5 with UC. 12 significant variants result in amino acid substitutions and based on structural modeling several of these missense variants may have structural and/or functional consequences for PGLYRP proteins. Our data demonstrate that genetic variants in PGLYRP genes associate with CD and UC and may provide a novel insight into the mechanism of pathogenesis of IBD.  相似文献   

7.
This study aimed to investigate the association between microbiota found in the maternal gut and placenta, and whether ceftriaxone exposure during pregnancy could alter these microbiota, and consequently affect the immunity of the mothers and their offspring. The microbiota in the feces and placenta of the dams were comprehensively analyzed using16S rRNA sequencing. Furthermore, viable bacteria in the placentas and blood of pups were also isolated by plate cultivation then taxonomically identified in detail by clone sequencing. Serum cytokines collected from dams and pups were quantitatively profiled using Luminex. The spleen organ index of dams was significantly lower and the offspring serum interleukin-6 levels were significantly higher in ceftriaxone-treated mice compared with the control group. The maternal fecal microbiota community was drastically altered in ceftriaxone-treated mice with significantly decreased diversity, depletion of Bacteroidetes and the blooming of Tenericutes. However, the placenta microbiota was dominated by Proteobacteria especially characteristically by Ralstonia, which was distinct from the maternal gut microbiota, regardless of whether ceftriaxone treatment or not. Viable bacteria have been found in placenta and blood cultures. These results indicated that ceftriaxone exposure in pregnancy could dramatically alter maternal intestinal microbiota, which affected the immunity of the mothers and their offspring at least partly, characteristically by enhanced pro-inflammatory responses. This study also indicated that the placenta might harbor its own microbes and the microbes were distinct from maternal gut microbiota, which may not be affected by oral administration of ceftriaxone during pregnancy.  相似文献   

8.
Inflammatory bowel disease (IBD) is a result of chronic inflammation caused, in some part, by dysbiosis of intestinal microbiota, mainly commensal bacteria. Gut dysbiosis can be caused by multiple factors, including abnormal immune responses which might be related to genetic susceptibility, infection, western dietary habits, and administration of antibiotics. Consequently, the disease itself is characterized as having multiple causes, etiologies, and severities. Recent studies have identified >200 IBD risk loci in the host. It has been postulated that gut microbiota interact with these risk loci resulting in dysbiosis, and this subsequently leads to the development of IBD. Typical gut microbiota in IBD patients are characterized with decrease in species richness and many of the commensal, and beneficial, fecal bacteria such as Firmicutes and Bacteroidetes and an increase or bloom of Proteobacteria. However, at this time, cause and effect relationships have not been rigorously established. While treatments of IBD usually includes medications such as corticosteroids, 5-aminosalicylates, antibiotics, immunomodulators, and anti-TNF agents, restoration of gut dysbiosis seems to be a safer and more sustainable approach. Bacteriotherapies (now called microbiota therapies) and dietary interventions are effective way to modulate gut microbiota. In this review, we summarize factors involved in IBD and studies attempted to treat IBD with probiotics. We also discuss the potential use of microbiota therapies as one promising approach in treating IBD. As therapies based on the modulation of gut microbiota becomes more common, future studies should include individual gut microbiota differences to develop personalized therapy for IBD.  相似文献   

9.
The healthy intestine is characterized by a low level of oxygen and by the presence of large bacterial communities of obligate anaerobes. Dysbiosis of the gut microbiota has been reported in patients suffering from inflammatory bowel diseases (IBDs), but the mechanisms causing this imbalance remain unknown. Observations have included a decrease in obligate anaerobes of the phylum Firmicutes and an increase in facultative anaerobes, including members of the family Enterobacteriaceae. The shift of bacterial communities from obligate to facultative anaerobes strongly suggests a disruption in anaerobiosis and points to a role for oxygen in intestinal dysbiosis. Proposals to evaluate this hypothesis of a role for oxygen in IBD dysbiosis are provided. If this hypothesis is confirmed, decreasing oxygen in the intestine could open novel means to rebalance the microbiota and could provide novel preventative or therapeutic strategies for IBD patients in whom current treatments are ineffective.  相似文献   

10.
Gut mucosal barriers, including chemical and physical barriers, spatially separate the gut microbiota from the host immune system to prevent unwanted immune responses that could lead to intestinal inflammation. In inflammatory bowel disease (IBD), there is mucosal barrier dysfunction coupled with immune dysregulation and dysbiosis. The discovery of exosomes as regulators of vital functions in both physiological and pathological processes has generated much research interest. Interestingly, exosomes not only serve as natural nanocarriers for the delivery of functional RNAs, proteins, and synthetic drugs or molecules, but also show potential for clinical applications in tissue repair and regeneration as well as disease diagnosis and prognosis. Biological or chemical modification of exosomes can broaden, change and enhance their therapeutic capability. We review the modulatory effects of exosomal proteins, RNAs and lipids on IBD components such as immune cells, the gut microbiota and the intestinal mucosal barrier. Mechanisms involved in regulating these factors towards attenuating IBD have been explored in several studies employing exosomes derived from different sources. We discuss the potential utility of exosomes as diagnostic markers and drug delivery systems, as well as the application of modified exosomes in IBD.  相似文献   

11.
Inflammatory bowel disease (IBD) is a multifactorial disease including both genetic and environmental factors. We compared the diversity of intestinal microbesamong a cohort of IBD patients to study the microbial ecological effects on IBD. Fecal samples from patients were sequenced with next generation sequence technology at 16S rDNA region. With statistical tools, microbial community was investigated at different level. The gut microbial diversity of Crohn’s disease (CD) patients and colonic polyp (CP) patients significantly different from each other. However, the character of ulcerative colitis (UC) patients has of both CD and CP features. The microbial community from IBD patients can be very different (CD patient) or somewhat similar (UC patients) to non-IBD patients. Microbial diversity can be an important etiological factor for IBD clinical phenotype.  相似文献   

12.
Faecalibacterium prausnitzii depletion in intestinal diseases has been extensively reported, but little is known about intraspecies variability. This work aims to determine if subjects with gastrointestinal disease host mucosa-associated F. prausnitzii populations different from those hosted by healthy individuals. A new species-specific PCR-denaturing gradient gel electrophoresis (PCR-DGGE) method targeting the 16S rRNA gene was developed to fingerprint F. prausnitzii populations in biopsy specimens from 31 healthy control (H) subjects and 36 Crohn''s disease (CD), 23 ulcerative colitis (UC), 6 irritable bowel syndrome (IBS), and 22 colorectal cancer (CRC) patients. The richness of F. prausnitzii subtypes was lower in inflammatory bowel disease (IBD) patients than in H subjects. The most prevalent operational taxonomic units (OTUs) consisted of four phylotypes (OTUs with a 99% 16S rRNA gene sequence similarity [OTU99]), which were shared by all groups of patients. Their distribution and the presence of some disease-specific F. prausnitzii phylotypes allowed us to differentiate the populations in IBD and CRC patients from that in H subjects. At the level of a minimum similarity of 97% (OTU97), two phylogroups accounted for 98% of the sequences. Phylogroup I was found in 87% of H subjects but in under 50% of IBD patients (P = 0.003). In contrast, phylogroup II was detected in >75% of IBD patients and in only 52% of H subjects (P = 0.005). This study reveals that even though the main members of the F. prausnitzii population are present in both H subjects and individuals with gut diseases, richness is reduced in the latter and an altered phylotype distribution exists between diseases. This approach may serve as a basis for addressing the suitability of F. prausnitzii phylotypes to be quantified as a putative biomarker of disease and depicting the importance of the loss of these subtypes in disease pathogenesis.  相似文献   

13.
The pathogenesis of multiple sclerosis (MS), an autoimmune disease affecting the brain and spinal cord, remains poorly understood. Patients with MS typically present with recurrent episodes of neurological dysfunctions such as blindness, paresis, and sensory disturbances. Studies on experimental autoimmune encephalomyelitis (EAE) animal models have led to a number of testable hypotheses including a hypothetical role of altered gut microbiota in the development of MS. To investigate whether gut microbiota in patients with MS is altered, we compared the gut microbiota of 20 Japanese patients with relapsing-remitting (RR) MS (MS20) with that of 40 healthy Japanese subjects (HC40) and an additional 18 healthy subjects (HC18). All the HC18 subjects repeatedly provided fecal samples over the course of months (158 samples in total). Analysis of the bacterial 16S ribosomal RNA (rRNA) gene by using a high-throughput culture-independent pyrosequencing method provided evidence of a moderate dysbiosis in the structure of gut microbiota in patients with MS. Furthermore, we found 21 species that showed significant differences in relative abundance between the MS20 and HC40 samples. On comparing MS samples to the 158 longitudinal HC18 samples, the differences were found to be reproducibly significant for most of the species. These taxa comprised primarily of clostridial species belonging to Clostridia clusters XIVa and IV and Bacteroidetes. The phylogenetic tree analysis revealed that none of the clostridial species that were significantly reduced in the gut microbiota of patients with MS overlapped with other spore-forming clostridial species capable of inducing colonic regulatory T cells (Treg), which prevent autoimmunity and allergies; this suggests that many of the clostridial species associated with MS might be distinct from those broadly associated with autoimmune conditions. Correcting the dysbiosis and altered gut microbiota might deserve consideration as a potential strategy for the prevention and treatment of MS.  相似文献   

14.
15.
Neonatal jaundice is a common disease that affects up to 60% of newborns. Herein, we performed a comparative analysis of the gut microbiome in neonatal jaundice and non-neonatal jaundice infants (NJIs) and identified gut microbial alterations in neonatal jaundice pre- and post-treatment. We prospectively collected 232 fecal samples from 51 infants at five time points (0, 1, 3, 6, and 12 months). Finally, 114 samples from 6 NJIs and 19 non-NJI completed MiSeq sequencing and analysis. We characterized the gut microbiome and identified microbial differences and gene functions. Meconium microbial diversity from NJI was decreased compared with that from non-NJI. The genus Gemella was decreased in NJI versus non-NJI. Eleven predicted microbial functions, including fructose 1,6-bisphosphatase III and pyruvate carboxylase subunit B, decreased, while three functions, including acetyl-CoA acyltransferase, increased in NJI. After treatments, the microbial community presented significant alteration-based β diversity. The phyla Firmicutes and Actinobacteria were increased, while Proteobacteria and Fusobacteria were decreased. Microbial alterations were also analyzed between 6 recovered NJI and 19 non-NJI. The gut microbiota was unique in the meconium microbiome from NJI, implying that early gut microbiome intervention could be promising for the management of neonatal jaundice. Alterations of gut microbiota from NJI can be of great value to bolster evidence-based prevention against ‘bacterial dysbiosis’.  相似文献   

16.
BackgroundThere is an abundant link between the gut microbiota and human health and it plays a critical role in the clinic. It is recognized that microbial dysregulation contributes to the pathogenesis of tuberculosis (TB) but the underlying mechanisms remain unclear. In this study, we investigated the association of gut microbiome composition with TB as well as its possible roles in the development of this disease.MethodsFecal samples were collected from 10 TB patients and 20 healthy control samples. DNA extracted from fecal samples was subjected to 16S rDNA gene sequencing analysis on the Illumina MiSeq platform.ResultsCompared with healthy control samples, the gut microbiome of patients with TB was characterized by the decreased Alpha diversity. Perhaps, the decrease of microbial diversity which results in microbial dysregulation is the reason for clinical patients with more symptoms. The PTB group showed the most unique microbiota by higher abundance of Bifidobacteriaceae, Bifidobacteriales, Coriobacteriaceae, Coriobacteriales, Actinobacteria, Caulobacteraceae, Phyllobacteriaceae, Rhizobiales, Burkholderiaceae, Burkholderiaceae. Inflammatory status in PTB patients may be associated with the increased abundance of Clostridia and decreased abundance of Prevotella. We found that the abundance of Solobacterium and Actinobacteria was higher in the patients. There were 4 significant differences (p < 0.05) in the two groups which belonged to four metabolic categories, including endocytosis, phosphotransferase system (PTS), toluene degradation, and amoebiasis.ConclusionWe applied the approach of metagenomic sequencing to characterize the features of gut microbiota in PTB patients. The present study provided a detailed analysis of the characterization of the gut microbiota in patients based on the clinic. According to the metagenome analysis, our results indicated that the gut microbiota in PTB patients was significantly different from healthy control samples as characterized by the bacteria and metabolic pathway. The richness of the gut microbiota in patients was revealed. It was hypothesized that the above-mentioned changes of the gut microbiota could exert an impact on the development of PTB through the downstream regulation of the immune status of the host by way of the gut–lung axis.  相似文献   

17.
The intestinal microbiota is known to regulate host energy homeostasis and can be influenced by high-calorie diets. However, changes affecting the ecosystem at the functional level are still not well characterized. We measured shifts in cecal bacterial communities in mice fed a carbohydrate or high-fat (HF) diet for 12 weeks at the level of the following: (i) diversity and taxa distribution by high-throughput 16S ribosomal RNA gene sequencing; (ii) bulk and single-cell chemical composition by Fourier-transform infrared- (FT-IR) and Raman micro-spectroscopy and (iii) metaproteome and metabolome via high-resolution mass spectrometry. High-fat diet caused shifts in the diversity of dominant gut bacteria and altered the proportion of Ruminococcaceae (decrease) and Rikenellaceae (increase). FT-IR spectroscopy revealed that the impact of the diet on cecal chemical fingerprints is greater than the impact of microbiota composition. Diet-driven changes in biochemical fingerprints of members of the Bacteroidales and Lachnospiraceae were also observed at the level of single cells, indicating that there were distinct differences in cellular composition of dominant phylotypes under different diets. Metaproteome and metabolome analyses based on the occurrence of 1760 bacterial proteins and 86 annotated metabolites revealed distinct HF diet-specific profiles. Alteration of hormonal and anti-microbial networks, bile acid and bilirubin metabolism and shifts towards amino acid and simple sugars metabolism were observed. We conclude that a HF diet markedly affects the gut bacterial ecosystem at the functional level.  相似文献   

18.
目的炎症性肠病(IBD)包括克罗恩病(CD)和溃疡性结肠炎(UC),以持续性肠道非特异性炎症为特征,通常反复发作、迁延不愈,临床上仍无特效性的治疗手段。IBD确切的发病机制尚不清楚,涉及免疫、环境及遗传等因素,这些因素共同诱导肠道炎症、黏膜损伤和修复。肠道微生物群落及其代谢产物、宿主基因易感性及肠道黏膜免疫三方面共同参与了IBD的发病机制。本文从消化道微生态角度出发,对目前IBD相关的肠道微生物群落研究现状、宿主-微生物间免疫应答及益生菌治疗等内容进行探讨。  相似文献   

19.
The etiology and maintenance of inflammatory bowel disease (IBD) is the subject of much speculation. Iliev?et?al. (2012) impose a change in our views of the gut microbiome and catapult the fungal "mycobiome" center-stage in the exploration of IBD.  相似文献   

20.
Gut microbiota play an important part in the pathogenesis of mucosal inflammation, such as inflammatory bowel disease (IBD). However, owing to the complexity of the gut microbiota, our understanding of the roles of commensal and pathogenic bacteria in the maintenance of immune homeostasis in the gut is evolving only slowly. Here, we evaluated the role of gut microbiota and their secreting extracellular vesicles (EV) in the development of mucosal inflammation in the gut. Experimental IBD model was established by oral application of dextran sulfate sodium (DSS) to C57BL/6 mice. The composition of gut microbiota and bacteria-derived EV in stools was evaluated by metagenome sequencing using bacterial common primer of 16S rDNA. Metagenomics in the IBD mouse model showed that the change in stool EV composition was more drastic, compared to the change of bacterial composition. Oral DSS application decreased the composition of EV from Akkermansia muciniphila and Bacteroides acidifaciens in stools, whereas increased EV from TM7 phylum, especially from species DQ777900_s and AJ400239_s. In vitro pretreatment of A. muciniphila-derived EV ameliorated the production of a pro-inflammatory cytokine IL-6 from colon epithelial cells induced by Escherichia coli EV. Additionally, oral application of A. muciniphila EV also protected DSS-induced IBD phenotypes, such as body weight loss, colon length, and inflammatory cell infiltration of colon wall. Our data provides insight into the role of gut microbiota-derived EV in regulation of intestinal immunity and homeostasis, and A. muciniphila-derived EV have protective effects in the development of DSS-induced colitis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号