首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
It has been documented widely that when the generation times of eucaryotic cells are lengthened by slowing the rate of protein synthesis, the duration of the chromosome cycle (S, G2, and M phases) remains relatively invariant. Paradoxically, when the growth of exponentially growing cultures of CHO cells is partially inhibited with inhibitors of protein synthesis, the immediate effect is a proportionate reduction in the rate of total protein, histone protein, and DNA synthesis. However, on further investigation it was found that over the next 2 h the rates of histone protein and DNA synthesis recover, in some cases completely to the uninhibited rate, while the synthesis rates of other proteins do not recover. We called this process chromosome cycle compensation. The amount of compensation seen in CHO cell cultures can account quantitatively for the relative invariance in the length of the chromosome cycle (S, G2, and M phases) reported for these cells. The mechanism for this compensation involves a specific increase in the levels of histone mRNAs. An invariant chromosome cycle coupled with a lengthening growth cycle must result in a disproportionate lengthening of the G1 phase. Thus, these results suggest that chromosome cycle invariance may be due more to specific cellular compensation mechanisms rather than to the more usual interpretation involving a rate-limiting step for cell cycle progression in the G1 phase.  相似文献   

3.
4.
5.
6.
7.
The mammalian homologue of the cdc2 gene of the fission yeast Schizosaccharomyces pombe encodes a p34cdc2 cyclin-dependent kinase that regulates the cell cycle of a wide variety of cell types. Resting murine T lymphocytes contained no detectable p34cdc2 protein, histone kinase activity, or specific mRNA for the cdc2 gene. Activation of the T cells by immobilized anti-CD3 resulted in the expression of specific mRNA late in the G1 phase of the cell cycle, and p34cdc2 protein was detectable at or near G1/S. At this point in the cell cycle, the protein was phosphorylated at tyrosine and displayed no H1 histone kinase activity. As the cells progressed through the cycle, the amount of specific mRNA and p34cdc2 increased, and H1 histone kinase activity was detectable when the cells were blocked at G2/M by nocodazole. The activation of T cells by phorbol dibutyrate induced the expression of IL-2R but failed to induce the synthesis of IL-2 or the expression of cdc2-specific mRNA. Under these conditions, the activated cells failed to enter the S phase of the cell cycle. Because the presence of IL-2 added exogenously during activation by phorbol dibutyrate resulted in the expression of cdc2-specific mRNA and progression through the cell cycle, either IL-2 or the interaction with IL-2R may be involved in the expression of cdc2 and regulation of the G1/S transition.  相似文献   

8.
9.
To determine the effect of cell cycle position on protein synthesis, synchronized cell populations were metabolically labeled and the synthesis of the basic proteins, including histones, was examined by two-dimensional gel electrophoresis. Exponentially growing S49 mouse lymphoma or Chinese hamster ovary (CHO) cells were separated into G1 and S phase populations by centrifugal elutriation, selective mitotic detachment, fluorescence-activated cell sorting, or a combination of these, and pulse-labeled with radiolabeled amino acids. The histone proteins, both free and chromatin-bound, were completely resolved from some 300 other basic polypeptides in whole-cell lysates by a modification of the NEPHGE technique of O'Farrell, Goodman and O'Farrell (1977). Comparisons of matched autoradiograms from samples of G1 and S phase labeled cells revealed an equivalent rate of histone synthesis through the cell cycle of both S49 and CHO cells. Nuclei isolated from G1 phase S49 cells that were pulse-labeled contained between 13 and 15% of the newly synthesized nucleosomal histones present in S phase nuclei. Nuclei prepared from G1 phase cells that were pulse-labeled and then chased for 5 hr contained more than 90% of the labeled nucleosomal histones present in wholecell lysates. It therefore seems likely that differential alterations in the rate of histone synthesis do not occur to a significant degree as cells proceed through the cycle, but the association of newly synthesized histones with DNA takes place after the onset of DNA replication.  相似文献   

10.
Primase is a specialized RNA polymerase that synthesizes RNA primers for initiation of DNA synthesis. A full cDNA clone of the p49 subunit of mouse primase, a heterodimeric enzyme, has been isolated using a primase p49-specific polyclonal antibody to screen a lambda gt11 mouse cDNA expression library. The cDNA indicated the subunit is a 417-amino acid polypeptide with a calculated molecular mass of 49,295 daltons. The p49 mRNA is approximately 1500 nucleotides long with a 5'-untranslated region of 74 nucleotides and a 3'-untranslated region of 200 nucleotides. Comparison with a similar sized primase subunit from yeast showed highly conserved amino acid sequences in the N-terminal halves of the polypeptides and included a potential metal-binding domain suggesting the functional importance of this region for DNA binding. In contrast, the 3' portion of the cDNA has rapidly diverged in nucleotide sequence, as primase mRNA can be detected in mouse and rat cells with a 3' probe (including coding and noncoding) but not in RNA from hamster or human cells. A full-length cDNA probe detected mRNA from hamster and human cell lines, indicating a conserved 5' portion and divergent 3' region of the expressed gene. The rapid divergence may be related to the species-specific protein interactions found for the DNA polymerase alpha-primase complex. The mRNA is detected in proliferating but not in quiescent cells consistent with its function in DNA replication.  相似文献   

11.
To investigate the effect of histone H1 on DNA primase activity, partially purified DNA primase from mouse FM3A cells was used. It was found that histone H1 dose dependently inhibited DNA primase. Interestingly phosphorylation of histone H1 reduced the inhibitory activity of the histone. However, de-phosphorylation of the phosphorylated histone H1 resumed the inhibitory activity of DNA primase. These findings lead us to the assumption that phosphorylation and de-phosphorylation of histone may regulate the cell cycle by controlling DNA synthesis through reverse inhibition of DNA primase.  相似文献   

12.
13.
14.
The biological importance of histone H1 was investigated in relation to the cell cycle using liver regeneration in rat. Histone H1 was extracted from the regenerating rat liver at various intervals after partial hepatectomy and the number of phosphate residues was measured. The inhibitory effect of the extracted histone H1 on DNA primase was assayed. The activities of DNA polymerase-alpha, DNA primase and DNA synthesis were also determined in the regenerating rat liver. It was found that: 1) phosphate residue in histone H1 from normal rat liver was between 2-3 mol/mol of histone H1. 2) The number of phosphate residues did not change for the first 16h after partial hepatectomy. 3) A dramatic sudden increase of phosphate residues was detected at 18h after partial hepatectomy. 4) The high levels of phosphate residues remained constant thereafter up to 50h. 5) DNA primase activity was less inhibited by highly phosphorylated than by slightly phosphorylated histone H1. It seems probable that phosphorylation of histone H1 is needed for the releasing of DNA primase activity from its inhibited state, which would start DNA synthesis together with DNA polymerase-alpha.  相似文献   

15.
16.
B Arezi  B W Kirk  W C Copeland  R D Kuchta 《Biochemistry》1999,38(39):12899-12907
Regulation of the p49-p58 primase complex during primer synthesis and the interaction of the primase subunits with DNA were examined. After primase synthesizes a primer that DNA polymerase alpha (pol alpha) can readily elongate, further primase activity is negatively regulated. This occurs within both the context of the four-subunit pol alpha-primase complex and in the p49-p58 primase complex, indicating that the newly generated primer-template species need not interact with pol alpha to regulate further primase activity. Photo-cross-linking of single-stranded DNA-primase complexes revealed that whereas the isolated p49 and p58 subunits both reacted with DNA upon photolysis, only the p58 subunit reacted with the DNA when photolysis was performed using the p49-p58 primase complex. After primer synthesis by the complex, p58 was again the only subunit that reacted with the DNA. These results suggest a model for regulation of primer synthesis in which the newly synthesized primer-template species binds to p58 and regulates further primer synthesis. Additionally, the ability of p58 to interact with primer-template species suggests that p58 mediates the transfer of primers from the primase active site to pol alpha.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号