首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seventy-four nucleotide sequences from the ITS regions of nuclear ribosomal DNA and 76 from the trnL-trnF spacer of chloroplast DNA were used to address the origin of tetraploid Cardamine amporitana, the conspecifity of central Italian and northeastern Spanish populations, and the possible cause for such geographic disjunction. Because of the complex lineage relationships in Cardamine, the sampling included 22 taxa. In the results, both data sets are highly congruent in supporting a close relationship of C. amporitana to the widespread Eurasian C. amara. Low genetic variability in northeastern Spanish populations of C. amporitana suggests long-distance dispersal from central Italy. The interior position of the single northeastern Spanish haplotype in a statistical parsimony network of trnL-trnF haplotypes however does not support this scenario and invokes other plausible phylogeographic explanations. The disappearance of geographically intermediate populations and genetic impoverishment by migration and isolation, both probably associated with Quaternary climatic oscillations, appears as an alternative hypothesis to explain the phylogeographic pattern. A recent hybridization event is reported between C. amporitana and a diploid from the C. pratensis group in central Italy on the basis of additive polymorphisms in ITS for all the 22 distinguishing nucleotides.  相似文献   

2.
The genus Limonium, due to the patchiness of the natural habitats of its species as well as the high frequency of hybridization and polyploidy and the possibility of reproduction by apomixis, provides an example of all the principal mechanisms of rapid speciation of plants. As an initial study of evolution in this genus, we have analyzed intra- and interspecific variability in 17 species from section Limonium, the largest in the genus, based on RFLPs of cpDNA and nuclear rDNA ITS sequences. In the cpDNA analysis, 21 restriction enzymes were used, resulting in 779 fragments, 490 of which were variable and 339 parsimony informative. L. furfuraceum exhibited two relatively divergent cpDNA haplotypes. The relationships found among the species based on cpDNA restriction fragments were coincident using different methods of phylogenetic analysis. Due to the presumed reticulate evolution in the genus Limonium, the comparison of these results with data from the nuclear DNA was necessary; ITS sequences were analyzed. The final alignment contained 488 characters, of which 198 were variable and 156 parsimony informative. Two relatively divergent ITS types were present at the intraindividual level in L. delicatulum, a triploid species. Each type was related to ITS from different groups of diploid Limonium species, one with a base haploid chromosome number n = 8 (represented by L. cossonianum) and the other with n = 9 (represented by L. minutum). The different phylogenetic inference methods used for the analysis of ITS sequences rendered very similar topologies. In general, the relationships among the species studied were coincident with those obtained with the chloroplast genome. Both nuclear and cytoplasmic markers support the polyphyly of section Limonium, with at least two species, L. narbonense and L. vulgare, clearly divergent from the rest. Moreover, the remaining subsections into which section Limonium is currently divided seem to be artificial.  相似文献   

3.
Nuclear rRNA genes (rDNA) in angiosperms are arranged in long tandem repeat ing units, much like those of other higher eukaryotes. Owing to rapid concerted evolution, the repeat units have homogenized or nearly so in most species. The internal transcribed spacer (ITS) of nuclear rDNA is composed of ITS1 and ITS2, which are seperated by 5.8S rDNA. The two spacers, ITS1 (187~298 bp) and ITS2 (187~252 bp), can be readily amplified by PCR and sequenced using universal primers. The sequences contain many vari able sites and potential informative sites among related species, and have been proven to be a useful molecular marker in phylogenetic and evolutionary studies of many angiosperm taxa. It can be used not only in classification and phylogenetic inferences at the levels of family, subfamily, tribe, genus and section, but also in reconstruction of reticulate evolution and de tection of the speciation via hybridization and polyploidization. But this region may not be useful for resolving phylogenetic relationships among families or taxa of higher hierarchy ow- ing to the rapid variation of the ITS sequences.  相似文献   

4.
BACKGROUND AND AIMS: Diploid representatives from the related polyploid complexes of Cardamine amara, C. pratensis and C. raphanifolia (Brassicaceae), were studied to elucidate phylogenetic relationships among the complexes and among the individual taxa included. METHODS: Two independent molecular data sets were used: nucleotide sequences from the internal transcribed spacers (ITS) of nrDNA, and amplified fragment length polymorphism (AFLP) markers. Seventeen diploid taxa from the studied groups were sampled. KEY RESULTS: Both ITS and AFLP analyses provided congruent results in inferred relationships, and revealed two main lineages. While the C. amara group, consisting of C. wiedemanniana and four subspecies of C. amara, was resolved as a well-supported monophyletic group, taxa from the C. pratensis and C. tenera groups (the latter representing diploid taxa of the complex of C. raphanifolia) all appeared together in a single clade/cluster with no support for the recognition of either of the groups. Intra-individual polymorphisms and patterns of nucleotide variation in the ITS region in C. uliginosa and C. tenera, together with the distribution of AFLP bands, indicate ancient hybridization and introgression among these Caucasian diploids. CONCLUSIONS: The lack of supported hierarchical structure suggests that extensive reticulate evolution between these groups, even at the diploid level, has occurred (although an alternative explanation, namely ancestral polymorphism in ITS data, cannot be completely excluded). Several implications for the investigation of the polyploid complexes of concern are drawn. When tracing origins of polyploid taxa, a much more complex scenario should be expected, taking into account all relatives as potential parents, irrespective of the group in which they are classified.  相似文献   

5.
Wang JB  Wang C  Shi SH  Zhong Y 《Hereditas》2000,133(1):1-7
The genus Aegilops comprises approximately 25 diploid, tetraploid and hexaploid species, in which the genome types of all allopolyploids involve either U or D genome, or both of them. The internal transcribed spacer (ITS) region of 18S-26S nuclear ribosomal DNA (rDNA) from 11 allopolyploid species and 7 related diploid species in the genus were directly sequenced by pooled PCR products. Phylogenetic analyses for tracing evolutionary patterns of parental rDNA in allopolyploid species were performed using the neighbor-joining method. The D genome involved tree included three clades (CC-DDCC, DDMM-DDMMSS-DDMMUU, and MM-MhMh-DDNN), but did not include Ae. squarrosa (DD). It indicated that the rDNA of ancestral D genome had been somewhat differentiated in allopolyploids. The U genome involved tree showed that the allopolyploids and their common ancestor, Ae. umbellulata, formed a clade, suggesting that rDNA in UUMM and UUSS genomes has been homogenizing toward that of ancestral U genome. The phylogenetic pattern of U genome based on ITS sequences also supported the "pivotal-differential" hypothesis.  相似文献   

6.
Chromosome evolution (including polyploidy, dysploidy, and structural changes) as well as hybridization and introgression are recognized as important aspects in plant speciation. A suitable group for investigating the evolutionary role of chromosome number changes and reticulation is the medium-sized genus Melampodium (Millerieae, Asteraceae), which contains several chromosome base numbers (x = 9, 10, 11, 12, 14) and a number of polyploid species, including putative allopolyploids. A molecular phylogenetic analysis employing both nuclear (ITS) and plastid (matK) DNA sequences, and including all species of the genus, suggests that chromosome base numbers are predictive of evolutionary lineages within Melampodium. Dysploidy, therefore, has clearly been important during evolution of the group. Reticulate evolution is evident with allopolyploids, which prevail over autopolyploids and several of which are confirmed here for the first time, and also (but less often) on the diploid level. Within sect. Melampodium, the complex pattern of bifurcating phylogenetic structure among diploid taxa overlain by reticulate relationships from allopolyploids has non-trivial implications for intrasectional classification.  相似文献   

7.
Lectotypification of the following Linnaean names of the genus Cardamine L. (Cruciferae) is presented Cardamine asarifolia, C. graeca, C. petraea (|M= Cardaminopsis petraea), C. resedgolia (including designation of an epitype), C. trifolia and C. virginica. The lectotypes of the previously typified names of this genus and the protologues of these names are discussed. The probable typotype for the lectotype of C. azcana is identified and the need for the conservation of the type of C. chelidonia is noted.  相似文献   

8.
The allotetraploid lactucean Microseris scapigera of Australia and New Zealand has presumably arisen in western North America by hybridization between an annual and a perennial diploid species followed by polyploidization and long-distance dispersal. A phylogenetic tree of various North American diploids, based on RFLPs in the nuclear DNA, confirmed the division of the genus into a clade containing the diploid annuals and a clade containing the diploid perennials. Four RFLP markers were shared among all accessions of M. scapigera and all the diploid accessions. Twelve markers found in the outgroup (Uropappus lindleyi) were absent in all Microseris. A cladogram of plants from six populations of M. scapigera based on eight RFLP markers shows a progressive specialization of three clades of two populations each. Two populations without any markers differentiating them from the North American diploids form the basic clade. These consist of plants with an apparently derived morphology that are self-compatible (or agamospermic) and thereby differ from most M. scapigera. Few markers in M. scapigera could be attributed to one or the other parental genome. As yet, we have found only one ITS 1 sequence of the nuclear ribosomal cistrons in M. scapigera. This sequence has features of both parental sequences.  相似文献   

9.
The sequences of the chitinase gene (Chi-26) and the internal transcribed spacer of 18S - 5.8S - 26S rDNA (ITS1) were determined to analyze the phylogenetic relationships among species representing the four basic genomes of the genus Hordeum. Grouping analysis based on data for Chi-26 gene sequences placed Hordeum secalinum (H genome) near the Hordeum murinum complex (Xu genome), and Hordeum bulbosum distant from the other species that carried the I genome. ITS sequence data showed the expected grouping based on the genome classification of the species studied. Different sequences of ITS were detected even in the genomes of the diploid species. The results are interpreted in terms of defective or unfinished concerted evolution processes in each taxon.  相似文献   

10.
衣藻属的系统发育分析——基于形态形状和nrDNA ITS序列   总被引:1,自引:0,他引:1  
通过实验分析莱茵衣藻 ( Chlamydomonas reinhardtii) 1个种和互连网获得衣藻属 1 5个种及丝藻属 1个种 ( Ulothrix zonata) ,共 1 7个种的 nr DNA ITS序列 ,并以 U.zonata为外类群 ,采用计算机分析软件包对其进行分析及构建分子系统发育树图。同时以 1 2个传统分类性状 ,对此 1 6种衣藻构建数据矩阵 ;以 U.zonata动孢子的相应性状为外类群原始性状 ,用Wagner法在计算机上对其进行分枝分析 ;然后比较并分析分子系统树和表征性状分支分析树的异同。初步尝试以 ITS分子序列系统发育分析作为传统性状分析的补充来研究衣藻种间的亲缘关系。  相似文献   

11.
Polyploidization is a major mechanism of speciation in plants. Within the barley genus Hordeum, approximately half of the taxa are polyploids. While for diploid species a good hypothesis of phylogenetic relationships exists, there is little information available for the polyploids (4×, 6×) of Hordeum. Relationships among all 33 diploid and polyploid Hordeum species were analyzed with the low-copy nuclear marker region TOPO6 for 341 Hordeum individuals and eight outgroup species. PCR products were either directly sequenced or cloned and on average 12 clones per individual were included in phylogenetic analyses. In most diploid Hordeum species TOPO6 is probably a single-copy locus. Most sequences found in polyploid individuals phylogenetically cluster together with sequences derived from diploid species and thus allow the identification of parental taxa of polyploids. Four groups of sequences occurring only in polyploid taxa are interpreted as footprints of extinct diploid taxa, which contributed to allopolyploid evolution. Our analysis identifies three key species involved in the evolution of the American polyploids of the genus. (i) All but one of the American tetraploids have a TOPO6 copy originating from the Central Asian diploid H. roshevitzii, the second copy clustering with different American diploid species. (ii) All hexaploid species from the New World have a copy of an extinct close relative of H. californicum and (iii) possess the TOPO6 sequence pattern of tetraploid H. jubatum, each with an additional copy derived from different American diploids. Tetraploid H. bulbosum is an autopolyploid, while the assumed autopolyploid H. brevisubulatum (4×, 6×) was identified as allopolyploid throughout most of its distribution area. The use of a proof-reading DNA polymerase in PCR reduced the proportion of chimerical sequences in polyploids in comparison to Taq polymerase.  相似文献   

12.
Previous molecular phylogenetic studies have failed to resolve the branching order among the major cotton (Gossypium) lineages, and it has been unclear whether this reflects actual history (rapid radiation) or sampling properties of the genes evaluated. In this paper, we reconsider the phylogenetic relationships of diploid cotton genome groups using DNA sequences from 11 single-copy nuclear loci (10?293 base pairs [bp]), nuclear ribosomal DNA (695 bp), and four chloroplast loci (7370 bp). Results from individual loci and combined nuclear and chloroplast DNA partitions reveal that the cotton genome groups radiated in rapid succession following the formation of the genus. Maximum likelihood analysis of nuclear synonymous sites shows that this radiation occurred within a time span equivalent to 17% of the time since the separation of Gossypium from its nearest extant relatives in the genera Kokia and Gossypioides. Chloroplast and nuclear phylogenies differ significantly with respect to resolution of the basal divergence in the genus and to interrelationships among African cottons. This incongruence is due to limited character evolution in cpDNA and either previously unsuspected hybridization or unreliable phylogenetic performance of the cpDNA characters. This study highlights the necessity of using multiple, independent data sets for resolving phylogenetic relationships of rapidly diverged lineages.  相似文献   

13.
Nuclear DNA sequences from introns of the low-copy nuclear gene family encoding the second largest subunit of RNA polymerases and the ribosomal internal transcribed spacer (ITS) regions, combined with the psbE-petL spacer and the rps16 intron from the chloroplast genome were used to infer origins and phylogenetic relationships of North American polyploid Silene species and their closest relatives. Although the vast majority of North American Silene species are polyploid, which contrasts to the diploid condition dominating in other parts of the world, the phylogenetic analyses rejected a single origin of the North American polyploids. One lineage consists of tetraploid Silene menziesii and its diploid allies. A second lineage, Physolychnis s.l., consists of Arctic, European, Asian, and South American taxa in addition to the majority of the North American polyploids. The hexaploid S. hookeri is derived from an allopolyploidization between these two lineages. The tetraploid S. nivea does not belong to any of these lineages, but is closely related to the European diploid S. baccifera. The poor resolution within Physolychnis s.l. may be attributed to rapid radiation, recombination among homoeologues, homoplasy, or any combination of these factors. No extant diploid donors could be identified in Physolychnis s.l.  相似文献   

14.

Background and Aims

Here evidence for reticulation in the pantropical orchid genus Polystachya is presented, using gene trees from five nuclear and plastid DNA data sets, first among only diploid samples (homoploid hybridization) and then with the inclusion of cloned tetraploid sequences (allopolyploids). Two groups of tetraploids are compared with respect to their origins and phylogenetic relationships.

Methods

Sequences from plastid regions, three low-copy nuclear genes and ITS nuclear ribosomal DNA were analysed for 56 diploid and 17 tetraploid accessions using maximum parsimony and Bayesian inference. Reticulation was inferred from incongruence between gene trees using supernetwork and consensus network analyses and from cloning and sequencing duplicated loci in tetraploids.

Key Results

Diploid trees from individual loci showed considerable incongruity but little reticulation signal when support from more than one gene tree was required to infer reticulation. This was coupled with generally low support in the individual gene trees. Sequencing the duplicated gene copies in tetraploids showed clearer evidence of hybrid evolution, including multiple origins of one group of tetraploids included in the study.

Conclusions

A combination of cloning duplicate gene copies in allotetraploids and consensus network comparison of gene trees allowed a phylogenetic framework for reticulation in Polystachya to be built. There was little evidence for homoploid hybridization, but our knowledge of the origins and relationships of three groups of allotetraploids are greatly improved by this study. One group showed evidence of multiple long-distance dispersals to achieve a pantropical distribution; another showed no evidence of multiple origins or long-distance dispersal but had greater morphological variation, consistent with hybridization between more distantly related parents.  相似文献   

15.
Hoya (Marsdenieae, Apocynaceae) includes at least 200 species distributed from India to the Pacific Islands. We here infer major species groups in the genus based on combined sequences from the chloroplast atpB-rbcL spacer, the trnL region, and nuclear ribosomal DNA ITS region for 42 taxa of Hoya and close relatives. To assess levels of ITS polymorphism, ITS sequences for a third of the accessions were obtained by cloning. Most ITS clones grouped by species, indicating that speciation in Hoya usually predates ITS duplication. One ITS sequence of H. carnosa, however, grouped with a sequence of the morphologically similar H. pubicalyx, pointing to recent hybridization or the persistence of paralogous copies through a speciation event. The topology resulting from the combined chloroplast and nuclear data recovers some morphology-based sections, such as Acanthostemma and Eriostemma, as well as a well-supported Australian/New Guinean clade. The combined data also suggest that morphological adaptations for ant-symbiosis evolved at least three times within Hoya.  相似文献   

16.
基于ITS序列分析豹子花属与5种百合的亲缘关系   总被引:2,自引:0,他引:2  
以滇蜀豹子花和多斑豹子花为材料,采用PCR直接测序法测定其ITS序列,结合GenBank中其它3种豹子花和5种百合的ITS序列,构建了这10种植物的系统发育树.结果表明:(1)10种植物的ITS序列长度在625bp~627 bp之间,总G C含量在60.38%~61.12%之间,5.8S的G C含量除大理百合为45.4%外,其余9种植物为55.01%或54.60%,说明ITS序列在进化上保守性较强,同属不同种甚至不同属间的长度差异不明显;(2)NJ、MP、ME聚类树的分支趋势一致,都是豹子花属植物先聚在一起再和5种百合相聚,滇西豹子花和豹子花在3种聚类树中都以99%以上的支持率聚成一支,说明这2个种的亲缘关系最近;(3)在10种植物中,形态相似且分布海拔和区域重叠的种类先相聚,说明这些物种的亲缘关系密切.  相似文献   

17.
Using the nuclear ribosomal internal transcribed spacer (ITS) sequences and the chloroplasttrnL-F sequence, phylogeneic analysis was performed on 57 accessions of species in the tribe Triticeae including 13 Leymus species (N(s)) with different ploidy levels and 40 diploid species from 18 genera. The ITS sequences revealed that ployploid Leymus has close phylogentic relationships with Psathyrostachys and an undefined genus in Triticeae. The trnL-F tree demonstrated close relationships between certain Leymus species and Psathyrostachys, and other Leymus species distributed in North America were far from Psathyrostachys. Based on these results, it is unlikely that the unknown genome in Leymus species originated from one of the sampled diploid species in the present study. The maternal donor of all the Leymus species with a natural distribution in Eurasia were N(s) genome. Furthermore, Elymus californicus should be transferred from the genus Elymus to Leymus.  相似文献   

18.
Spotted knapweed (Centaurea stoebe) occurs from Western Asia to Western Europe both as diploid and tetraploid cytotypes, predominantly in single-cytotype populations with higher frequency of diploid populations. Interestingly, only tetraploids have been recorded so far from its introduced range in North America where they became highly invasive. We performed phylogenetic and network analyses of more than 40 accessions of the C. stoebe and C. paniculata groups and other related taxa using cloned internal transcribed spacer (ITS) and sequences of the chloroplast trnT-trnL and atpBrbcL regions to (i) assess the evolutionary origin of tetraploid C. stoebe s.l., and (ii) uncover the phylogeny of the C. stoebe group. Both issues have not been studied so far and thus remained controversial. Cloned ITS sequences showed the presence of two slightly divergent ribotypes occurring in tetraploid cytotype, while only one major ribotype was present in diploid C. stoebe s.str. This pattern suggests an allopolyploid origin of tetraploids with contribution of the diploid C. stoebe s.str. genome. Although we were not able to detect the second parental taxon, we hypothesize that hybridization might have triggered important changes in morphology and life history traits, which in turn may explain the colonization success of the tetraploid taxon. Bayesian relaxed clock estimations indicate a relatively recent--Pleistocene origin of the tetraploid C. stoebe s.l. Furthermore, our analyses showed a deep split between the C. paniculata and C. stoebe groups, and a young diversification of the taxa within the C. stoebe group. In contrast to nrDNA analyses, the observed pattern based on two cpDNA regions was inconclusive with respect to the origin and phylogeny of the studied taxa, most likely due to shared ancient polymorphism and frequent homoplasies.  相似文献   

19.
We analyze the structure of the internal transcribed spacers ITS1 and ITS2 of the nuclear ribosomal DNA in the gymnosperm Gnetum, using a phylogenetic framework derived mainly from an intron in the nuclear low-copy LEAFY gene. Gnetum comprises 25-35 species in South America, Africa, and Asia, of which we sampled 16, each with two to six clones. Criteria used to assess ITS functionality were highly divergent nucleotide substitution, GC content, secondary structure, and incongruent phylogenetic placement of presumed paralogs. The length of ITS1 ranged from 225 to 986 bp and that of ITS2 from 259 to 305 bp, the largest ranges so far reported from seed plants. Gnetum ITS1 contains two informative sequence motifs, but different from other gymnosperms, there are only few and short (7-13 bp) tandem repeats. Gnetum ITS2 contains two structural motifs, modified in different clades by shortening of stems and loops. Conspecific sequences grouped together except for two recombinant pseudogenes that had ITS1 of one clade and ITS2 of another. Most of the pseudogenic ITS copies, paralogs, and putative chimeras occurred in a clade that according to a fossil-calibrated chloroplast-DNA clock has an age of a few million years. Based on morphology and chromosome numbers, the most plausible causes of the observed high levels of ITS polymorphism are hybridization, allopolyploidy, and introgression.  相似文献   

20.
Sequence data from a portion of the external transcribed spacer (ETS) and from the internal transcribed spacers (ITS1 and ITS2) of 18S-26S nuclear ribosomal DNA were used together with chloroplast DNA PCR-RFLP data to unravel patterns of allotetraploid speciation within the Western European Dactylorhiza polyploid complex. A maximum likelihood tree based on combined ETS and ITS sequences suggests that the Western European Dactylorhiza allotetraploids have evolved by hybridization between four main diploid lineages. Cloned sequences and the topology of the ITS plus ETS tree indicate that the allotetraploid species D. elata, D. brennensis, and D. sphagnicola have originated from the autotetraploid D. maculata together with the diploid D. incarnata, while D. majalis, D. traunsteineri, and D. angustata seem to have evolved by hybridization between the D. fuchsii s.str and D. incarnata lineages. Finally, the diploid D. saccifera lineage seems to have been involved together with the D. incarnata lineage in the formation of the allotetraploid D. praetermissa. The observed congruence between the chloroplast tree and the ITS/ETS tree suggests a directional evolution of the nrDNA after polyploidization in favor of the maternal genome. Considered together with morphological, biogeographical, and ecological evidence, the molecular analysis leads us to recognize four species within the investigated allotetraploid complex, namely D. majalis, D. praetermissa, D. elata, and D. sphagnicola.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号