首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Karni RJ  Wangh LJ  Sanchez JA 《Chromosoma》2001,110(4):267-274
The nuclei of human neutrophils typically consist of a linear array of three or four lobes joined by DNA-containing filaments. Terminal lobes are connected to internal lobes via a single filament, while internal lobes have two filaments, each to an adjacent lobe. Some lobes also have appendages of various shapes and sizes. In particular, up to 17% of neutrophil nuclei of healthy women exhibit a drumstick-shaped appendage that contains the inactive X chromosome. This report provides a detailed analysis of the relationship between nuclear morphology and the location of the X and Y chromosomes in human neutrophils. Fluorescent in situ hybridization analysis revealed that the X and the Y chromosomes of male neutrophil nuclei are randomly distributed among nuclear lobes. Similarly, in female neutrophil nuclei with a drumstick appendage, the active X chromosome is also randomly distributed among lobes. In contrast, the inactive X chromosome is preferentially located in a terminal lobe in over 90% nuclei with drumsticks. Within the terminal lobe of nuclei with drumsticks, the inactive X chromosome lies distal to the point of filament attachment in 80% of the nuclei. The inactive X chromosome also exhibits a specific orientation within the drumstick appendage, with over 95% of nuclei having the X centromere located toward the tip of the appendage. Female nuclei without a drumstick appendage also have one of the X chromosomes (presumably the inactive chromosome) preferentially situated in a terminal lobe. Nonrandom distribution of the inactive X chromosome is discussed in the context of a model that considers chromosomes as determinants of neutrophil nuclear morphology.  相似文献   

2.
3.
The radial positions of the centromeric regions of chromosomes 1 and X were determined in normal male fibroblasts (XY) and in fibroblasts from a patient with a rare case of XXXXY polysomy. The centromeric regions and presumably the whole territories of active X chromosomes were demonstrated to occupy similar, although not identical, positions in XY and XXXXY cells. The centromeres of inactive X chromosomes (Barr bodies) were located closer to the nuclear periphery as compared with the centromeres of active X chromosomes. In addition, it was established that the nuclear radial position of gene-rich chromosome 1 was changed in XXXXY cells as compared to normal XY cells. The data are discussed in the context of the hypothesis postulating that changes in nuclear positioning of chromosomal territories induced by the presence of extra copies of individual chromosomes may contribute to the development of diseases related to different polysomies.  相似文献   

4.
Radial positions of centromeres of human chromosomes X, 1, and 19 were determined in the nuclei of primary fibroblasts before and after removal of 60%-80% of chromatin. It has been demonstrated that the specific radial positions of these centromeres (more central for the chromosome 19 centromere and more peripheral for the centromeres of chromosomes 1 and X) remain unchanged in chromatin-depleted nuclei. Additional digestion of nuclear RNA did not influence this specific distribution. These results strongly suggest that the characteristic organization of interphase chromosomes is supported by the proteinous nuclear matrix and is not maintained by simple repulsing of negatively charged chromosomes.  相似文献   

5.
The structural organisation of chromatin in eukaryotes plays an important role in a number of biological processes. Our results provide a comprehensive insight into the nuclear topography of human peripheral blood granulocytes, mainly neutrophils. The nuclei of granulocytes are characterised by a segmented shape consisting of two to five lobes that are in many cases connected by a thin DNA-containing filament. The segregation of chromosomes into the nuclear lobes was studied using fluorescence in situ hybridisation (FISH). We were able to distinguish different topographic types of granulocytes on the basis of the pattern of segregation. Five topographic types were detected using dual-colour FISH in two-lobed nuclei. The segregation of four sets of genetic structures could be studied with the aid of repeated FISH and a large number of topographic types were observed. In all these experiments a non-random distribution of chromosomes into nuclear lobes was found. The painting of a single type of chromosome in two-lobed nuclei showed the prevalence of symmetric topographic types (on average in 65.5% of cases) with significant variations among individual chromosomes. The results of analysis of five topographic types (defined by two chromosomes in two-lobed nuclei) showed that the symmetric topographic types for both chromosomes are significantly more frequent than predicted. Repeated hybridisation experiments confirmed that the occurrence of certain patterns of chromosome segregation is much higher than that predicted from the combination of probabilities. The frequency of symmetric topographic types for chromosome domains was systematically higher than for genes located on these chromosomes. It appears that the prevalence of symmetric segregation patterns is more probable for large objects such as chromosome domains than for genes located on chromatin loops extending outwards from the surface of the domain defined by specific chromosome paints. This means that one chromosome domain may occur in different lobes of granulocytic nuclei. This observation is supported by the fact that both genes and centromeres were observed on filaments joining different lobes. For all chromosomes, the distances between the membrane and fluorescence gravity centre of the chromosome were measured and correlated with the segregation patterns. A higher percentage of symmetric topographic types was found in those chromosomes that were located closer to the nuclear membrane. Nuclear positioning of all genetic elements in granulocytic nuclei was studied in two-dimensional projection; however, the results were verified using three-dimensional analysis.  相似文献   

6.
Nuclear and territorial positioning of p- and q-telomeres and centromeres of chromosomes 3, 8, 9, 13, and 19 were studied by repeated fluorescence in situ hybridization, high-resolution cytometry, and three-dimensional image analysis in human blood lymphocytes before and after stimulation. Telomeres were found on the opposite side of the territories as compared with the centromeres for all chromosome territories investigated. Mutual distances between telomeres of submetacentric chromosomes were very short, usually shorter than centromere-to-telomere distances, which means that the chromosome territory is nonrandomly folded. Telomeres are, on average, much nearer to the center of the cell nucleus than centromeres; q-telomeres were found, on average, more centrally localized as compared with p-telomeres. Consequently, we directly showed that chromosome territories in the cell nucleus are (1) polar and (2) partially oriented in cell nuclei. The distributions of genetic elements relative to chromosome territories (territorial distributions) can be either narrower or broader than their nuclear distributions, which reflects the degree of adhesion of an element to the territory or to the nucleus. We found no tethering of heterologous telomeres of chromosomes 8, 9, and 19. In contrast, both pairs of homologous telomeres of chromosome 19 (but not in other chromosomes) are tethered (associated) very frequently.  相似文献   

7.
In mammals, the non-random organization of the sperm nucleus supports an early function during embryonic development. Altering this organization may interfere with the zygote development and reduce fertility or prolificity. Thus, rare studies on sperm cells from infertile patients described an altered nuclear organization that may be a cause or a consequence of their respective pathologies. Thereby, chromosomal rearrangements and aneuploidy can be studied not only for their adverse effects on production of normal/balanced gametes at meiosis but also for their possible impact on sperm nuclear architecture and the epigenetic consequences of altered chromosome positioning. We decided to compare the global architecture of sperm nuclei from boars, either with a normal chromosome composition or with a Robertsonian translocation involving chromosomes 13 and 17. We hypothesized that the fusion between these chromosomes may change their spatial organization and we examined to what extend it could also modify the global sperm nuclear architecture. Analysis of telomeres, centromeres and gonosomes repartition does not support a global nuclear disorganization. But specific analysis of chromosomes 13 and 17 territories highlights an influence of chromosome 17 for the positioning of the fused chromosomes within the nucleus. We also observed a specific clustering of centromeres depending of the chromosome subtypes. Altogether our results showed that chromosome fusion does not significantly alter sperm nucleus architecture but suggest that centromere remodelling after chromosome fusion locally impacts chromosome positioning.  相似文献   

8.
The initiation and progression of homologous chromosome pairing at meiosis were investigated in female mice. The proximal end of the X chromosome was identified in fetal oocytes using fluorescence in situ hybridisation with the repeat copy probe 70-38. The X centromeres appeared to be randomly positioned in the nuclei from pre-meiotic interphase to leptotene. The observations indicated no pre-synaptic association for the proximal end of the X chromosome. There was a significant increase in the number of paired X centromeres from mid-zygotene to late zygotene. The proximal end of the X chromosome is therefore a generally late pairing region with no significant association seen before mid-zygotene. The centromeric heterochromatin of all chromosomes could be seen to associate into varying numbers of clusters during pre-leptotene through to pachytene. These clusters do not seem to be directly involved in bringing homologues together, as X centromeres did not consistently localise to the same cluster. Received: 1 August 1996; in revised form: 1 June 1997 / Accepted: 1 June 1997  相似文献   

9.
Nuclei isolated from normal human brain tissue, collected from six autopsies, were hybridized with a panel of nine satellite DNA probes specific for the centromeric regions of chromosomes 1, 6, 7, 10, 11, 17, 18, and the X and Y chromosomes. The results did not confirm the recently reported trisomy 7 and loss of sex chromosomes observed in metaphases obtained from normal brain tissue after short-term cultures; however, cells of all six brains displayed somatic pairing of the chromosome 17 centromeres in approximately 50% of the nuclei.  相似文献   

10.
Plasmid libraries enriched in sequences from single chromosome types have been constructed for all human chromosomes. This was accomplished by transferring inserts from the Charon 21A phage libraries constructed by the National Laboratory Gene Library Project into Bluescribe plasmids. Insert material freed by complete digestion of the phage libraries with HindIII or EcoRI was cloned into the corresponding sites in Bluescribe plasmids. The sizes of the Bluescribe library inserts determined by gel electrophoresis range from near 0 to approximately 6 kb. Fluorescence in situ hybridization (FISH) with the plasmid libraries showed that all hybridize along both arms of the expected (target) chromosome type with varying intensity. However, the plasmid libraries for chromosomes 1, 4, 9, 11, 16, 18, and 20 hybridize weakly or not at all near the centromeres of the target chromosome types. The libraries for chromosomes 13, 14, 15, 21, and 22 cross-hybridize near the centromeres of all members of this group and hybridize weakly to the short arms of the target chromosomes. FISH with each library allows specific staining of the target chromosome type in metaphase spreads. The signals resulting from FISH with libraries for chromosomes 1, 4, 8, 9, 13, 14, 17, 18, 21, and Y are sufficiently intense to permit analysis in interphase nuclei. Examples of the use of these libraries for translocation detection, marker chromosome characterization, and interphase aneuploidy analysis are presented.  相似文献   

11.
12.
Two simple sequence repeats (SSRs), AG and AC, were mapped directly in the metaphase chromosomes of man and barley (Hordeum vulgare L.), and in the metaphase and polytene chromosomes of Drosophila melanogaster. To this end, synthetic oligonucleotides corresponding to (AG)(12) and (AC)(8) were labelled by the random primer technique and used as probes in fluorescent in situ hybridisation (FISH) under high stringency and strict washing conditions. The distribution and intensity of the signals for the repeat sequences were found to be characteristic of the chromosomes and genomes of the three species analysed. The AC repeat sites were uniformly dispersed along the euchromatic segments of all three genomes; in fact, they were largely excluded from the heterochromatin. The Drosophila genome showed a high density of AC sequences on the X chromosome in both mitotic and polytene nuclei. In contrast, the AG repeats were associated with the euchromatic regions of the polytene chromosomes (and in high density on the X chromosome), but were only seen in specific heterochromatic regions in the mitotic chromosomes of all three species. In Drosophila, the AG repeats were exclusively distributed on the tips of the Y chromosome and near the centromere on both arms of chromosome 2. In barley and man, AG repeats were associated with the centromeres (of all chromosomes) and nucleolar organizer regions, respectively. The conserved chromosome distribution of AC within and between these three phylogenetically distant species, and the association of AG in specific chromosome regions with structural or functional properties, suggests that long clusters of these repeats may have some, as yet unknown, role.  相似文献   

13.
To study 3D nuclear distributions of epigenetic histone modifications such as H3(K9) acetylation, H3(K4) dimethylation, H3(K9) dimethylation, and H3(K27) trimethylation, and of histone methyltransferase Suv39H1, we used advanced image analysis methods, combined with Nipkow disk confocal microscopy. Total fluorescence intensity and distributions of fluorescently labelled proteins were analyzed in formaldehyde-fixed interphase nuclei. Our data showed reduced fluorescent signals of H3(K9) acetylation and H3(K4) dimethylation (di-me) at the nuclear periphery, while di-meH3(K9) was also abundant in chromatin regions closely associated with the nuclear envelope. Little overlapping (intermingling) was observed for di-meH3(K4) and H3(K27) trimethylation (tri-me), and for di-meH3(K9) and Suv39H1. The histone modifications studied were absent in the nucleolar compartment with the exception of H3(K9) dimethylation that was closely associated with perinucleolar regions which are formed by centromeres of acrocentric chromosomes. Using immunocytochemistry, no di-meH3(K4) but only dense di-meH3(K9) was found for the human acrocentric chromosomes 14 and 22. The active X chromosome was observed to be partially acetylated, while the inactive X was more condensed, located in a very peripheral part of the interphase nuclei, and lacked H3(K9) acetylation. Our results confirmed specific interphase patterns of histone modifications within the interphase nuclei as well as within their chromosome territories.  相似文献   

14.
During interphase chromosomes decondense, but fluorescent in situ hybridization experiments reveal the existence of distinct territories occupied by individual chromosomes inside the nuclei of most eukaryotic cells. We use computer simulations to show that the existence and stability of territories is a kinetic effect that can be explained without invoking an underlying nuclear scaffold or protein-mediated interactions between DNA sequences. In particular, we show that the experimentally observed territory shapes and spatial distances between marked chromosome sites for human, Drosophila, and budding yeast chromosomes can be reproduced by a parameter-free minimal model of decondensing chromosomes. Our results suggest that the observed interphase structure and dynamics are due to generic polymer effects: confined Brownian motion conserving the local topological state of long chain molecules and segregation of mutually unentangled chains due to topological constraints.  相似文献   

15.
A de novo dicentric Y;21 (q11.23;p11) translocation chromosome with one of its two centromeres inactive has provided the opportunity to study the relationship between centromeric inactivation, the organization of alphoid satellite DNA and the distribution of CENP-C. The proband, a male with minor features of Down’s syndrome, had a major cell line with 45 chromosomes including a single copy of the translocation chromosome, and a minor one with 46 chromosomes including two copies of the translocation chromosome and hence effectively trisomic for the long arm of chromosome 21. Centromeric activity as defined by the primary constriction was variable: in most cells with a single copy of the Y;21 chromosome, the Y centromere was inactive. In the cells with two copies, one copy had an active Y centromere (chromosome 21 centromere inactive) and the other had an inactive Y centromere (chromosome 21 centromere active). Three different partial deletions of the Y alphoid array were found in skin fibroblasts and one of these was also present in blood. Clones of single cell origin from fibroblast cultures were analysed both for their primary constriction and to characterise their alphoid array. The results indicate that (1) each clone showed a fixed pattern of centromeric activity; (2) the alphoid array size was stable within a clone; and (3) inactivation of the Y centromere was associated with both full-sized and deleted alphoid arrays. Selected clones were analysed with antibodies to CENP-C, and staining was undetectable at both intact and deleted arrays of the inactive Y centromeres. Thus centromeric inactivation appears to be largely an epigenetic event. Received: 30 January 1997; in revised form: 3 April 1997 / Accepted: 8 May 1997  相似文献   

16.
We have isolated and characterized DNA probes that detect homologies between the X and Y chromosomes. Clone St25 is derived from the q13-q22 region of the X chromosome and recognizes a 98% homologous sequence on the Y chromosome. Y specific fragments were present in DNAs from 5 Yq-individuals and from 4 out of 7 XX males analysed. An X linked TaqI RFLP is detected with the St25 probe (33% heterozygosity) which should allow one to establish a linkage map including other polymorphic X-Y homologous sequences in this region and to compare it to a Y chromosome deletion map. Probe DXS31 located in Xp223-pter detects a 80% homologous sequence in the Y chromosome. The latter can be assigned to Yq11-qter outside the region which contains the Y specific satellite sequences. ACT1 and ACT2, the actin sequences present on the X and Y chromosomes respectively, have been cloned. No homology was detected between the X and Y derived fragments outside from the actin sequence. ACT2 and the Y specific sequence corresponding to DXS31 segregate together in a panel of Y chromosomes aberrations, and might be useful markers for the region important for spermatogenesis in Yq. Various primate species were analysed for the presence of sequences homologous to the three probes. Sequences detected by St25 and DXS31 are found only on the X chromosome in cercopithecoidae. The sequences which flank ACT2 detect in the same species autosomal fragments but no male specific fragments. It is suggested that the Y chromosome acquired genetic material from the X chromosome and from autosomes at various times during primate evolution.  相似文献   

17.
Marsupial sex chromosomes are smaller than their eutherian counterparts and are thought to reflect an ancestral mammalian X and Y. The gene content of this original X is represented largely by the long arm of the human X chromosome. Genes on the short arm of the human X are autosomal in marsupials and monotremes, and represent a recent addition to the eutherian X and Y. The marsupial X and Y apparently lack a pseudoautosomal region and show only end-to-end pairing at meiosis. However, the sex chromosomes of macropodid marsupials (kangaroos and wallabies) are larger than the sex chromosomes of other groups, and a nucleolus organizer is present on the X and occasionally the Y. Chromosome painting using DNA from sorted and microdissected wallaby X and Y chromosomes reveals homologous sequences on the tammar X and Y chromosomes, concentrated on the long arm of the Y chromosome and short arm of the X. Ribosomal DNA sequences were detected by fluorescence in situ hybridization on the wallaby Xp but not the Y. Since no chiasmata have been observed in marsupial sex chromosomes, it is unlikely that these shared sequences act as a pseudoautosomal region within which crossing over may occur, but they may be required for end-to-end associations. The shared region of wallaby X and Y chromosomes bears no homology with the recently added region of the eutherian sex chromosomes, so we conclude that independent additions occurred to both sex chromosomes in a eutherian and macropodid ancestor, as predicted by the addition-attrition hypothesis of sex chromosome evolution. Received: 18 October 1996 / Accepted: 21 February 1997  相似文献   

18.
Indirect immunofluorescence staining with human anti-centromere autoantibodies from a patient (LU 851) suffering from the CREST form of scleroderma was used to analyse chromosome topology in interphase nuclei of rat-kangaroo (PTO) and Indian muntjac (IM) cells. In some cells, centromeres were arranged in pairs suggesting association of homologous chromosomes. Clustering of centromeres at one pole of the nucleus (Rabl configuration) and other patterns suggesting higher order organization were also observed. In one fifth of the IM cells it was possible to identify the intranuclear location of each single chromosome on the basis of the morphology of the immunostained centromeres. In 30% of the IM cells in which centromeres could be identified, homologous chromosomes occupied adjacent territories within the interphase chromatin.  相似文献   

19.
Leo Sachs  Mathilde Danon 《Genetica》1957,28(1):201-216
Summary The nuclei in the skin, and in the neutrophils, have been studied in men and women, in relation to a diagnosis of the sex chromosomes in non-dividing nuclei.It has been shown in the skin, that the appearance of chromocenters, which are presumably formed by the X and Y, can vary according to metabolic conditions, but that a determination of the percent of nuclei with different numbers of chromocenters and nucleoli in the young and old spinous cells, gives a characteristic distribution of nuclear types in each of the two sexes.Since such a determination includes cells with individual X and Y chromocenters, it should be possible to detect by this method not only cases that are XX or XY, but also cases with abnormal sex chromosome constitutions.  相似文献   

20.
It is evident that primary DNA sequences, that define genomes, are responsible for genome functions. However, the functional properties of chromatin are additionally regulated by heritable modifications known as epigenetic factors and, therefore, genomes should be also considered with respect to their 'epigenomes'. Nucleosome remodelling, DNA methylation and histone modifications are the most prominent epigenetic changes that play fundamental roles in the chromatin-mediated control of gene expression. Another important nuclear feature with functional relevance is the organization of mammalian chromatin into distinct chromosome territories which are surrounded by the interchromatin compartment that is necessary for transport of regulatory molecules to the targeted DNA. The inner structure of the chromosome territories, as well as the arrangement of the chromosomes within the interphase nuclei, has been found to be non-randomly organized. Therefore, a specific nuclear arrangement can be observed in many cellular processes, such as differentiation and tumour cell transformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号