首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pseudomonas strain LB400 is able to degrade an unusually wide variety of polychlorinated biphenyls (PCBs). A genomic library of LB400 was constructed by using the broad-host-range cosmid pMMB34 and introduced into Escherichia coli. Approximately 1,600 recombinant clones were tested, and 5 that expressed 2,3-dihydroxybiphenyl dioxygenase activity were found. This enzyme is encoded by the bphC gene of the 2,3-dioxygenase pathway for PCB-biphenyl metabolism. Two recombinant plasmids encoding the ability to transform PCBs to chlorobenzoic acids were identified, and one of these, pGEM410, was chosen for further study. The PCB-degrading genes (bphA, -B, -C, and -D) were localized by subcloning experiments to a 12.4-kilobase region of pGEM410. The ability of recombinant strains to degrade PCBs was compared with that of the wild type. In resting-cell assays, PCB degradation by E. coli strain FM4560 (containing a pGEM410 derivative) approached that of LB400 and was significantly greater than degradation by the original recombinant strain. High levels of PCB metabolism by FM4560 did not depend on the growth of the organism on biphenyl, as it did for PCB metabolism by LB400. When cells were grown with succinate as the carbon source, PCB degradation by FM4560 was markedly superior to that by LB400.  相似文献   

2.
All the genes we examined that encoded biphenyl/polychlorinated biphenyl (PCB) degradation were chromosomal, unlike many other degradation-encoding genes, which are plasmid borne. The molecular relationship of genes coding for biphenyl/PCB catabolism in various biphenyl/PCB-degrading Pseudomonas, Achromobacter, Alcaligenes, Moraxella, and Arthrobacter strains was investigated. Among 15 strains tested, 5 Pseudomonas strains and one Alcaligenes strain possessed the bphABC gene cluster on the XhoI 7.2-kilobase fragment corresponding to that of Pseudomonas pseudoalcaligenes KF707. More importantly, the restriction profiles of these XhoI 7.2-kilobase fragments containing bphABC genes were very similar, if not identical, despite the dissimilarity of the flanking chromosomal regions. Three other strains also possessed bphABC genes homologous with those of KF707, and five other strains showed weak or no significant genetic homology with bphABC of KF707. The immunological cross-reactivity of 2,3-dihydroxybiphenyl dioxygenases from various strains corresponded well to the DNA homology. On the other hand, the bphC gene of another PCB-degrading strain, Pseudomonas paucimobilis Q1, lacked genetic as well as immunological homology with any of the other 15 biphenyl/PCB degraders tested. The existence of the nearly identical chromosomal genes among various strains may suggest that a segment containing the bphABC genes has a mechanism for transferring the gene from one strain to another.  相似文献   

3.
Biphenyl dioxygenase catalyzes the first step in the aerobic degradation of polychlorinated biphenyls (PCBs). The nucleotide and amino acid sequences of the biphenyl dioxygenases from two PCB-degrading strains (Pseudomonas sp. strain LB400 and Pseudomonas pseudoalcaligenes KF707) were compared. The sequences were found to be nearly identical, yet these enzymes exhibited dramatically different substrate specificities for PCBs. Site-directed mutagenesis of the LB400 bphA gene resulted in an enzyme combining the broad congener specificity of LB400 with increased activity against several congeners characteristic of KF707. These data strongly suggest that the BphA subunit of biphenyl dioxygenase plays an important role in determining substrate selectivity. Further alteration of this enzyme can be used to develop a greater understanding of the structural basis for congener specificity and to broaden the range of degradable PCB congeners.  相似文献   

4.
Approximately equal numbers of bacteria were isolated from primarily tropical soils by growth on biphenyl and naphthalene to compare their competence in polychlorinated biphenyl (PCB) degradation. The strains isolated by growth on biphenyl catalyzed more extensive PCB degradation than the strains isolated by growth on naphthalene, suggesting that naphthalene cocontamination may be only partially effective in stimulating the cometabolism of lower chlorinated PCBs. Probes were made from the bph, nah, and tod genes encoding the large iron iron sulfur protein of the dioxygenase complex and hybridized to 19 different strains. The hybridization patterns did not correlate well with the substrates of isolation, suggesting that there is considerable diversity in these genes in nature and that probe hybridization is not a reliable indication of catabolic capacity. The strains with the most extensive PCB degradation capacity did strongly hybridize to the bph probe, but a few strains that exhibited strong hybridization had poor PCB-degrading ability. Of the 19 strains studied, 5 hybridized to more than one probe and 2, including one strong PCB degrader, hybridized to all three probes. Southern blots showed that the bph and nah probes hybridized to separate bands, suggesting that multiple dioxygenases were present. Multiple dioxygenases may be an important feature of competitive decomposers in nature and hence may not be rare. Most of the isolates identified were members of the beta subgroup of the Proteobacteria, a few were gram positive, and none were true Pseudomonas species.  相似文献   

5.
6.
The abundance, identities, and degradation abilities of indigenous polychlorinated biphenyl (PCB)-degrading bacteria associated with five species of mature trees growing naturally in a contaminated site were investigated to identify plants that enhance the microbial PCB degradation potential in soil. Culturable PCB degraders were associated with every plant species examined in both the rhizosphere and root zone, which was defined as the bulk soil in which the plant was rooted. Significantly higher numbers of PCB degraders (2.7- to 56.7-fold-higher means) were detected in the root zones of Austrian pine (Pinus nigra) and goat willow (Salix caprea) than in the root zones of other plants or non-root-containing soil in certain seasons and at certain soil depths. The majority of culturable PCB degraders throughout the site and the majority of culturable PCB degraders associated with plants were identified as members of the genus Rhodococcus by 16S rRNA gene sequence analysis. Other taxa of PCB-degrading bacteria included members of the genera Luteibacter and Williamsia, which have not previously been shown to include PCB degraders. PCB degradation assays revealed that some isolates from the site have broad congener specificities; these isolates included one Rhodococcus strain that exhibited degradation abilities similar to those of Burkholderia xenovorans LB400. Isolates with broad congener specificity were widespread at the site, including in the biostimulated root zone of willow. The apparent association of certain plant species with increased abundance of indigenous PCB degraders, including organisms with outstanding degradation abilities, throughout the root zone supports the notion that biostimulation through rhizoremediation is a promising strategy for enhancing PCB degradation in situ.  相似文献   

7.
Summary The microbial populations in PCB-contaminated electric power substation capacitor bank soil (TVA soil) and from another PCB-contaminated site (New England soil) were compared to determine their potential to degrade PCB. Known biphenyl operon genes were used as gene probes in colony hybridizations and in dot blots of DNA extracted from the soil to monitor the presence of PCB-degrading organisms in the soils. The microbial populations in the two soils differed in that the population in New England soil was enriched by the addition of 1000 p.p.m. 2-chlorobiphenyl (2-CB) whereas the population in the TVA capacitor bank soil was not affected. PCB degradative activity in the New England soil was indicated by a 50% PCB disappearance (gas chromatography), accumulation of chlorobenzoates (HPLC), and14CO2 evolution from14C-2CB. The PCB-degrading bacteria in the New England soil could be identified by their positive hybridization to thebph gene probes, their ability to produce the yellowmeta-cleavage product from 2,3-dihydroxybiphenyl (2,3-DHB), and the degradation of specific PCB congeners by individual isolates in resting cell assays. Although the TVA capacitor bank soil lacked effective PCB-degrading populations, addition of a PCB-degrading organism and 10 000 p.p.m. biphenyl resulted in a >50% reduction of PCB levels. Molecular characterization of soil microbial populations in laboratory scale treatments is expected to be valuable in the design of process monitoring and performance verification approaches for full scale bioremediation.  相似文献   

8.
The polychlorinated biphenyl (PCB) congener specificities and partial BphA sequences of biphenyl dioxygenase were determined for a set of PCB-degrading bacteria. The strains examined were categorized into two groups based on their ability to degrade 17 PCB congeners. Strains that degraded a broad range of PCBs but had relatively weak activity against di-para-substituted PCBs were designated as having an LB400-type specificity. Strains designated as having a KF707-type specificity degraded a much narrower range of PCBs but had strong activity against certain di-para-substituted congeners. BphA protein sequence comparisons between these two types of strains identified four regions (designated I, II, III, and IV) in which specific sequences were consistently associated with either broad or narrow PCB substrate specificity. The dramatic differences in substrate specificity between LB400 and KF707 appear to result primarily from a combination of mutations in regions III and IV. Altering these regions in the LB400 BphA subunit to correspond to those in the KF707 sequence produced a narrow substrate specificity very similar to that of KF707. Some individual mutations within region III alone were found to improve PCB degradative activity, especially for di-para-substituted congeners. However, the greatest improvements in activity resulted from multiple amino acid modifications in region III, suggesting that the effects of these mutations are cooperative. These results demonstrate the ability to significantly improve PCB oxidative activity through sequence modifications of biphenyl dioxygenase.  相似文献   

9.
The abundance, identities, and degradation abilities of indigenous polychlorinated biphenyl (PCB)-degrading bacteria associated with five species of mature trees growing naturally in a contaminated site were investigated to identify plants that enhance the microbial PCB degradation potential in soil. Culturable PCB degraders were associated with every plant species examined in both the rhizosphere and root zone, which was defined as the bulk soil in which the plant was rooted. Significantly higher numbers of PCB degraders (2.7- to 56.7-fold-higher means) were detected in the root zones of Austrian pine (Pinus nigra) and goat willow (Salix caprea) than in the root zones of other plants or non-root-containing soil in certain seasons and at certain soil depths. The majority of culturable PCB degraders throughout the site and the majority of culturable PCB degraders associated with plants were identified as members of the genus Rhodococcus by 16S rRNA gene sequence analysis. Other taxa of PCB-degrading bacteria included members of the genera Luteibacter and Williamsia, which have not previously been shown to include PCB degraders. PCB degradation assays revealed that some isolates from the site have broad congener specificities; these isolates included one Rhodococcus strain that exhibited degradation abilities similar to those of Burkholderia xenovorans LB400. Isolates with broad congener specificity were widespread at the site, including in the biostimulated root zone of willow. The apparent association of certain plant species with increased abundance of indigenous PCB degraders, including organisms with outstanding degradation abilities, throughout the root zone supports the notion that biostimulation through rhizoremediation is a promising strategy for enhancing PCB degradation in situ.  相似文献   

10.
Several DNA probes for polychlorinated biphenyl (PCB)-degrading genotypes were constructed from PCB-degrading bacteria. These laboratory-engineered DNA probes were used for the detection, enumeration, and isolation of specific bacteria degrading PCBs. Dot blot analysis of purified DNA from toxic organic chemical-contaminated soil bacterial communities showed positive DNA-DNA hybridization with a 32P-labeled DNA probe (pAW6194, cbpABCD). Less than 1% of bacterial colonies isolated from garden topsoil and greater than 80% of bacteria isolated from PCB-contaminated soils showed DNA homologies with 32P-labeled DNA probes. Some of the PCB-degrading bacterial isolates detected by the DNA probe method did not show biphenyl clearance. The DNA probe method was found to detect additional organisms with greater genetic potential to degrade PCBs than the biphenyl clearance method did. Results from this study demonstrate the usefulness of DNA probes in detecting specific PCB-degrading bacteria, abundance of PCB-degrading genotypes, and genotypic diversity among PCB-degrading bacteria in toxic chemical-polluted soil environments. We suggest that the DNA probe should be used with caution for accurate assessment of PCB-degradative capacity within soils and further recommend that a combination of DNA probe and biodegradation assay be used to determine the abundance of PCB-degrading bacteria in the soil bacterial community.  相似文献   

11.
Several DNA probes for polychlorinated biphenyl (PCB)-degrading genotypes were constructed from PCB-degrading bacteria. These laboratory-engineered DNA probes were used for the detection, enumeration, and isolation of specific bacteria degrading PCBs. Dot blot analysis of purified DNA from toxic organic chemical-contaminated soil bacterial communities showed positive DNA-DNA hybridization with a 32P-labeled DNA probe (pAW6194, cbpABCD). Less than 1% of bacterial colonies isolated from garden topsoil and greater than 80% of bacteria isolated from PCB-contaminated soils showed DNA homologies with 32P-labeled DNA probes. Some of the PCB-degrading bacterial isolates detected by the DNA probe method did not show biphenyl clearance. The DNA probe method was found to detect additional organisms with greater genetic potential to degrade PCBs than the biphenyl clearance method did. Results from this study demonstrate the usefulness of DNA probes in detecting specific PCB-degrading bacteria, abundance of PCB-degrading genotypes, and genotypic diversity among PCB-degrading bacteria in toxic chemical-polluted soil environments. We suggest that the DNA probe should be used with caution for accurate assessment of PCB-degradative capacity within soils and further recommend that a combination of DNA probe and biodegradation assay be used to determine the abundance of PCB-degrading bacteria in the soil bacterial community.  相似文献   

12.
We investigated induction of biphenyl dioxygenase in the psychrotolerant polychlorinated biphenyl (PCB) degrader Pseudomonas strain Cam-1 and in the mesophilic PCB degrader Burkholderia strain LB400. Using a counterselectable gene replacement vector, we inserted a lacZ-Gm(r) fusion cassette between chromosomal genes encoding the large subunit (bphA) and small subunit (bphE) of biphenyl dioxygenase in Cam-1 and LB400, generating Cam-10 and LB400-1, respectively. Potential inducers of bphA were added to cell suspensions of Cam-10 and LB400-1 incubated at 30 degrees C, and then beta-galactosidase activity was measured. Biphenyl induced beta-galactosidase activity in Cam-10 to a level approximately six times greater than the basal level in cells incubated with pyruvate. In contrast, the beta-galactosidase activities in LB400-1 incubated with biphenyl and in LB400-1 incubated with pyruvate were indistinguishable. At a concentration of 1 mM, most of the 40 potential inducers tested were inhibitory to induction by biphenyl of beta-galactosidase activity in Cam-10. The exceptions were naphthalene, salicylate, 2-chlorobiphenyl, and 4-chlorobiphenyl, which induced beta-galactosidase activity in Cam-10, although at levels that were no more than 30% of the levels induced by biphenyl. After incubation for 24 h at 7 degrees C, biphenyl induced beta-galactosidase activity in Cam-10 to a level approximately four times greater than the basal level in cells incubated with pyruvate. The constitutive level of beta-galactosidase activity in LB400-1 grown at 15 degrees C was approximately five times less than the level in LB400-1 grown at 30 degrees C. Thus, there are substantial differences in the effects of physical and chemical environmental conditions on genetic regulation of PCB degradation in different bacteria.  相似文献   

13.
Burkholderia xenovorans LB400是一株多氯联苯(polychlorinated biphenyls,PCBs)降解菌,可以氧化含有1?6个氯取代基的多氯联苯。近年来,由于其广泛的底物谱和优异的降解性能,菌株LB400已成为研究原核生物降解多氯联苯的生物化学和分子生物学方面的模式生物。目前关于PCBs的微生物降解研究已不再局限于对微生物资源的挖掘,而是更多地聚焦在LB400等降解菌的PCBs降解基因、降解酶的酶学特性以及酶的人工分子进化等方面。同时,LB400作为早期发现的降解菌,其对多氯联苯的降解途径、底物范围及相关机制也被广泛探讨;但是对于PCBs降解相关基因的调控研究较少。因此,本文以Burkholderia xenovorans LB400对多氯联苯降解为核心,通过综述其代谢途径、代谢相关基因和酶系以及降解应用等方面的研究进展,以期为深入探讨Burkholderia xenovorans LB400的应用以及进一步在遗传、分子和生化水平研究其他多氯联苯降解菌株提供借鉴。  相似文献   

14.
Biphenyl-utilizing polychlorinated biphenyls (PCB)-degrading bacteria were isolated from sites highly contamined by PCBs, and their degradation abilities were determined using GC for typical commercial PCB mixtures (Delor 103 and Delor 106). Out of twelve strains which utilized biphenyl as a sole source of carbon and energy, strainsPseudomonas alcaligenes KP2 andP. fluorescens KP12, characterized by the BIOLOG identification system and the NEFERM test, were shown to significantly co-metabolize the PCB mixture Delor 103. DNA-DNA hybridization was used to compare both strains with well-known PCB-degradersBurkholderia cepacia strain LB400 andRalstonia eutropha strain H850. The strain KP12 employs the samemeta-fission route for degradation of chlorobenzoates as a chlorobiphenyl degraderPseudomonas cepacia P166. Both isolates KP2 and KP12 belong to different phylogenetic groups, which indicates that the same geographical location does not ensure the same ancestor of degradative enzymes. We confirmed that also highly chlorinated and the most toxic congeners, which are contained in commercial PCB mixtures, can be biotransformed by members of indigenous bacterial-soil community under aerobic conditions.  相似文献   

15.
Bacterial metabolism of polychlorinated biphenyls   总被引:2,自引:0,他引:2  
Microbial metabolism is responsible for the removal of persistent organic pollutants including PCBs from the environment. Anaerobic dehalogenation of highly chlorinated congeners in aquatic sediments is an important process, and recent evidence has indicated that Dehalococcoides and related organisms are predominantly responsible for this process. Such anaerobic dehalogenation generates lower chlorinated congeners which are easily degraded aerobically by enzymes of the biphenyl upper pathway (bph). Initial biphenyl 2,3-dioxygenases are generally considered the key enzymes of this pathway which determine substrate range and extent of PCB degradation. These enzymes have been subject to different protein evolution strategies, and subsequent enzymes have been considered as crucial for metabolism. Significant advances have been made regarding the mechanistic understanding of these enzymes, which has also included elucidation of the function of BphK glutathione transferase. So far, the genomes of two important PCB-metabolizing organisms, namely Burkholderia xenovorans strain LB400 and Rhodococcus sp. strain RHA1, have been sequenced, with the rational to better understand their overall physiology and evolution. Genomic and proteomic analysis also allowed a better evaluation of PCB toxicity. Like all bph gene clusters which have been characterized in detail, particularly in strains LB400 and RHA1, these genes were localized on mobile genetic elements endowing single strains and microbial communities with a high flexibility and adaptability. However, studies show that our knowledge on enzymes and genes involved in PCB metabolism is still rather fragmentary and that the diversity of bacterial strategies is highly underestimated. Overall, metabolism of biphenyl and PCBs should not be regarded as a simple linear pathway, but as a complex interplay between different catabolic gene modules.  相似文献   

16.
Molecular genetics and evolutionary relationship of PCB-degrading bacteria   总被引:20,自引:0,他引:20  
Biphenyl-utilizing soil bacteria are ubiquitously distributed in the natural environment. They cometabolize a variety of polychlorinated biphenyl (PCB) congeners to chlorobenzoic acids through a 2,3-dioxygenase pathway, or alternatively through a 3,4-dioxygenase system. Thebph genes coding for the metabolism of biphenyl have been cloned from several pseudomonads. The biochemistry and molecular genetics of PCB degradation are reviewed and discussed from the viewpoint of an evolutionary relationship.Abbreviations BP biphenyl - bph BP/PCB-degradative gene - 23DHBP 2,3-dihydroxybiphenyl - HPDA 2-hydroxy-6-oxo-6-phenylhexa 2,4-dienoic acid - KF707 P. pseudoalcaligenes strain KF707 - LB400 Pseudomonas sp. strain LB400 - PCB polychlorinated biphenyls - Q1 P. paucimobilis strain Q1tod; toluene catabolic gene  相似文献   

17.
18.
An indigenous polychlorinated biphenyl (PCB)-degrading bacterial consortium was obtained from soils contaminated by transformer oil with a high content of PCBs. The PCB degrader strains were isolated and identified as Brevibacterium antarcticum, Pandoraea pnomenusa, and Ochrobactrum intermedium by 16S rRNA gene sequence phylogenetic analysis. The PCB-degrading ability of the consortium and of individual strains was determined by using GC/MS. The PCB-degrading capacities of the consortium were evaluated for three concentrations of transfomer oil ranging from 55 to 152 μM supplemented with 0.001% biphenyl and 0.1% of Tween 80 surfactant. PCB biodegradation by the consortium was favored in the presence of both additives and the greatest extent of biodegradation (67.5%) was obtained at a PCB concentration of 55 μM. Each bacterial species exhibited a particular pattern of degradation relating to specific PCB congeners. Isolated strains showed a moderate degradation capability towards tetra-, hepta-, and octa-chlorobiphenyls; although no effect on penta-, hexa-, and nona-chlorobiphenyls was observed. Recently, PCB degradation capacity was recognized in a Pandorea member; however, this is the first study that describes the ability of Brevibacterium and Ochrobactrum species to degrade PCBs.  相似文献   

19.
N Kimura  A Nishi  M Goto    K Furukawa 《Journal of bacteriology》1997,179(12):3936-3943
The biphenyl dioxygenases (BP Dox) of strains Pseudomonas pseudoalcaligenes KF707 and Pseudomonas cepacia LB400 exhibit a distinct difference in substrate ranges of polychlorinated biphenyls (PCB) despite nearly identical amino acid sequences. The range of congeners oxidized by LB400 BP Dox is much wider than that oxidized by KF707 BP Dox. The PCB degradation abilities of these BP Dox were highly dependent on the recognition of the chlorinated rings and the sites of oxygen activation. The KF707 BP Dox recognized primarily the 4'-chlorinated ring (97%) of 2,5,4'-trichlorobiphenyl and introduced molecular oxygen at the 2',3' position. The LB400 BP Dox recognized primarily the 2,5-dichlorinated ring (95%) of the same compound and introduced O2 at the 3,4 position. It was confirmed that the BphA1 subunit (iron-sulfur protein of terminal dioxygenase encoded by bphA1) plays a crucial role in determining the substrate selectivity. We constructed a variety of chimeric bphA1 genes by exchanging four common restriction fragments between the KF707 bphA1 and the LB400 bphA1. Observation of Escherichia coli cells expressing various chimeric BP Dox revealed that a relatively small number of amino acids in the carboxy-terminal half (among 20 different amino acids in total) are involved in the recognition of the chlorinated ring and the sites of dioxygenation and thereby are responsible for the degradation of PCB. The site-directed mutagenesis of Thr-376 (KF707) to Asn-376 (LB400) in KF707 BP Dox resulted in the expansion of the range of biodegradable PCB congeners.  相似文献   

20.
A bphK gene encoding glutathione S-transferase (GST) activity is located in the bph operon in Burkholderia sp. strain LB400 but its role in polychlorinated biphenyl (PCB) metabolism is unknown. This gene was over-expressed in Escherichia coli and an in vivo assay based on growth of E. coli containing GST activity was used to identify potential novel substrates for this enzyme. Using this assay, 4-chlorobenzoate (4-CBA) was identified as a substrate for the BphK enzyme. High pressure liquid chromatography analysis and chloride ion detection showed removal of 4-CBA and an equivalent increase of chloride in cell extracts when incubated with this enzyme. These results would indicate that this BphK enzyme has dechlorination activity in relation to 4-CBA and may have a role in protection of other Bph enzymes against certain chlorinated metabolites of PCB degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号