共查询到20条相似文献,搜索用时 0 毫秒
1.
Effect of choline deficiency on the enzymes that synthesize phosphatidylcholine and phosphatidylethanolamine in rat liver 总被引:7,自引:0,他引:7
Activities have been determined in subcellular fractions of livers from choline-deficient and normals rats for the enzymes that convert choline and ethanolamine to phosphatidylcholine and phosphatidylethanolamine respectively, that methylate phosphatidylethanolamine to yield phosphatidylcholine, and that oxidize choline to betaine. The activities of ethanolamine kinase, phosphoethanolamine cytidylyltransferase, and CDP-ethanolamine: 1,2-diacylglycerol phosphoethanolaminetransferase are not changed in the livers from choline-deficient rats for at least 18 days. Similarly, the activities of choline kinase and CDP-choline: 1,2-diacylglycerol phosphocholine transferase were unaffected by choline depletion. A decrease of 30-41% was observed, however, in the mitochondrial oxidation of choline to betaine. Also, the activity of the phosphocholine cytidylyltransferase was reduced in the choline-deficient livers to 60% olf the control values. The only observed increase in enzyme activity was a 62% elevation of the phosphatidylethanolamine-S-adenosylmethionine methyltransferase activity after 2 days of choline deficiency. This increased activity was maintained for at least 18 days of choline deprivation. The results suggest a lack of adaptive change in the levels of these phospholipid biosynthetic enzymes as a result of choline deficiency. 相似文献
2.
Biosynthesis of phosphatidylcholine, phosphatidylethanolamine, and sphingomyelin was studied in liver endoplasmic reticulum obtained from newly hatched chicks which were made hypothyroid by feeding 0.2% propylthiouracil. In vitro measurements were made of the specific activities of phosphorylcholine-glyceride (cholinephosphotransferase (EC 2.7.8.2), hosphorylethanolamine-glyceride (ethanolamine-phosphotransferase (EC 2.7.8.1)), and phosphorylcholine-ceramide (ceramide cholinephosphotransferase (EC 2.7.8.3)) transferases in control and hypothyroid chick liver for a period of 40 days. The specific activity of all three transferases began to decline after the chicks were on the propylthiouracil-containing diet for 5 days and steadily declined, reaching levels 10-15% of the controls after 15 days. These low levels were maintained for as long as the chicks were on this diet. Administration of L-thyroxine (15 mug/100 g of body weight) to the hypothyroid chicks caused a marked increase in the specific activities of all three transferases, reaching levels similar to those seen in the control chicks in 36-48 h. The specific activities then declined as the chicks were maintained on the diet of propylthiouracil, reaching the former low levels after 120 h. Administration of cycloheximide alone to the hypothyroid chicks caused a rise in the specific activities of the transferases after 24 h approximately equal to that caused by thyroxine alone, while thyroxine and cycloheximide together were no different than either alone. These studies indicate that in some manner circulating thyroxine controls the activities of enzymes involved in the biosynthesis of phosphatidylcholine, phosphatidylethanolamine, and sphingomyelin in chick liver endoplasmic reticulum. There was no evidence that induction of hypothyroidism by propylthiouracil had any effect on the activities of these enzymes in the CNS. 相似文献
3.
The peroxisome proliferators clofibric acid and di-(2-ethylhexyl)-phthalate (DEHP) preferentially induced the 12-hydroxylation, compared to the 11-hydroxylation, of lauric acid in rat liver microsomes. A marked increase in the affinity of spectral interaction of this substrate with cytochrome P-450 was also observed. In addition, both clofibric acid and DEHP treatment produced a marked effect on the profile of site- and stereo-specific microsomal metabolites of testosterone. These results demonstrate that both peroxisome proliferators induce similar form(s) of cytochrome P-450 which are active in the metabolism of endogenous substrates of cytochrome P-450. The possible relevance of these findings to the hepatotoxicity of peroxisome proliferators is discussed. 相似文献
4.
M J López-Zabalza N López-Moratalla A J Iriarte E Santiago 《Revista Espanola de Fisiología》1979,35(2):193-200
Four subfractions of phosphatidycholine and phosphyatidylethanolamine according to the degree of unsaturation of their fatty acids have been separated from lipid extracts of microsomes, and inner and outer mitochondrial membranes. The predominant species found in the three membranes contained one saturated and one unsaturated fatty acid. In microsomes completely saturated species of both phosphatidylcholine and phosphatideylethanolamine were practically nonexistent. In outer mitochondrial membranes species with two unsaturated fatty acids were absent. In the inner mitochondrial membranes, however, disaturated species and those with two unsaturated fatty acids were found. 相似文献
5.
6.
7.
《The International journal of biochemistry》1987,19(8):705-711
- 1.1. The synthesis of phosphatidylcholine (PC) by stepwise methylation of phosphatidylethanolamine (PE) is carried out by two enzymes in sarcoplasmic reticulum (SR) membrane of rabbit fast-twitch skeletal muscles.
- 2.2. Two methyltransferases (Met I and Met II) have a different pH optimum and affinity for methyl donor—5-adenosyl-L-methionine (SAM).
- 3.3. Met I is an integral SR membrane protein which active site faces the cytoplasmic surface of the membrane.
- 4.4. Met II is a peripheral, loosely bound protein, localized mainly on the extracytoplasmic (luminal) part of the SR membrane.
8.
Acyl-CoA:cholesterol acyltransferase (ACCAT) activity of rat liver microsomes was stimulated by phosphatidylcholine. The stimulatory effect varied with the composition of the phosphatide: dimyristyl-, dipalmityl-, distearyl- and dioleylphosphatidylcholine were stimulatory, whereas dicaproyl- and dilinoleylphosphatidylcholine were not. The results suggest that increased fluidity of the membrane induced by phosphatide is probably not involved in the stimulation of cholesterol esterification. Phosphatide exerted its effect directly on the microsomes and did not extract cholesterol or ACCAT from the microsomes to an appreciable extent.Hydrolysis of microsomal phosphatide suppressed ACCAT activity. Enztme activity was restored with the addition of phosphatidylcholine. The results suggest that phosphatide may be required for cholesterol esterification. 相似文献
9.
10.
11.
We have examined the infrared absorption spectra from 4000 to 250 cm?1 of multilayers of phosphatidylcholine, phosphatidylethanolamine, and phosphatidylcholine/phosphatidylethanolamine (1:1 m/m) as a function of hydration, pH, and fatty acid composition. Characteristic splittings of the CH2 bending and rocking modes and the position of the phosphoryl absorption at ca. 1240 cm?1 reveal differences in acyl chain packing and head group conformation in the various films. Spectra demonstrate the importance of NH → O hydrogen bonding of the ethanolamine head group and the prerequisite head group conformation (tangent to the multilayer plane) in establishing these structural differences. The general appearance of the P-O-C stretching region (~1050 cm?1) in the pure and mixed films further supports these conclusions and shows that the spectra clearly distinguish among the different head group orientations. Self-association of phosphatidylethanolamine is sometimes sufficient to prevent formation of mixed phases with phosphatidylcholine at neutral pH. The amount of fine structure, particularly in the low-frequency (800?200 cm?1) region, in spectra of films of anhydrous, saturated-chain phospholipids decreases considerably when the films are monohydrated, when mixed phases exist, or when there are unsaturations in the acyl chains. These changes likely result from decreased crystal field effects in the spectra as the phosphatide packing density is decreased by any of the above procedures. Furthermore, the absence of other changes upon complete hydration of phosphatidylcholine films suggests that only the initial water is tightly bound to the lipid. 相似文献
12.
The quantification of phospholipid hydroperoxides in biological tissues is important in order to know the degree of peroxidative damage of membrane lipids. For this purpose, optimal conditions for the chemiluminescent simultaneous assay of phosphatidylcholine hydroperoxide (PCOOH) and phosphatidylethanolamine hydroperoxide (PEOOH) in rat liver and brain were determined. A chemiluminescence detection-high performance liquid chromatography (CL-HPLC) method that incorporates cytochrome c and luminol as a post-column hydroperoxide-specific luminescent reagent was used (Miyazawa et al. 1987. Anal. Lett. 20: 915-925; Miyazawa. 1989. Free Radical Biol. Med. 7: 209-217). An n-propylamine-bound silica column with hexane-2-propanol-methanol-water 5:7:2:1 (v/v/v/v) (flow rate 1.0 ml/min) as eluant was used to determine both PCOOH and PEOOH, which were separated from each other and from other lipids and lipid-soluble antioxidants. High reproducibility and sensitivity as low as 10 pmol hydroperoxide-O2 were observed with a mixture of 10 micrograms/ml cytochrome c and 2 micrograms/ml luminol in 50 mM borate buffer (pH 10.0, flow rate 1.1 ml/min) as luminescent reagent and a post-column mixing joint temperature of 40 degrees C. Using the established analytical conditions, it was confirmed that both PCOOH (1324 +/- 122 pmol/g liver, 114 +/- 18 pmol/g brain, mean +/- SD) and PEOOH (728 +/- 89 pmol/g liver, 349 +/- 60 pmol/g brain, mean +/- SD) are present in the liver and brain of Sprague-Dawley rats bred on a slightly modified AIN-76A semisynthetic diet for 3 months. The phospholipid hydroperoxide content in the rat liver was shown to be affected by dietary oils, but not significantly affected in the brain. 相似文献
13.
14.
15.
16.
17.
M. Singer 《Chemistry and physics of lipids》1981,28(3):253-267
Sodium and glucose effluxes were measured in liposomes formed from a series of saturated phosphatidylcholines (PC) and phosphatidylethanolamines (PE). Vesicles composed of a saturated PC display a local permeability maximum in the region of the lipid transition temperature. The height of this maximum is predominantly a function of the thickness of the hydrocarbon chain region. Liposomes formed from a saturated PE do not display such a permeability maximum and in these vesicles the permeability process appears to be controlled by the head group region. It is postulated that the control exerted by the ethanolamine group is due to the reorganization of water structure it induces at the bilayer surface. 相似文献
18.
J A Higgins 《Biochimica et biophysica acta》1979,558(1):48-57
[14C]Choline was incorporated into microsomal membranes in vivo, and from CDP-[14C]choline in vitro, and the site of incorporation determined by hydrolysis of the outer leaflet of the membrane bilayer using phospholipase C from Clostridium welchii. Labelled phosphatidylcholine was found to be concentrated in the outer leaflet of the membrane bilayer with a specific activity approximately three times that of the inner leaflet. During incorporation of CDP-choline and treatment with phospholipase C the vesicles retained labelled-protein contents indicating that they remained intact. When the microsomes were opened with taurocholate after incorporation of [14C]choline in vivo, the labelled phosphatidylcholine behaved as a single pool. Selective hydrolysis of labelled phosphatidylcholine in intact vesicles is not, therefore, a consequence of specificity of phospholipase C. These results indicate that the phosphatidylcholine of the outer leaflet of the microsomal membrane bilayer is preferentially labelled by the choline-phosphotransferase pathway and that this pool of phospholipid does not equilibrate with that of the inner leaflet. 相似文献
19.