首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hepatitis C virus (HCV) protein translation is mediated by a cis-acting RNA, an internal ribosomal entry site (IRES), located in the 5' nontranslated region of the viral RNA. To examine proteins bound to the IRES, which could include proteins important for its function as well as potential drug targets, we used shotgun peptide sequencing to identify proteins in quadruplicate protein affinity extracts of lysed Huh7 cells, obtained using a biotinylated IRES. Twenty-six proteins bound the HCV IRES but not a reversed complementary sequence RNA or vector RNA controls. These included five ribosomal subunits, nine eukaryotic initiation factor 3 subunits, and novel interacting proteins such as the cytoskeletal-related proteins actin, FHOS (formin homologue overexpressed in spleen) and MIP-T3 (microtubule interacting protein that associates with TRAF3). Other novel HCV IRES-binding proteins included UNR (upstream of N-ras), UNR-interacting protein, and the RNA-binding proteins PAI-1 (plasminogen activator inhibitor-1) mRNA binding protein and Ewing sarcoma breakpoint 1 region protein EWS. A large set of additional proteins bound both the HCV IRES and a reversed complementary IRES sequence control, including the known HCV interactors PTB (polypyrimidine tract binding protein), the La autoantigen, and nucleolin. The discovery of these novel HCV IRES-binding proteins suggests links between IRES biology and the cytoskeleton, signal transduction, and other cellular functions.  相似文献   

2.
Hepatitis C virus translation is initiated on a approximately 330-nucleotide (nt)-long internal ribosomal entry site (IRES) at the 5' end of the genome. In this process, a 43S preinitiation complex (comprising a 40S ribosomal subunit, eukaryotic initiation factor 3 (eIF3), and a ternary [eIF2-GTP-initiator tRNA] complex) binds the IRES in a precise manner so that the initiation codon is placed at the ribosomal P site. This binding step involves specific interactions between the IRES and different components of the 43S complex. The 40S subunit and eIF3 can bind to the IRES independently; previous analyses revealed that eIF3 binds specifically to an apical half of IRES domain III. Nucleotides in the IRES that are involved in the interaction with the 40S subunit were identified by RNase footprinting and mapped to the basal half of domain III and in domain IV. Interaction sites were identified in locations that have been found to be essential for IRES function, including (i) the apical loop residues GGG(266-268) in subdomain IIId and (ii) the pseudoknot. Extensive protection from RNase cleavage also occurred downstream of the pseudoknot in domain IV, flanking both sides of the initiation codon and corresponding in length to that of the mRNA-binding cleft of the 40S subunit. These results indicate that the 40S subunit makes multiple interactions with the IRES and suggest that only nucleotides in domain IV are inserted into the mRNA-binding cleft of the 40S subunit.  相似文献   

3.
Most eukaryotic mRNAs require the cap-binding complex elF4F for efficient initiation of translation, which occurs as a result of ribosomal scanning from the capped 5' end of the mRNA to the initiation codon. A few cellular and viral mRNAs are translated by a cap and end-independent mechanism known as internal ribosomal entry. The internal ribosome entry site (IRES) of classical swine fever virus (CSFV) is approximately 330 nt long, highly structured, and mediates internal initiation of translation with no requirement for elF4F by recruiting a ribosomal 43S preinitiation complex directly to the initiation codon. The key interaction in this process is the direct binding of ribosomal 40S subunits to the IRES to form a stable binary complex in which the initiation codon is positioned precisely in the ribosomal P site. Here, we report the results of analyses done using enzymatic footprinting and mutagenesis of the IRES to identify structural components in it responsible for precise binding of the ribosome. Residues flanking the initiation codon and extending from nt 363-391, a distance equivalent to the length of the 40S subunit mRNA-binding cleft, were strongly protected from RNase cleavage, as were nucleotides in the adjacent pseudoknot and in the more distal subdomain IIId1. Ribosomal binding and IRES-mediated initiation were abrogated by disruption of helix 1b of the pseudoknot and very severely reduced by mutation of the protected residues in IIId1 and by disruption of domain IIIa. These observations are consistent with a model for IRES function in which binding of the region flanking the initiation codon to the decoding region of the ribosome is determined by multiple additional interactions between the 40S subunit and the IRES.  相似文献   

4.
Subdomain IlId from the hepatitis C virus (HCV) internal ribosome entry site (IRES) has been shown to be essential for cap-independent translation. We have conducted a structural study of a 27-nt fragment, identical in sequence to IlId, to explore the structural features of this subdomain. The proposed secondary structure of IlId is comprised of two 3 bp helical regions separated by an internal loop and closed at one end by a 6-nt terminal loop. NMR and molecular modeling were used interactively to formulate a validated model of the three-dimensional structure of IlId. We found that this fragment contains several noncanonical structural motifs and non-Watson-Crick base pairs, some of which are common to other RNAs. In particular, a motif characteristic of the rRNA alpha-sarcin/ricin loop was located in the internal loop. The terminal loop, 5'-UUGGGU, was found to fold to form a trinucleotide loop closed by a trans-wobble U.G base pair. The sixth nucleotide was bulged out to allow stacking of this U.G pair on the adjacent helical region. In vivo mutational analysis in the context of the full IRES confirmed the importance of each structural motif within IIId for IRES function. These findings may provide clues as to host cellular proteins that play a role in IRES-directed translation and, in particular, the mechanism through which host ribosomes are sequestered for viral function.  相似文献   

5.
Binding of the internal ribosome entry site (IRES) of the hepatitis C virus (HCV) RNA to the eIF-free 40S ribosomal subunit is the first step of initiation of translation of the viral RNA. Hairpins IIId and IIIe comprising 253–302 nt of the IRES are known to be essential for binding to the 40S subunit. Here we have examined the molecular environment of the HCV IRES in its binary complex with the human 40S ribosomal subunit. For this purpose, two RNA derivatives were used that bore a photoactivatable perfluorophenyl azide cross-linker. In one derivative the cross-linker was at the nucleotide A296 in hairpin IIIe, and in the other at G87 in domain II. Site-specific introduction of the cross-linker was performed using alkylating derivatives of oligodeoxyribonucleotides complementary to the target RNA sequences. No cross-links with the rRNA were detected with either RNA derivative. The RNA with the photoactivatable group at A296 cross-linked to proteins identified as S5 and S16 (major) and p40 and S3a (minor), while no cross-links with proteins were detected with RNA modified at G87. The results obtained indicate that hairpin IIIe is located on the solvent side of the 40S subunit head on a site opposite the beak.  相似文献   

6.
Hepatitis C is a major public health concern, with an estimated 170 million people infected worldwide and an urgent need for new drug development. An attractive therapeutic approach is to prevent the ‘cap-independent’ translation initiation of the viral proteins by interfering with both the structure and function of the hepatitis C viral internal ribosomal entry site (HCV IRES). Towards this goal, we report the design, synthesis and purification of novel bi-functional molecules containing DNA or RNA antisenses attached to functional groups performing RNA hydrolysis. These 5′ or 3′-coupled conjugates bind the HCV IRES with affinity and specificity and elicit targeted hydrolysis of the viral genomic RNA after short (1 h) incubation at low (500 nM) concentration at 37°C in vitro. Additional secondary cleavage sites are induced and their mapping within the RNA structure indicates that functional domains IIIb-e are excised from the IRES that, based on cryo-EM studies, becomes incapable of binding the small ribosomal subunit and initiation factor 3 (eIF3). All these molecules inhibit, in a dose-dependent manner, the ‘IRES-dependent’ translation in vitro. The 5′-coupled imidazole conjugate reduces viral protein synthesis by half at a 300 nM concentration (IC50), corresponding to a 4-fold increase of activity when compared to the naked oligonucleotide. These new conjugates are now being tested for activity on infected hepatic cell lines.  相似文献   

7.
We describe the exploration of N1-aryl-substituted benzimidazoles as ligands for the hepatitis C virus (HCV) internal ribosome entry site (IRES) RNA. The design of the compounds was guided by the co-crystal structure of a benzimidazole viral translation inhibitor in complex with the RNA target. Structure-binding activity relationships of aryl-substituted benzimidazole ligands were established that were consistent with the crystal structure of the translation inhibitor complex.  相似文献   

8.
2-Aminobenzoxazoles have been synthesized as ligands for the hepatitis C virus (HCV) internal ribosome entry site (IRES) RNA. The compounds were designed to explore the less basic benzoxazole system as a replacement for the core scaffold in previously discovered benzimidazole viral translation inhibitors. Structure–activity relationships in the target binding of substituted benzoxazole ligands were investigated.  相似文献   

9.
Translational initiation of encephalomyocarditis virus (EMCV) mRNA occurs by ribosomal entry into the 5' nontranslated region of the EMCV mRNA, rather than by ribosomal scanning. Internal ribosomal binding requires a cis-acting element termed the internal ribosomal entry site (IRES). IRES elements have been proposed to be involved in the translation of picornavirus mRNAs and some cellular mRNAs. Internal ribosome binding likely requires the interaction of trans-acting factors that recognize both the mRNA and the ribosomal complex. Five cellular proteins (p52, p57, p70, p72, and p100) cross-link the EMCV IRES or fragments of the IRES. For one of these proteins, p57, binding to the IRES correlates with translation. Recently, p57 was identified to be very similar, if not identical, to polypyrimidine tract-binding protein. On the basis of cross-linking results with 21 different EMCV IRES fragments and cytoplasmic HeLa extract or rabbit reticulocyte lysate as the source of polypeptides, consensus binding sites for p52, p57, p70, and p100 are proposed. It is suggested that each of these proteins recognizes primarily a structural feature of the RNA rather than a specific sequence.  相似文献   

10.
Zhao WD  Wimmer E 《Journal of virology》2001,75(8):3719-3730
Internal ribosomal entry sites (IRESs) of certain plus-strand RNA viruses direct cap-independent initiation of protein synthesis both in vitro and in vivo, as can be shown with artificial dicistronic mRNAs or with chimeric viral genomes in which IRES elements were exchanged from one virus to another. Whereas IRESs of picornaviruses can be readily analyzed in the context of their cognate genome by genetics, the IRES of hepatitis C virus (HCV), a Hepacivirus belonging to Flaviviridae, cannot as yet be subjected to such analyses because of difficulties in propagating HCV in tissue culture or in experimental animals. This enigma has been overcome by constructing a poliovirus (PV) whose translation is controled by the HCV IRES. Within the PV/HCV chimera, the HCV IRES has been subjected to systematic 5' deletion analyses to yield a virus (P/H710-d40) whose replication kinetics match that of the parental poliovirus type 1 (Mahoney). Genetic analyses of the HCV IRES in P/H710-d40 have confirmed that the 5' border maps to domain II, thereby supporting the validity of the experimental approach applied here. Additional genetic experiments have provided evidence for a novel structural region within domain II. Arguments that the phenotypes observed with the mutant chimera relate solely to impaired genome replication rather than deficiencies in translation have been dispelled by constructing novel dicistronic poliovirus replicons with the gene order [PV]cloverleaf-[HCV]IRES-Deltacore-R-Luc-[PV]IRES-F-Luc-P2,3-3'NTR, which have allowed the measurement of HCV IRES-dependent translation independently from the replication of the replicon RNA.  相似文献   

11.
The highly conserved internal ribosome entry site (IRES) of hepatitis C virus (HCV) regulates translation of the viral RNA genome and is essential for the expression of HCV proteins in infected host cells. The structured subdomain IIa of the IRES element is the target site of recently discovered benzimidazole inhibitors that selectively block viral translation through capture of an extended conformation of an RNA internal loop. Here, we describe the development of a FRET-based screening assay for similarly acting HCV translation inhibitors. The assay relies on monitoring fluorescence changes that indicate rearrangement of the RNA target conformation upon ligand binding. Screening of a small pilot set of potential RNA binders identified a benzoxazole scaffold as a ligand that bound selectively to IIa IRES target and was confirmed as an inhibitor of in vitro viral translation. The screening approach outlined here provides an efficient method to discover HCV translation inhibitors that may provide leads for the development of novel antiviral therapies directed at the highly conserved IRES RNA.  相似文献   

12.
The hepatitis C viral mRNA initiates translation using an internal ribosome entry site (IRES) located in the 5' noncoding region of the viral genome. At physiological magnesium ion concentrations, the HCV IRES forms a binary complex with the 40S ribosomal subunit, recruits initiation factor eIF3 and the ternary eIF2/GTP/Met-tRNA(i)Met complex, and joins 60S subunits to assemble translation-competent 80S ribosomes. Here we show that in the presence of 5 mM MgCl2, the HCV IRES can initiate translation by an alternative mechanism that does not require known initiation factors. Specifically, the HCV IRES was shown to initiate translation in a reconstituted system consisting only of purified 40S and 60S subunits, elongation factors, and aminoacylated tRNAs at high magnesium concentration. Analyses of assembled complexes supported a mechanism by which preformed 80S ribosomes can assemble directly on the HCV IRES at high cation concentrations. This mechanism is reminiscent of that employed by the divergent IRES elements in the Dicistroviridae, exemplified by the cricket paralysis virus, which mediates initiation of protein synthesis without initiator tRNA.  相似文献   

13.
The intergenic region-internal ribosome entry site (IGR-IRES) of dicistroviruses binds to 40S ribosomal subunits in the absence of eukaryotic initiation factors (eIFs). Although the conserved loop sequences in dicistroviral IGR-IRES elements are protected from chemical modifications in the presence of the 40S subunit, molecular components in the 40S subunit, which interacts with the loop sequences in the IRES, have not been identified. Here, a chemical crosslinking study using 4-thiouridine-labeled IGR-IRES revealed interactions of the IGR-IRES with several 40S proteins but not with the 18S rRNA. The strongest crosslinking signal was identified for ribosomal protein S25 (rpS25). rpS25 is known to be a neighbor of rpS5, which has been shown to interact with a related IGR-IRES by cryo-electron microscopy. Crosslinking analysis with site-directed mutants showed that nucleotides UU6089–6090, which are located in the loop region in conserved domain 2b in the IRES, appear to interact with rpS25. rpS25 is specific to eukaryotes, which explains why there is no recognition of the IGR-IRES by prokaryotic ribosomes. Although the idea that the IGR-IRES element may be a relict of a primitive translation system has been postulated, our experimental data suggest that the IRES has adapted to eukaryotic ribosomal proteins.  相似文献   

14.
Translation of the hepatitis C genome is mediated by internal ribosome entry on the structurally complex 5' untranslated region of the large viral RNA. Initiation of protein synthesis by this mechanism is independent of the cap-binding factor eIF4E, but activity of the initiator Met-tRNA(f)-binding factor eIF2 is still required. HCV protein synthesis is thus potentially sensitive to the inhibition of eIF2 activity that can result from the phosphorylation of the latter by the interferon-inducible, double-stranded RNA-activated protein kinase PKR. Two virally encoded proteins, NS5A and E2, have been shown to reduce this inhibitory effect of PKR by impairing the activation of the kinase. Here we present evidence for a third viral strategy for PKR inhibition. A region of the viral RNA comprising part of the internal ribosome entry site (IRES) is able to bind to PKR in competition with double-stranded RNA and can prevent autophosphorylation and activation of the kinase in vitro. The HCV IRES itself has no PKR-activating ability. Consistent with these findings, cotransfection experiments employing a bicistronic reporter construct and wild-type PKR indicate that expression of the protein kinase is less inhibitory towards HCV IRES-driven protein synthesis than towards cap-dependent protein synthesis. These data suggest a dual function for the viral IRES, with both a structural role in promoting initiation complex formation and a regulatory role in preventing inhibition of initiation by PKR.  相似文献   

15.
An internal ribosomal entry site (IRES) that directs the initiation of viral protein translation is a potential drug target for enterovirus 71 (EV71). Regulation of internal initiation requires the interaction of IRES trans-acting factors (ITAFs) with the internal ribosomal entry site. Biotinylated RNA-affinity chromatography and proteomic approaches were employed to identify far upstream element (FUSE) binding protein 2 (FBP2) as an ITAF for EV71. The interactions of FBP2 with EV71 IRES were confirmed by competition assay and by mapping the association sites in both viral IRES and FBP2 protein. During EV71 infection, FBP2 was enriched in cytoplasm where viral replication occurs, whereas FBP2 was localized in the nucleus in mock-infected cells. The synthesis of viral proteins increased in FBP2-knockdown cells that were infected by EV71. IRES activity in FBP2-knockdown cells exceeded that in the negative control (NC) siRNA-treated cells. On the other hand, IRES activity decreased when FBP2 was over-expressed in the cells. Results of this study suggest that FBP2 is a novel ITAF that interacts with EV71 IRES and negatively regulates viral translation.  相似文献   

16.
Small interfering RNAs (siRNAs) targeting the coding region of hepatitis A virus (HAV) were shown to specifically inhibit viral genome replication. Compared to the coding region, the HAV internal ribosomal entry site (IRES) in the 5' non-coding region is highly sequence-conserved and folds into stable secondary structures. Here, we report efficient and sustained RNA interference mediated by both RNase III-prepared siRNA (esiRNA) and vector-derived short hairpin RNAs (shRNAs) that are targeted to various domains of the HAV IRES. Using reporter constructs, and the DNA-based HAV replicon system, we found that shRNAs targeting the HAV IRES domains IIIc and V sustainably suppressed genome translation and replication whereas the IRES domains IIIa and IV were resistant to RNA interference. Our study suggests that some HAV IRES domains might be used as a universal and effective target for specific inhibition of HAV infection.  相似文献   

17.
The internal ribosome entry site (IRES) of the hepatitis C virus (HCV) RNA is known to interact with the 40S ribosomal subunit alone, in the absence of any additional initiation factors or Met-tRNAi. Previous work from this laboratory on the 80S and 48S ribosomal initiation complexes involving the HCV IRES showed that stem-loop III, the pseudoknot domain, and some coding sequence were protected from pancreatic RNase digestion. Stem-loop II is never protected by these complexes. Furthermore, there is no prior evidence reported showing extensive direct binding of stem-loop II to ribosomes or subunits. Using direct analysis of RNase-protected HCV IRES domains bound to 40S ribosomal subunits, we have determined that stem-loops II and III and the pseudoknot of the HCV IRES are involved in this initial binding step. The start AUG codon is only minimally protected. The HCV-40S subunit binary complex thus involves recognition and binding of stem-loop II, revealing its role in the first step of a multistep initiation process that may also involve rearrangement of the bound IRES RNA as it progresses.  相似文献   

18.
Hepatitis C virus (HCV) contains an internal ribosome entry site (IRES) located in the 5' untranslated region of the genomic RNA that drives cap-independent initiation of translation of the viral message. The approximate secondary structure and minimum functional length of the HCV IRES are known, and extensive mutagenesis has established that nearly all secondary structural domains are critical for activity. However, the presence of an IRES RNA tertiary fold and its functional relevance have not been established. Using chemical and enzymatic probes of the HCV IRES RNA in solution, we show that the IRES adopts a unique three-dimensional structure at physiological salt concentrations in the absence of additional cofactors or the translation apparatus. Folding of the IRES involves cooperative uptake of magnesium and is driven primarily by charge neutralization. This tertiary structure contains at least two independently folded regions which closely correspond to putative binding sites for the 40 S ribosomal subunit and initiation factor 3 (eIF3). Point mutations that inhibit IRES folding also inhibit its function, suggesting that the IRES tertiary structure is essential for translation initiation activity. Chemical and enzymatic probing data and small-angle X-ray scattering (SAXS) experiments in solution show that upon folding, the IRES forms an extended structure in which functionally important loops are exposed. These results suggest that the 40 S ribosomal subunit and eIF3 bind an HCV IRES that is prefolded to spatially organize recognition domains.  相似文献   

19.
20.
Two RNA fragments from the region just upstream of the internal ribosome entry site of Hepatitis A virus (HAV) were studied, a 35mer (HAV-35), 5'U4C3U3C3U4C3U3C2UAU2C3U33(4), and a 23mer (HAV-23), 5(4)U4C3U3C3U4C3U33(4). Secondary structural predictions and nuclease digestion patterns obtained with genomic RNAs suggested that they link two stable Watson-Crick (WC) hairpins in the genomic RNA and do not form conventional WC secondary structure, but do fold to form a condensed, stacked 'domain'. To obtain more information, folding of HAV-23 and -35 RNA fragments was characterized using 1H nuclear magnetic resonance, in H2O as a function of pH and temperature, circular dichroism as a function of NaCl concentration, pH and temperature, and square-wave voltammetry as a function of pH. The results indicate that these oligo-nucleotides form intramolecular structures that contain transient U*U base pairs at pH 7 and moderate ionic strength (100 mM NaCl). This folded structure becomes destabilized and loses the U*U base pairs above and below neutral pH, especially at ionic strengths above 0.1. All of the cytidine protons exchange relatively rapidly with solvent protons (exchange lifetimes shorter than 1 ms), so the structure contains few if any C*CH+base pairs at neutral pH, but can apparently form them at pH values below 6. We present a series of possible models in which chain folding draws the strand termini closer together, possibly serving to pull the attached WC hairpin domains together and providing a functional advantage by nucleating reversible formation of a more viable RNA substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号