首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The surface potential of the purple membrane was measured by a novel method by using an artificial bacteriorhodopsin whose chromophore was 13-CF3 retinal instead of retinal. When attached to the apoprotein by a Schiff base, the intrinsic pK of the 13-CF3 chromophore is around 7.3. The apparent pK of this pigment depends on the surface potential and thus on the electrolyte concentration. This allowed us to determine the surface charge density using the Gouy-Chapman equation. The surface charge density was found to be −1.65 ± 0.15 × 10−3 electronic charges per Å2 or about 2 negative charges/bacteriorhodopsin. This large value for the surface potential probably explains both part of the strong apparent association of divalent cations with the membrane and the effect of low salt concentrations on light-induced proton release from the purple membrane.  相似文献   

2.
The advantages of nanofiltration membranes coupled with a CSTR were demonstrated for the semicontinuous production of lactic acid from whey permeate. Lactic acid was removed from the growth medium while lactose was kept in the bioreactor with the bacterial cells; moreover, Mg2+ ions were also recycled in the bioreactor at 96% and the nanofiltrate color was greatly reduced. The highest volumetric productivity achieved with this device was 7.1 g l−1 h−1 and the lactate concentration was 55 g l−1. The specific productivity was 3.54 h−1. More than 99% of the membrane fouling after 44 h of fermentation was reversible. The initial permeate flux was restored easily by a water rinse. The performance of this type of membrane bioreactor was discussed.  相似文献   

3.
The mechanism by which Cl activates the oxygen-evolving complex (OEC) of Photosystem II (PS II) in spinach was studied by 35Cl-NMR spectroscopy and steady-state measurements of oxygen evolution. Measurements of the excess 35Cl-NMR linewidth in dark-adapted, Cl-depleted thylakoid and Photosystem II membranes show an overall hyperbolic decrease which is interrupted by sharp increases in linewidth (linewidth maxima) at approx. 0.3 mM, 0.75 mM, 3.25 mM (2.0 mM in PS II membranes), and 7.0 mM Cl. The rate of the Hill reaction (H2O → 2,6-dichlorophenolindophenol) at low light intensities (5% of saturation) as a function of [Cl] in thylakoids shows three intermediary plateaus in the concentration range between 0.1 and 10 mM Cl indicating kinetic cooperativity with respect to Cl. The presence of linewidth maxima in the 35Cl-NMR binding curve indicates that Cl addition exposes four types of Cl binding site that were previously inaccessible to exchange with Cl in the bulk solution. These results are best explained by proposing that Cl binds to four sequestered (salt-bridged) domains within the oxygen-evolving complex. Binding of Cl is facilitated by the presence of H+ and vice versa. The pH dependence of the excess 35Cl-NMR linewidth at 0.75 mM Cl shows that Cl binding has a maximum at pH 6.0 and two smaller maxima at pH 5.4 and 6.5 which may suggest that as many as three groups (perhaps histidine) with pKa values in the region may control the binding.  相似文献   

4.
The complex Pt(bph) (CO)2 crystallizes in the space group Cmcm with a = 18.647(6), B = 9.566(2) and C = 6.4060(5) Å. The geometry of the molecule is slightly distorted from square planar with a Pt---C(CO) bond distance of 1.98(2) Å and a Pt---C(bph) bond distance of 2.04(2) Å. The Pt(bph)(CO)2 complex serves as a precursor for the preparation of a wide variety of Pt(bph)X2 complexes, where X = monodentate ligands such as acetonitrile, pyridine, etc., and X2 = bidentate ligands such as bypyridine, 1,10-phenanthroline, etc. In the solid state, the complex exhibits a green color, but when ground with an alkali metal salt turns deep blue to purple. In CH2Cl2, the color disappears but optical transitions are observed at 271 nm (2.7 × 104 M−1 cm−1), 303 nm (1.1 × 104 M−1 cm−1) and 330 nm (5.5 × 103 M−1 cm−1). The complex is a weak emitter exhibiting a structured spectrum in CH2Cl2 at r.t. with maxima located at 562 and 594 nm and an emission lifetime of 3.1 μs when excited at 337 nm.  相似文献   

5.
Exopolysaccharide production by the marine bacterium Alteromonas sp. strain 1644 was shown to be stimulated by restricted growth conditions and was optimized in nitrogen limited fed-batch cultures. Exopolysaccharides were either partly secreted in the medium or stayed firmly cell-associated. The cell-polysaccharide associations could be destroyed by dialysis against distilled water, allowing polysaccharide purification. The chemical and rheological characterization of this last polysaccharide showed that it was different from the secreted polysaccharide that has been previously described (polysaccharide 1644). At low ionic concentration (below 0.03 M whatever the nature of the ions), solutions of this new polysaccharide had very low viscosities. However, at higher ionic concentration, it formed a gel or exhibited in solution at low polymer concentration an unusually high temperature dependent viscosity. This behaviour was also dependent on the nature of the ions and the following sequences for cations and anions were NH4 + > Mg2+ > Na + > Li+ > K+ > TMA+ and Br > NO3 > SO42− > Cl > I respectively.  相似文献   

6.
35Cl-NMR studies are presented here for spinach Photosystem II membranes inhibited by hydroxylamine (to remove Mn), Tris (to remove Mn and 18, 24 and 33 kDa polypeptides), and salt-washing (to remove 18 and 24 kDa; and 33 kDa polypeptides). Removal of Mn affects the 35Cl-NMR binding curve only slightly, indicating that not all of the bound Mn is directly required for Cl-binding. Removal of both Mn and extrinsic polypeptides eliminates almost all of the Cl-specific binding observable by NMR. Removal of the extrinsic 18 and 24 kDa polypeptides drastically changes the 35Cl-NMR binding pattern; this effect is partially restored by the addition of 2 mM CaSO4, and, to a lesser extent, by the partial rebinding of the polypeptides. Existence of Cl binding to the intrinsic polypeptides (e.g., D1/D2), with a peak at 0.5 mM Cl, is shown in samples lacking 18, 24 and 33 kDa polypeptides. Thus, both intrinsic (i.e., on the D1/D2 membrane protein) and extrinsic (i.e., on the 33 kDa protein) binding sites for Cl are suggested to exist.  相似文献   

7.
The survival of Leishmania, which encounter drastic changes of environment during their life-cycle, requires regulation and control of ionic concentrations within the cell. We analysed the influence of growth stage, ionic composition of the medium, heat and acidic stress on 86Rb+ influx in L. infantum promastigetes. Proliferating promastigotes exibited faster and higher 86Rb+ uptake than stationary cells. Cl anion did not have any effect, but in the presence of physiological concentration of HCO3, 86Rb+ uptake was significantly increased. This enhancing effect was only partially inhibited by N,N′-dicyclohexylcarbodiimide (DCCD), a blocker of ion-translocating ATPases. 86Rb+ influx was abolished by N-ethylmaleimide (NEM), indicating a major contribution of plasma membrane transporters. Heat shock and acidic shock notably decreased 86Rb+ influx. Our data provide indirect evidence that an energy-dependent system which brings K+ in, such as K+/H+-ATPase evidenced by Jiang et al. (1994), is active in Leishmania in different environments. Mechanism(s) other than ion-translocating ATPase occur, at least in the presence of HCO3, and their contribution to K+ pathways varies in different environmental conditions.  相似文献   

8.
Because of its novel bioactive properties the production of gymnodimine for use as a pharmaceutical precursor has aroused interest. The dinoflagellate, Karenia selliformis produces gymnodimine when grown in bulk culture using GP + selenium medium but the growth rates (μ) and levels of gymnodimine are low (μ, 0.05 days−1; gymnodimine 250 μg L−1 max). We describe the effects of organic acid additions (acetate, glycolate, alanine and glutamate additions and combinations of these) in enhancing growth and gymnodimine production in axenic cultures. The most effective organic acid combinations in decreasing order were: glycolate/alanine > acetate > glycolate. Glycolate/alanine optimised gymnodimine production by prolonging growth (maximum cell yield, 1.76 × 105 cells mL−1; gymnodimine, 1260 μg L−1; growth rate (μ), 0.2 days−1) compared to the control (growth maximum cell yield, 7.8 × 104 cells mL−1; gymnodimine, 780 μg L−1; μ, 0.17 days−1). Acetate enhanced gymnodimine by stimulating growth rate (μ, 0.23 days−1) and the large concentration of gymnodimine per cell (16 pg cell−1 cf. 9.8 pg cell−1 for the control) suggests a role for this compound in gymnodimine biosynthesis. Amending culture media with Mn2+ additions resulted in slightly decreased growth in control cultures and increased the gymnodimine while in glycolate/alanine cultures growth was stimulated but gymnodimine production decreased. The results suggest that the organic acid can enhance gymnodimine production by either enhancing growth maximum or the biosynthetic pathway.  相似文献   

9.
Isolated plasma membranes of lactating mouse mammary gland were treated with different concentrations of ascorbate, sodium citrate, sodium bicarbonate, combinations of them (from 16 x 10−10 to 4 x 10−6 moles/L) and studied for the binding of 59Fe2+ and 59Fe3+ at pH 7.4. The results show that the Fe3+ form of iron is under a greater influence of anions used in these experiments. The Fe2+ form of iron is weakly bounded and affected. It is suggested that the form with a greater positive electric charge is more effectively bound to the receptors in plasma membranes.  相似文献   

10.
We measured the toxicity and mutagenicity induced in human diploid lymphoblasts by various radiation doses of X-rays and two internal emitters. [125I]iododeoxyuridine ([125I]dUrd) and [3H]thymidine ([3H]TdR), incorporated into cellular DNA. [125I]dUrd was more effective than [3H]TdR at killing cells and producing mutations to 6-thioguanine resistance (6TGR). No ouabain-resistant mutants were induced by any of these agents. Expressing dose as total disintegrations per cell (dpc), the D0 for cell killing for [125I]dUrd was 28 dpc and for [3H]TdR was 385 dpc. The D0 for X-rays was 48 rad at 37°C. The slopes of the mutation curves were approximately 75 × 10−8 6TGR mutants per cell per disintegration for [125I]dUrd and 2 × 10−8 for [3H]TdR. X-Rays induced 8 × 10−8 6TGR mutants per cell per rad. Normalizing for survival, [125I]dUrd remained much more mutagenic at low doses (high survival levels) than the other two agents. Treatment of the cells at either 37°C or while frozen at −70°C yielded no difference in cytotoxicity or mutation for [125I]dUrd or [3H]TdR, whereas X-rays were 6 times less effective in killing cells at −70°C.

Assuming that incorporation was random throughout the genome, the mutagenic efficiencies of the radionuclides could be calculated by dividing the mutation rate by the level of incorporation. If the effective target size of the 6TGR locus is 1000–3000 base pairs, then the mutagenic efficiency of [125I]dUrd is 1.0–3.0 and of [3H]TdR is 0.02–0.06 total genomic mutations per cell per disintegration. 125I disintegrations are known to produce localized DNA double-strand breaks. If these breaks are potentially lethal lesions, they must be repaired, since the mean lethal dose (D0) was 28 dpc. The observations that a single dpc has a high probability of producing a mutation (mutagenic efficiency 1.0–3.0) would suggest, however, that this repair is extremely error-prone. If the breaks need not be repaired to permit survival, then lethal lesions are a subset of or are completely different from mutagenic lesions.  相似文献   


11.
The metabolic cost as measured by respiration and ammonia excretion rates associated with a selective as compared to a non-selective feeding behaviour was determined for the blue mussel, Mytilus trossulus. Mussels were challenged with four environmentally relevant seston matrices of different quality and quantity, which were known to evoke either a sorting response (i.e., selective feeding) where organic-rich particles were selected over inorganic particles as compared to no sorting (i.e., non-selective) where either inorganic or organic particles were ingested by the bivalve. Seston matrices were prepared by mixing known quantities of silt and algae such that the following extent of feeding responses would occur; no pre-sorting of ingested material, (1) no algae+50 mg silt l−1, (2) 150×106 cells l−1 of algae+no silt, and, where pre-sorting of ingested material occurred, (3) 20×106 cells l−1 of algae and 20 mg l−1 of silt, and (4) 150×106 cells l−1 of algae and 50 mg l 1 of silt. A control, which represented basal metabolism consisting of mussels exposed only to filtered seawater (0.45 μm), was included for a total of five treatments. Mussel respiration and ammonia excretion rates were independent of whether mussels were pre-sorting or not sorting ingested material. Of the four matrices, only rates determined for conditions of maximum seston quality and quantity where pre-sorting of the seston occurred were significantly different from control mussels (p<0.05, ANOVA). Estimates of net energy used for feeding, where net energy is total energy intake (food) minus energy expenditure (energy lost through respiration and excreta as measured by ammonia excretion rates), indicated that feeding, whether selective or non-selective required only 0.92% of net energy intake. Hence, mussels appear to be highly adapted to a dynamic food environment with negligible costs associated with the feeding process, even when significant pre-selection of organic-rich particles occurs.  相似文献   

12.
《FEBS letters》1994,350(2-3):195-198
The H+-ATPase from chloroplasts, CF0F1, was isolated, purified and reconstituted into asolectin liposomes. The enzyme was brought either into the oxidized state or into the reduced state, and the rate of ATP synthesis was measured after energisation of the proteoliposomes with an acid—base transition ΔpH (pHin = 5.0, pHout = 8.5) and a K+/valinomycin diffusion potential, Δφ (K+in = 0.6 mM, K+out = 60 mM). A rate of 250 s−1 was observed with the reduced enzyme (85 s−1 in the absence of Δφ). A rate of 50 s−1 was observed with the oxidized enzyme under the same conditions (15 s−1 in the absence of Δφ). The reconstituted enzyme contained 2 ATPbound per CF0F1 and 1 ADPbound per CF0F1. Upon energisation the enzyme was activated and 0.9 ADP per CF0F1, was released. Binding of ADP to the active reduced enzyme was observed under different conditions. In the absence of phosphate the rate constant for ADP binding was 105 M−1·s−1 under energized and de-energized conditions. In the presence of phosphate the rate of ADP binding drastically increased under energized conditions, and strongly decreased under de-energized conditions.  相似文献   

13.
The reaction of [N(PPh3)2]2[Ni6(CO)12] with Cu(PPh3)xCl (x=1, 2), as well as the degradation of [N(PPh3)2]2[H2Ni12(CO)21] with PPh3, affords the new and unstable dark orange–brown [N(PPh3)2]2[Ni9(CO)16].THF salt in low yields. This salt has been characterized by a CCD X-ray diffraction determination, along with IR spectroscopy and elemental analysis. The close-packed two-layer metal core geometry of the [Ni9(CO)16]2− dianion is directly related to that of the bimetallic [Ni6Rh3(CO)17]3− trianion and may be envisioned to be formally derived from the hcp three-layer geometry of [Ni12(CO)21]4− by the substitution of one of the two outer [Ni3(CO)3(μ−CO)3]2− layers with a face-bridging carbonyl group.  相似文献   

14.
The displacement of [3H]GABA binding to GABA receptors of bovine brain cortical membranes by some sulfur-containing compounds (homothiotaurine, thiotaurine and carboxymethylcysteamine) was investigated and their potency was compared to that of other known sulfur-containing analogues of GABA, such as homotaurine, homohypotaurine and taurine. Displacement studies showed homotaurine to be more effective as a GABA displacer than homohypotaurine and homothiotaurine (IC50: 3.9 × 10−8, 6.7 × 10−7 and 6.8 × 10−7 M, respectively). Saturation experiments showed that the effect of taurine, homothiotaurine, homotaurine and homohypotaurine was due to a loss of high-affinity GABA sites (Kd = 10.7 nM). Homotaurine seems also to interact with low-affinity sites, decreasing the affinity constant, whereas the number of binding sites remains unchanged.  相似文献   

15.
The effect of tetraphenylboron (TPB), an activator of a membrane transport of lipophilic cations, on the inhibition of mouse liver mitochondrial respiration induced by a neurotoxin, 1-methyl-4-phenylpyridinium ion (MPP+), and by some structurally related compounds was studied. Of the compounds tested, MPP+ and 4-phenylpyridine (4-PP) significantly inhibited the respiration in an ADP-activated oxidation of substrates (state 3). TPB, dose-dependently, shortened the lag time of MPP+-induced inhibition and thus lowered the concentrations of MPP+ for the inhibition. However, TPB, even at the high concentration (10 μM), did not significantly affect 4-PP-induced inhibition. Carbonyl-cyanide-m-chlorophenylhydrazone (CCCP) blocked the respiratory inhibition by MPP+, independent of K+ concentration in the medium, and valinomycin blocked the inhibition only in the medium containing high K+ concentration. Determination of the intramitochondrial MPP+ concentration revealed about 1000-fold concentrated MPP+ from that in the medium during the incubation with TPB, indicative of potentiation of MPP+ transport into mitochondria by TPB. This might account for the enhancement of respiratory inhibition by MPP+. In the case of 4-PP, it will penetrate the mitochondrial membrane and intrinsically inhibit the respiration, but cannot accumulate in mitochondria. The present results indicate that, although the inhibitory potency of MPP+ per se is similar to 4-PP, MPP+ will be highly concentrated within mitochondria by the membrane potential, as the drive force for its transport.  相似文献   

16.
Human fibroblast culture on a crosslinked dermal porcine collagen matrix   总被引:1,自引:0,他引:1  
The use of a novel porcine-derived collagen biomaterial as a dermal tissue engineering matrix was examined. The matrix is derived from porcine dermis, and is processed to retain the native collagen (Type 1) and elastin structure. Human primary fibroblasts were cultured on the matrix to examine its potential for creating a dermal replacement. Attachment of fibroblasts on the collagen was compared to tissue culture plastic and PET membranes. Cell proliferation was assessed using the MTT assay and DAPI staining. For seeding densities of 5×104 and 1×105 cells cm−2, PET and plastic demonstrated >95% attachment of seeded numbers after 3 h. The collagen matrix reached levels >80% after 3–4 h with no influence of the seeding density. Matrix samples with perforating pores of 40 μm diameter were also studied. After 216 h culture in static culture, with media replacement every 3 days, the final cell numbers reached 2.1×105 (perforated) and 2.0×105 cells cm−2 (unperforated). In comparison fibroblast culture in a perfusion bioreactor, with continuous media replacement, reached 2.3×105 (unperforated) and 2.5×105 cells cm−2 (perforated) after 216 h.  相似文献   

17.
1. Rate constants for reduction of paraquat ion (1,1′-dimethyl-4,4′-bipyridy-lium, PQ2+) to paraquat radical (PQ+·) by eaq and CO2· have been measured by pulse radiolysis. Reduction by eaq is diffusion controlled (k = 8.4·1010 M−1·s−1) and reduction by CO2· is also very fast k = 1.5·1010 M−1·s−1).

2. The reaction of paraquat radical with oxygen has been analysed to give rate constants of 7.7·108 M−1·s−1 and 6.5·108 M−1·s−1 for the reactions of paraquat radical with O2 and O2·, respectively. The similarity in these rate constants is in marked contrast to the difference in redox potentials of O2 and O2· (− 0.59 V and + 1.12 V, respectively).

3. These rate constants, together with that for the self-reaction of O2·, have been used to calculate the steady-state concentration of O2· under conditions thought to apply at the site of reduction of paraquat in the plant cell. On the basis of these calculations the decay of O2· appears to be governed almost entirely by its self-reaction, and the concentration 5 μm away from the thylakoid is still 90% of that at the thylakoid itself. Thus, O2· persists long enough to diffuse as far as the chloroplast envelope and tonoplast, which are the first structures to be damaged by paraquat treatment. O2· is therefore sufficiently long-lived to be a candidate for the phytotoxic product formed by paraquat in plants.  相似文献   


18.
Roger N.F. Thorneley 《BBA》1974,333(3):487-496
1. Single reduced methyl viologen (MV.+) acts as an electron donor in a number of enzyme systems. The large changes in extinction coefficient upon oxidation (λmax 600 nm; MV.+, = 1.3 · 104 M−1 · cm−1; oxidised form of methyl viologen (MV2+), = 0.0) make it ideally suited to kinetic studies of electron transfer reactions using stopped-flow and standard spectrophotometric techniques.

2. A convenient electrochemical preparation of large amounts of MV.+ has been developed.

3. A commercial stopped-flow apparatus was modified in order to obtain a high degree of anaerobicity.

4. The reaction of MV.+ with O2 produced H2O2 (k > 5 · 106 M−1 · s−1, pH 7.5, 25 °C). H2O2 subsequently reacted with excess MV.+ (k = 2.3 · 103 M−1 · s−1, pH 7.5, 25 °C) to produce water. The kinetics of this reaction were complex and have only been interpreted over a limited range of concentrations.

5. The results support the theory that the herbicidal action of methyl viologen (Paraquat, Gramoxone) is due to H2O2 (or radicals derived from H2O2) induced damage of plant cell membrane.  相似文献   


19.
Calmodulin binding to a membrane fraction enriched in synaptic plasma membranes of sheep brain cells was investigated with [125I]calmodulin. Calmodulin binding to these membranes is Ca2+-dependent with a half maximal saturation at the pCa value of about 5.5. The binding is reduced by replacing Ca2+ with Mg2+, but it is significantly enhanced when both cations are present in the medium. Cation-dependent binding is specific and saturable with an apparent KD of about 47–50 nM and a maximal capacity of about 4 pmol mg−1 protein. The results indicate that synaptic plasma membranes isolated from sheep brain cells interact with calmodulin in a Ca2+-dependent, Mg2+-facilitated manner.  相似文献   

20.
It is known that quinuclidinyl benzilate (QNB) binds specifically and with high affinity to the cholinergic muscarinic receptor and that behaves as a potent antagonist of this receptor.

We have analysed -[3H]QNB binding to rat CNS membranes after the administration of the convulsant 3-mercaptopropionic acid (MP) (150 mg·kg−1, i.p.). The studies were done in rats killed at two stages: during and after seizures. No changes in [3H]QNB binding to hippocampus and cerebral cortex membranes were found. [3H]QNB binding increased about 40 and 80% in striatum and cerebellum membranes, respectively. The changes were observed both in seizure and postseizures states. The study was extended to the assay of [3H]QNB binding kinetic constants in the anatomical areas modified by the convulsant. The analysis of the saturation curves indicated an increase in the binding affinity but no change in the number of binding sites. Hill number values were near the unit suggesting a non-cooperative interaction between the ligand and the receptor, and the labelling of a homogeneous population of receptor sites.

The results suggest the participation of some cholinergic pathways in the development and maintenance of MP-induced seizures.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号