首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The statocysts of Leptomedusae are formed as a depression in the velum. They are lined on the inside towards the distal part of the velum by thin epithelium and towards the proximal part by ciliated sensory cells. Lithocytes are present in the centre. The concretion contains calcium sulphate and in some cases, calcium phosphate is also present in addition to some membranous material. The statocysts of Narcomedusae arise from the exumbrellar nerve ring as free sensory clubs. They have a proximal basal cushion of sensory cells from the centre of which arises a sensory club (Aegina) or a sensory papilla carrying a sensory club (Solmissus). The sensory club has an axial strand of endodermal cells covered by ciliated sensory cells. Some of the endodermal cells have a concretion. While the statocysts of Leptomedusae are totally ectodermal, those of Narcomedusae are ecto-endodermal in origin. The sensory cilia of Leptomedusae, especially those present on the sensory cells adjacent to the lithocyte, run close and parallel to the lithocyte membrane. In Narcomedusae the sensory cilia of the basal cusion and sensory papilla are tall and strong. Ciliary rootlets are missing in the sensory cilia of Leptomedusae and in the sensory club of Narcomedusae but they are strongly developed in the cilia of basal cusion and sensory papilla. The cilia have 9+2 filament content. A ring of stereocilia surrounds the kinocilium of the sensory club cells. Mechanism of statocyst function is discussed.  相似文献   

2.
Sensory systems evolve and enable organisms to perceive their sensory Umwelt, the unique set of cues relevant for their survival. The multiple components that comprise sensory systems — the receptors, cells, organs, and dedicated high-order circuits — can vary greatly across species. Sensory receptor gene families can expand and contract across lineages, resulting in enormous sensory diversity. Comparative studies of sensory receptor function have uncovered the molecular basis of receptor properties and identified novel sensory receptor classes and noncanonical sensory strategies. Phylogenetically informed comparisons of sensory systems across multiple species can pinpoint when sensory changes evolve and highlight the role of contingency in sensory system evolution.  相似文献   

3.
近期的脑成像研究在盲人等感官缺陷被试者身上发现了感觉替换现象,即传统上认为仅对单一感觉通道刺激反应的皮层区域也参与其他感觉通道的信息加工.类似的效应在感觉剥夺(蒙住眼睛)的明视人被试中也被观察到,提示脑内可能预存着多感觉交互作用的神经通路.通常认为,上述神经通路在常态的人脑中是以潜伏形式存在的,只有当感觉剥夺时才显露出来或得到加强.但是,感觉剥夺是否是该类神经通路发挥作用的必要条件,已有的研究尚缺乏确切的证据.采用统计力度较强的实验设计,给未蒙眼明视人被试听觉呈现一组名词,要求其对听到的每一个词语做出是人工物体还是自然物体的语义判断.对同步采集的功能磁共振信号进行统计分析,观察到视皮层脑区有显著激活.这些结果表明,跨感觉通道的神经通路在未实施感觉剥夺的条件下依然能够显示出来,因而在常态人脑中也不是完全以潜伏形式存在的.上述研究为建立多感觉交互作用神经机制的具体理论模型提供了一个约束条件.  相似文献   

4.
Detection and primary processing of physical, chemical and thermal sensory stimuli by peripheral sensory nerve fibers is key to sensory perception in animals and humans. These peripheral sensory nerve fibers express a plethora of receptors and ion channel proteins which detect and initiate specific sensory stimuli. Methods are available to characterize the electrical properties of peripheral sensory nerve fibers innervating the skin, which can also be utilized to identify the functional expression of specific ion channel proteins in these fibers. However, similar electrophysiological methods are not available (and are also difficult to develop) for the detection of the functional expression of receptors and ion channel proteins in peripheral sensory nerve fibers innervating other visceral organs, including the most challenging tissues such as bone. Moreover, such electrophysiological methods cannot be utilized to determine the expression of non-excitable proteins in peripheral sensory nerve fibers. Therefore, immunostaining of peripheral/visceral tissue samples for sensory nerve fivers provides the best possible way to determine the expression of specific proteins of interest in these nerve fibers. So far, most of the protein expression studies in sensory neurons have utilized immunostaining procedures in sensory ganglia, where the information is limited to the expression of specific proteins in the cell body of specific types or subsets of sensory neurons. Here we report detailed methods/protocols for the preparation of peripheral/visceral tissue samples for immunostaining of peripheral sensory nerve fibers. We specifically detail methods for the preparation of skin or plantar punch biopsy and bone (femur) sections from mice for immunostaining of peripheral sensory nerve fibers. These methods are not only key to the qualitative determination of protein expression in peripheral sensory neurons, but also provide a quantitative assay method for determining changes in protein expression levels in specific types or subsets of sensory fibers, as well as for determining the morphological and/or anatomical changes in the number and density of sensory fibers during various pathological states. Further, these methods are not confined to the staining of only sensory nerve fibers, but can also be used for staining any types of nerve fibers in the skin, bones and other visceral tissue.  相似文献   

5.
Voluntary motor commands produce two kinds of consequences. Initially, a sensory consequence is observed in terms of activity in our primary sensory organs (e.g., vision, proprioception). Subsequently, the brain evaluates the sensory feedback and produces a subjective measure of utility or usefulness of the motor commands (e.g., reward). As a result, comparisons between predicted and observed consequences of motor commands produce two forms of prediction error. How do these errors contribute to changes in motor commands? Here, we considered a reach adaptation protocol and found that when high quality sensory feedback was available, adaptation of motor commands was driven almost exclusively by sensory prediction errors. This form of learning had a distinct signature: as motor commands adapted, the subjects altered their predictions regarding sensory consequences of motor commands, and generalized this learning broadly to neighboring motor commands. In contrast, as the quality of the sensory feedback degraded, adaptation of motor commands became more dependent on reward prediction errors. Reward prediction errors produced comparable changes in the motor commands, but produced no change in the predicted sensory consequences of motor commands, and generalized only locally. Because we found that there was a within subject correlation between generalization patterns and sensory remapping, it is plausible that during adaptation an individual''s relative reliance on sensory vs. reward prediction errors could be inferred. We suggest that while motor commands change because of sensory and reward prediction errors, only sensory prediction errors produce a change in the neural system that predicts sensory consequences of motor commands.  相似文献   

6.
Castro-Alamancos MA 《Neuron》2004,41(3):455-464
One prominent feature of sensory responses in neocortex is that they rapidly adapt to increases in frequency, a process called "sensory adaptation." Here we show that sensory adaptation mainly occurs during quiescent states such as anesthesia, slow-wave sleep, and awake immobility. In contrast, during behavior-ally activated states, sensory responses are already adapted. For instance, during learning of a behavioral task, when an animal is very alert and expectant, sensory adaptation is mostly absent. After learning occurs, and the task becomes routine, the level of alertness lessens and sensory adaptation becomes robust. The primary sensory thalamocortical pathway of alert and expectant animals is in the adapted state, which may be required for adequate sensory information processing.  相似文献   

7.
R Bodmer  S Barbel  S Sheperd  J W Jack  L Y Jan  Y N Jan 《Cell》1987,51(2):293-307
The identities of two types of sensory organs in the body wall of Drosophila, namely the external sensory organs and the chordotonal organs, are under genetic control. Embryonic lethal mutations in the cut gene complex transform the external sensory organs into chordotonal organs. The neurons, as well as the support cells forming the external sensory structures, change their morphological and antigenic characteristics to those of chordotonal organs, providing genetic evidence that these two types of sensory organs are homologous. Similar transformations of external sensory organs are observed in adult mosaic flies. Analysis of mosaic larvae and flies suggests that the cut gene function is required either in or near external sensory organs in order for them to acquire their correct identity.  相似文献   

8.
Although the presence of neuromodulators in mammalian sensory systems has been noted for some time, a groundswell of evidence has now begun to document the scope of these regulatory mechanisms in several sensory systems, highlighting the importance of neuromodulation in shaping feature extraction at all levels of neural processing. The emergence of more sophisticated models of sensory encoding and of the interaction between sensory and regulatory regions of the brain will challenge sensory neurobiologists to further incorporate a concept of sensory network function that is contingent on neuromodulatory and behavioral state.  相似文献   

9.
We have tested the hypothesis that larval neurones guide growth of adult sensory axons in Drosophila. We show that ablation of larval sensory neurones causes defects in the central projections of adult sensory neurones. Spiralling axons and ectopic projections indicate failure in axon growth guidance. We show that larval sensory neurones are required for peripheral pathfinding, entry into the CNS and growth guidance within the CNS. Ablation of subsets of neurones shows that larval sensory neurones serve specific guidance roles. Dorsal neurones are required for axon guidance across the midline, whereas lateral neurones are required for posterior growth. We conclude that larval sensory neurones pioneer the assembly of sensory arrays in adults.  相似文献   

10.
11.
Short-term synaptic plasticity is phylogenetically widespread in ascending sensory systems of vertebrate brains. Such plasticity is found at all levels of sensory processing, including in sensory cortices. The functional roles of this apparently ubiquitous short-term synaptic plasticity, however, are not well understood. Data obtained in midbrain electrosensory neurons of Eigenmannia suggest that this plasticity has at least two roles in sensory processing; enhancing low-pass temporal filtering and generating phase shifts used in processing moving sensory images. Short-term synaptic plasticity may serve similar roles in other sensory modalities, including vision.  相似文献   

12.
The simple nervous system of the nematode C. elegans consists of 302 neurons with highly reproducible morphologies, suggesting a hard-wired program of axon guidance. Surprisingly, we show here that sensory activity shapes sensory axon morphology in C. elegans. A class of mutants with deformed sensory cilia at their dendrite endings have extra axon branches, suggesting that sensory deprivation disrupts axon outgrowth. Mutations that alter calcium channels or membrane potential cause similar defects. Cell-specific perturbations of sensory activity can cause cell-autonomous changes in axon morphology. Although the sensory axons initially reach their targets in the embryo, the mutations that alter sensory activity cause extra axon growth late in development. Thus, perturbations of activity affect the maintenance of sensory axon morphology after an initial pattern of innervation is established. This system provides a genetically tractable model for identifying molecular mechanisms linking neuronal activity to nervous system structure.  相似文献   

13.
The structural differentiation of the nuchal organs during the post-embryonic development ofPygospio elegans is described. The sensory organs are composed of two cell types: ciliated cells and bipolar primary sensory cells, constituting the nuchal ganglion, which is associated with both the sensory epithelium and the brain. Since the sensory neurons are largely integrated into posterolateral parts of the cerebral ganglion, the nuchal organs are primary presegmental structures. The microvilli of the ciliated cells form a cover over the cuticle with a presumed protective function. An extracellular space extends between cuticle and sensory epithelium. The distal dendrites of the sensory cells terminate in sensory bulbs, bearing one modified sensory cilium each that projects into the olfactory chamber, embedded within the secretion of the ciliated cells. During development, the nuchal organs increase in size. This is accompanied by a shift in position, an expansion of the sensory area, and secretory activity of the ciliated cells. The nuchal ganglion differentiates into three nuchal centres forming three distinct sensory areas around the ciliated region. Each nuchal complex reveals two short nuchal nerves comprising the sensory axons, which enter the posterior circumesophageal connective. The sensory cells lying in the brain exhibit neurosecretory activity; the sensory cilia enlarge their surface area by dilating and branching. Nuchal organs accomplish the basic structural adaptions of chemoreceptors and show structural analogies to arthropod olfactory sensilla; thus, there is every reason to suppose chemoreceptor function.  相似文献   

14.
Previous studies have indicated that the mantle margin of the gastropod mollusc Notoacmea scutum is sensitive to chemical, photic, and mechanical stimulation. Here, the ultrastructure of sensory cells on the mantle tentacles of N. scutum is examined by transmission electron microscopy to determine if morphological types of sensory cells can be correlated with known sensory capabilities. The sensory cells of the mantle tentacles are found to be ciliated, primary receptors with subepithelial nuclei. The ciliated sensory endings are concentrated at the tip of the tentacles, but also occur in smaller numbers along the shaft. Ultrastructural differences between cilia form the basis of distinguishing two types of sensory ending. Type 1 sensory endings, which are over 90% of the endings, bar unusual cilia that typically are filled with an electron-dense material. Type 2 sensory endings bear cilia that have a 9 + 2 arrangement of longitudinal elements and thus more closely resemble previously reported sensory cilia of molluscs.  相似文献   

15.
The structure and arrangement of sensory organs in the tardigrade Halobiotus stenostomus (Richters 1908) have been studied using transmission and scanning electron microscopy techniques. The sensory organs found on the head of H. stenostomus are as follows: the circumoral sensory field, cephalic papillae, anterolateral and posterolateral sensory fields, and suboral sensory region. Four types of ciliated receptor structures are described in the sensory fields. The lateral sensory fields contain two types of receptor endings, dense and lucent, which differ in the presence or absence of a collar and in the structure of the outer dendrite segment. Two more types of receptor endings, ultrastructurally differing from the lateral sensory field receptors, are located in the suboral sensory region. Receptors with an asymmetric collar have been found, and a receptor ending without a collar is described for the first time in tardigrades. Unlike in other species studied, the sensory organs of H. stenostomus lack the lymph cavity surrounding the outer receptor segment. Similarity and differences in the ultrastructure of receptors between H. stenostomus and other species of Eutardigrada and Heterotardigrada are discussed.  相似文献   

16.
17.
The author has shown the variety in denominating peripheral sensory structures serving for mechanoreception, nociception, thermoreception and chemoreception. To term peripheral sensory structures as nerve endings is considered particularly unsuitable because this denomination is based only on morphogenesis of the ending. From the view of system approach, the peripheral sensory structures forms one unit formed by two or more structural subsystems. Even though the axon or its dendritic zone has the leading role in this unit, the function of the whole formation is influenced (modulated) by further non-nervous components. Although the causes of velocity of adaptation in some sensory structures have been already explained (e.g. in lamellar corpuscles with a thick capsule), different adaptation velocity of Merkel complexes in reptiles and birds on one side, and in mammals on the other, with the same structure has not been clear up to now. From the view of system approach as well as of the share of non-nervous components in the activity of the whole sensory structure, the author has suggested to introduce the term "sensory nerve formation" for peripheral sensory structures serving for mechanoreception, nociception, thermoreception and chemoreception. The term "complex sensory nerve formation" is suggested for more complex sensory structures in which either more sensory nerve formations of the same kind (Pinkus tactile dics) or different kinds of sensory formations (Eimer organ of a mole) are connected constantly or in which the connection of sensory nerve formations with other supporting structures (hairs, feathers) occurs.  相似文献   

18.
Anthropogenic sensory pollution is affecting ecosystems worldwide. Human actions generate acoustic noise, emanate artificial light and emit chemical substances. All of these pollutants are known to affect animals. Most studies on anthropogenic pollution address the impact of pollutants in unimodal sensory domains. High levels of anthropogenic noise, for example, have been shown to interfere with acoustic signals and cues. However, animals rely on multiple senses, and pollutants often co-occur. Thus, a full ecological assessment of the impact of anthropogenic activities requires a multimodal approach. We describe how sensory pollutants can co-occur and how covariance among pollutants may differ from natural situations. We review how animals combine information that arrives at their sensory systems through different modalities and outline how sensory conditions can interfere with multimodal perception. Finally, we describe how sensory pollutants can affect the perception, behaviour and endocrinology of animals within and across sensory modalities. We conclude that sensory pollution can affect animals in complex ways due to interactions among sensory stimuli, neural processing and behavioural and endocrinal feedback. We call for more empirical data on covariance among sensory conditions, for instance, data on correlated levels in noise and light pollution. Furthermore, we encourage researchers to test animal responses to a full-factorial set of sensory pollutants in the presence or the absence of ecologically important signals and cues. We realize that such approach is often time and energy consuming, but we think this is the only way to fully understand the multimodal impact of sensory pollution on animal performance and perception.  相似文献   

19.
The sensory bias model of sexual selection posits that female mating preferences are by-products of natural selection on sensory systems. Although sensory bias was proposed 20 years ago, its critical assumptions remain untested. This paradox arises because sensory bias has been used to explain two different phenomena. First, it has been used as a hypothesis about signal design, that is, that males evolve traits that stimulate female sensory systems. Second, sensory bias has been used as a hypothesis for the evolution of female preference itself, that is, to explain why females exhibit particular preferences. We focus on this second facet. First, we clarify the unique features of sensory bias relative to the alternative models by considering each in the same quantitative genetic framework. The key assumptions of sensory bias are that natural selection is the predominant evolutionary mechanism that affects preference and that sexual selection on preferences is quantitatively negligible. We describe four studies that would test these assumptions and review what we can and cannot infer about sensory bias from existing studies. We suggest that the importance of sensory bias as an explanation for the evolution of female preferences remains to be determined.  相似文献   

20.
The fine structure of three sensory receptors of the rosette organ of Gyrocotyle rugosa, is described. The Type I sensory receptors, localised towards the edge of both upper and lower surfaces, are characterized by a long cilium embedded in a bulb containing two electron-dense collars and several mitochondria. The Type II sensory receptors, larger than Type I, are located on the upper surface of the rosette and have a long cilium and a ciliary rootlet. They also have two electron-dense collars and one or two mitochondria. The sensory cilia of both types are characterized by 9 + 2 axonemes. The Type III sensory receptors, localised on the under surface, lack a sensory cilium but have a ciliary rootlet and are enclosed in the tegument and musculature; there is a complicated three-dimensional spherical lattice of microfibrils associated with the rootlet. The sensory bulbs contain large numbers of membrane bound vesicles and neurotubules. A function is postulated for each of the three types of sensory receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号