首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
1. If species disproportionately influence ecosystem functioning and also differ in their sensitivities to environmental conditions, the selective removal of species by anthropogenic stressors may lead to strong effects on ecosystem processes. We evaluated whether these circumstances held for several Colorado, U.S.A. streams stressed by Zn. 2. Benthic invertebrates and chemistry were sampled in five second–third order streams for 1 year. Study streams differed in dissolved metal concentrations, but were otherwise similar in chemical and physical characteristics. Secondary production of leaf‐shredding insects was estimated using the increment summation and size‐frequency methods. Leaf litter breakdown rates were estimated by retrieving litter‐bags over a 171 day period. Microbial activity on leaf litter was measured in the laboratory using changes in oxygen concentration over a 48 h incubation period. 3. Dissolved Zn concentrations varied eightfold among two reference and three polluted streams. Total secondary production of shredders was negatively associated with metal contamination. Secondary production in reference streams was dominated by Taenionema pallidum. Results of previous studies and the current investigation demonstrate that this shredder is highly sensitive to metals in Colorado headwater streams. Leaf litter breakdown rates were similar between reference streams and declined significantly in the polluted streams. Microbial respiration at the most contaminated site was significantly lower than at reference sites. 4. Our results supported the hypothesis that some shredder species contribute disproportionately to leaf litter breakdown. Furthermore, the functionally dominant taxon was also the most sensitive to metal contamination. We conclude that leaf litter breakdown in our study streams lacked functional redundancy and was therefore highly sensitive to contaminant‐induced alterations in community structure. We argue for the necessity of simultaneously measuring community structure and ecosystem function in anthropogenically stressed ecosystems.  相似文献   

2.
A. -C. Chamier 《Oecologia》1987,71(4):491-500
Summary Rates of degradation of alder, oak and grass leaf packs with associated microbial populations were measured in seven streams pH 6.8–4.9. Streams were chosen from upland and lowland sites of the same river for contrasts in pH, water chemistry and riparian vegetation. The most important factor governing rates of degradation is the physical and chemical nature of the leaf material. At pH 6.8 rates of degradation, k, and microbial colonization were higher than at pH 5.5: k on alder x6; on oak x2; on grass x2. At lowland sites, pH 6.8, higher decay rates were associated with high levels of microbial colonization including c.14 spp of aquatic hyphomycete fungi—regardless of riparian vegetation. Decay rates were similar at upland sites, pH 6.8 and 6.6, involving high levels of colonization by fewer fungal species and fewer bacteria—regardless of riparian vegetation-though grass was barely degraded at upland sites of any pH. At pH 5.5, slow decay rates were associated with low levels of microbial colonization and few fungal species. Largest microbial populations at low pH associated with riparian trees did not lead to markedly increased decay rates. Factors of water chemistry at low pH appear to inhibit microbial metabolism. The implications of these findings for stream invertebrates active in the winter is discussed.  相似文献   

3.
  • 1 Leaf litter processing rates and macroinvertebrate shredder assemblages in leaf packs were compared in four streams on the Allegheny plateau in the central Appalachian Mountains, U.S.A.; these streams were characterized by different bedrock geology and streamwater pH.
  • 2 Leaf litter processing rates were fastest in the neutral streams, slowest in the acidic stream, and intermediate in the most alkaline stream.
  • 3 Slower processing rates in the acidic stream were associated with lower total shredder biomass, made up predominantly by small leuctrid and nemourid stoneflies.
  • 4 The differences in processing rates between the more alkaline stream and the neutral streams were not associated with differences in shredder biomass, but appeared to be related to taxonomic differences in the shredder assembiages. Insects were dominant in the neutral streams, and amphipods were dominant in the more alkaline stream.
  相似文献   

4.
5.
6.
Atmospheric acid deposition affects many streams worldwide, leading to decreases in pH and in base cations concentrations and increases in aluminum (Al) concentration. These changes in water chemistry induce profound changes in the diversity, structure and activity of biological communities and in ecosystem processes. However, monitoring programs rely only on chemical and structural indicators to assess stream integrity. Nevertheless, the ability of ecosystems to provide services rely on their functional integrity and thus ecosystem processes should be considered in monitoring programs. We assessed the potential for leaf litter decomposition, a fundamental ecosystem process in forest streams, to be used as a bioassessment tool of acidification effects on stream ecosystem functioning. In a field study in the Vosges Mountains (North-eastern France), using three leaf litter species (Alnus glutinosa, Acer pesudoplatanus and Fagus sylvatica) enclosed in fine and coarse mesh bags and incubated in streams flowing over granite or sandstone bedrock along an acidification gradient, we assessed if the response of litter decomposition to acidification depended on litter species, mesh size, parent lithology and acidification level. In a meta-analysis of 17 primary studies on the effect of acidification on leaf litter decomposition, reporting 67 acidified – reference stream comparisons, we assessed the consistency in the response of litter decomposition to acidification cross studies and the robustness of litter decomposition to be used as a bioassessment tool. Both the field study and meta-analysis revealed an overall strong inhibition (>60%) of leaf litter decomposition in acidified streams likely resulting from previously well described altered decomposer community structure and activity. No effect of leaf species was found in the field study, while in the meta-analysis inhibition of leaf litter decomposition in acidified streams was stronger for Fagus than for Acer, Quercus and Liriodendron. However, differences among leaf species in the meta-analysis might have been confounded by other differences among studies. The response of leaf litter decomposition to acidification was stronger in coarse than in fine mesh bags, indicating strong impairment of detritivore community structure and activity. The magnitude of inhibition also depended on parent lithology, but this is likely related to differences in the degree of acidification. Indeed, the magnitude of the inhibition of leaf litter decomposition increases with increases in H+ in Al concentration. Litter decomposition has the potential to be used as a bioassessment tool of acidification effects in streams since it shows consistent response to acidification across regions and is robust to experimental choices.  相似文献   

7.
SUMMARY 1. The effects of chlorine on litter ( Potamogeton crispus L.) processing were examined using six outdoor experimental streams. Downstream portions of two streams were dosed at c . 10 μg l−1 Total Residual Chlorine (TRC), one stream at 64 μgl1, and one stream at 230μg l−1. Two control streams were not dosed; upstream riffles of each stream served as instream controls.
2. Two 35 day litter breakdown (per cent AFDW remaining) experiments indicated significantly lower decay rates in the high dose riffle. No other concentration of chlorine significantly affected decay rate.
3. A third experiment, conducted in medium and high dose streams, indicated that high dose chlorine exposure reduced litter decomposition rates significantly, and reduced microbial colonization, microbial electron transport system activity, and microbial litter decomposition after 4 days but not after 11 days of exposure. The number of amphipod shredders colonizing litter bags was also reduced significantly with high chlorine dose.
4. A fourth experiment, after dosing was terminated, provided direct evidence that amphipod shredders were important in facilitating litter decomposition: litter bags stocked with amphipods had significantly higher decomposition rates than bags which excluded shredders.
5. Overall results indicate that the high dose (c. 230 μgl−1 TRC) of chlorine reduced litter processing rates partly by reducing initial microbial conditioning, but primarily by reducing the colonization of amphipod shredders.  相似文献   

8.
9.
The decomposition of allochthonous leaf litter is retarded by stream acidification, but few studies have evaluated whether this effect can be offset by liming – the palliative addition of calcium carbonate either to streams or their catchments. We assessed the response of litter decomposition to pH and experimental liming in Welsh upland streams. Small-mesh (<335 μm) litter-bags containing common beech (Fagus sylvatica L.) were submerged in main river sites along the River Wye, and in replicate acid, circumneutral and experimentally limed tributaries (all n = 3) for 20 days. Beech decomposition was inhibited in acid tributaries and main river sites compared to circumneutral tributaries. Despite having only moderately increased pH relative to acid streams, limed sites had increased decomposition rates that were indistinguishable from naturally circumneutral streams. Decomposition rates increased highly significantly with pH across all 12 sites studied, and values were near identical to those in more prolonged experiments elsewhere. There were no significant variations in shredder numbers with decomposition rate, and no evidence that sites with faster decomposition had smaller shredder proportions. Although based on short-term observations and leaves from just one tree species, these results are consistent with the well-known retardation at low pH of some aspect microbial decomposition (e.g. by hyphomycete fungi). They are among the first to suggest that stream liming to combat acidification might reverse such impacts of low pH. Further data are required on the microbiological causes and ecological consequences of altered detrital processing in acid-sensitive and limed streams.  相似文献   

10.
Amazon and Cerrado‐forested streams show natural fluctuations in leaf litter quantity along the time and space, suggesting a change on litter quality input. These natural fluctuations of leaf litter have repercussion on the organic matter cycling and consequently effects on leaf decomposition in forested streams. The effects of the quantity of leaf litter with contrasting traits on consumption by larvae of shredder insects from biomes with different organic matter dynamics have still been an understudied question. The Trichoptera Phylloicus spp. is a typical shredder in tropical headwater streams and keep an important role in leaf litter decomposition. Here, we assessed the consumption by shredder Phylloicus spp., from Amazonia and Cerrado biomes, on higher (Maprounea guianensis) and lower quality leaves (Inga laurina) in different proportions and quantities. Experiments were performed concomitantly in microcosms approaches, simulating Cerrado and Amazonian streams. Higher leaf consumption occurred in Cerrado microcosms. Litter quantity influenced negatively leaf consumption by shredders in Cerrado, in opposition to Amazonia, where consumption was not affected by leaf quantity. In both sites, we observed higher consumption by shredders in treatment with only M. guianensis and no difference between other treatments with mixture of leaves. In treatment with litter of I. laurina, we noted the use of substrate for case building (due to the higher leaf toughness), affecting the fragmentation process. Therefore, our results indicate that leaf litter quality drives the preference of consumption by Phylloicus larvae in Cerrado and Amazonia streams.  相似文献   

11.
Benthic invertebrates, litter decomposition, andlitterbag invertebrates were examined in streamsdraining pine monoculture and undisturbed hardwoodcatchments at the Coweeta Hydrologic Laboratory in thesouthern Appalachian Mountains, USA. Bimonthlybenthic samples were collected from a stream draininga pine catchment at Coweeta during 1992, and comparedto previously collected (1989–1990) benthic data froma stream draining an adjacent hardwood catchment. Litter decomposition and litterbag invertebrates wereexamined by placing litterbags filled with pine ormaple litter in streams draining pine catchments andhardwood catchments during 1992–1993 and 1993–1994. Total benthic invertebrate abundance and biomass inthe pine stream was ca. 57% and 74% that of thehardwood stream, respectively. Shredder biomass wasalso lower in the pine stream but, as a result ofhigher Leuctra spp. abundance, shredderabundance was higher in the pine stream than thehardwood stream. Decomposition rates of both pine andred maple litter were significantly faster in pinestreams than adjacent hardwood streams (p<0.05). Total shredder abundance, biomass, and production weresimilar in maple bags from pine and hardwood streams. However, trichopteran shredder abundance and biomass,and production of some trichopteran taxa such asLepidostoma spp., were significantly higher in maplelitterbags from pine streams than hardwood streams(p<0.05). In contrast, plecopteran shredders(mainly Tallaperla sp.) were more important inmaple litterbags from hardwood streams. Shredderswere well represented in pine litterbags from pinestreams, but low shredder values were obtained frompine litterbags in hardwood streams. Resultssuggest conversion of hardwood forest to pinemonoculture influences taxonomic composition of streaminvertebrates and litter decomposition dynamics. Although the impact of this landscape-leveldisturbance on invertebrate shredder communitiesappeared somewhat subtle, significant differences indecomposition dynamics indicate vital ecosystem-levelprocesses are altered in streams draining pinecatchments.  相似文献   

12.
Mühling KH  Läuchli A 《Planta》2000,212(1):9-15
The K+-sensitive fluorescent dye benzofuran isophthalate (PBFI) and the pH-sensitive fluorescein isothiocyanate dextran (FITC-Dextran) were used to investigate the influence of light/dark transitions on apoplastic pH and K+ concentration in intact leaves of Vicia faba L. with fluorescence ratio imaging microscopy. Illumination by red light led to an acidification in the leaf apoplast due to light-induced H+ extrusion. Similar apoplastic pH responses were found on adaxial and abaxial sides of leaves after light/dark transition. Stomatal opening resulted only in a slight pH decrease (0.2 units) in the leaf apoplast. Gradients of apoplastic pH exist in the leaf apoplast, being about 0.5–1.0 units lower in the center of the xylem veins as compared with surrounding cells. The apoplastic K+ concentration in intact leaves declined during the light period. A steeper light-induced decrease in apoplastic K+, possibly caused by higher apoplastic K+, was found on the abaxial side of leaves concentration. Simultaneous measurements of apoplastic pH and K+ demonstrated that a light-induced decline in apoplastic K+ concentration indicative of net K+ uptake into leaf cells occurs independent of apoplastic pH changes. It is suggested that the driving force that is generated by H+ extrusion into the leaf apoplast due to H+-ATPase activity is sufficient for passive K+ influx into the leaf cells. Received: 7 March 2000 / Accepted: 12 May 2000  相似文献   

13.
对肺炎克雷伯氏菌(Klebsiellapneumoniae)发酵生产1,3-丙二醇(1,3-Propanediol,1,3.PD)的补碱策略进行了研究。分别利用NaOH、氨水、KOH三种溶液作为pH调节剂,优化三种pH调节剂并得到按一定比例混合的混合碱。当采用混合碱调控发酵pH值为7.0时,1,3-丙二醇的产量达到了55dL,比无pH调控(对照)发酵过程发酵水平提高了10.6倍。  相似文献   

14.
15.
Light-induced changes in the fluorescence of the pH-indicating dyes pyranine or 5-(and 6-)carboxy-2, 7-dichlorofluorescein (CDCF) which had been fed to leaves were examined to monitor cellular pH changes. After short-term feeding of pyranine (pK 7.3) to leaves of Amaranthus caudatus L., a NAD-malic-enzyme-type C4 plant, vascular bundles and surrounding cells became fluorescent. Fluorescence emission from mesophyll cells required longer feeding times. In CO2-free air, pyranine fluorescence increased much more on illumination after mesophyll cells had become fluorescent than when only the vascular bundles and the bundle sheath of Amaranthus leaves had been stained. After short feeding times and in the absence of actinic illumination, CO2 decreased pyranine fluorescence very slowly in Amaranthus and rapidly in C3 leaves. After prolonged feeding times, the extent of the light-dependent increase in pyranine fluorescence was several times greater in different C4 plants than in C3 species. The kinetics of the fluorescence changes were also remarkably different in C3 and C4 plants. Carbon dioxide (500 l · l–1) suppressed the light-induced increase in pyranine fluorescence more in C4 than in C3 leaves. Light-dependent changes in light scattering, which are indicative of chloroplast energization, and in 410-nm transmission, which indicate chloroplast movement, differed kinetically from those of the changes in pyranine fluorescence. Available evidence indicated that light-dependent changes in pyranine fluorescence did not originate from the apoplast of leaf cells. Microscopic observation led to the conclusion that, after prolonged feeding times or prolonged incubation, changes in pyranine fluorescence emitted from C4 leaves reflect pH changes mainly in the cytosol of mesophyll cells. A transient acidification reaction indicated by quenching of pyranine fluorescence in the dark-light transient and not observed in C3 species is attributed to the carboxylation of phosphoenolpyruvate. After short feeding times and in the absence of actinic illumination, CO2 (250 l l–1) decreased pyranine fluorescence very slowly in Amaranthus and more rapidly in C3 leaves. After prolonged feeding times, both the rate and the extent of CO2-dependent quenching of pyranine fluorescence increased, but the increase was insufficient to indicate the presence of highly active carbonic anhydrase in the compartment from which pyranine fluorescence was emitted. In contrast to pyranine, CDCF (pK 4.8) did not increase but rather decreased its fluorescence on illumination of an Amaranthus leaf, indicating acidification of an acidic compartment, most probably the vacuole of green leaf cells. The pattern of the acidification reaction was similar in C4 and C3 leaves. The remarkably large extent of the light-dependent increase in pyranine fluorescence from leaves of C4 species and its slow kinetics are proposed to be caused by an alkalization of the cytosol which in the absence of CO2 is larger in the mesophyll than in the bundle sheath. It gives rise to deprotonation of dye originally located in the mesophyll and, in addition, of dye which diffuses from the bundle sheath into the mesophyll following a pH gradient. Implications of slow diffusional transport of pyranine and CO2 between mesophyll and bundle-sheath cells and the fast metabolite transport required in C4 photosynthesis are discussed.Abbreviations CDCF 5-(and 6-)carboxy-2,7-dichlorofluorescein - DHAP dihydroxyacetone phosphate - PGA 3-phosphoglycerate This work was supported by the Sonderforschungsbereiche 176 and 251 of the University of Würzburg and by the Gottfried-Wilhelm-Leibniz Program of the Deutsche Forschungsgemeinschaft. A.S.R. was the recipient of a fellowship of the Alexander-von-Humboldt Foundation. We are grateful to Mrs. S. Neimanis for cooperation.  相似文献   

16.
1. We compared fungal biomass, production and microbial respiration associated with decomposing leaves in one softwater stream (Payne Creek) and one hardwater stream (Lindsey Spring Branch). 2. Both streams received similar annual leaf litter fall (478–492 g m?2), but Lindsey Spring Branch had higher average monthly standing crop of leaf litter (69 ± 24 g m?2; mean ± SE) than Payne Creek (39 ± 9 g m?2). 3. Leaves sampled from Lindsey Spring Branch contained a higher mean concentration of fungal biomass (71 ± 11 mg g?1) than those from Payne Creek (54 ± 8 mg g?1). Maximum spore concentrations in the water of Lindsay Spring Branch were also higher than those in Payne Creek. These results agreed with litterbag studies of red maple (Acer rubrum) leaves, which decomposed faster (decay rate of 0.014 versus 0.004 day?1), exhibited higher maximum fungal biomass and had higher rates of fungal sporulation in Lindsey Spring Branch than in Payne Creek. 4. Rates of fungal production and respiration per g leaf were similar in the two streams, although rates of fungal production and respiration per square metre were higher in Lindsey Spring Branch than in Payne Creek because of the differences in leaf litter standing crop. 5. Annual fungal production was 16 ± 6 g m?2 (mean ± 95% CI) in Payne Creek and 46 ± 25 g m?2 in Lindsey Spring Branch. Measurements were taken through the autumn of 2 years to obtain an indication of inter‐year variability. Fungal production during October to January of the 2 years varied between 3 and 6 g m?2 in Payne Creek and 7–27 g m?2 in Lindsey Spring Branch. 6. Partial organic matter budgets constructed for both streams indicated that 3 ± 1% of leaf litter fall went into fungal production and 7 ± 2% was lost as respiration in Payne Creek. In Lindsey Spring Branch, fungal production accounted for 10 ± 5% of leaf litter fall and microbial respiration for 13 ± 9%.  相似文献   

17.
Illumination of leaves of C3 plants caused cytosolic alkalization and vacuolar acidification in the mesophyll cells. Both phenomena were particularly pronounced when CO2 was absent, were suppressed by CO2, and were related to the activation state of the photosynthetic apparatus. The cytosolic alkalization reaction has at least two major components. Trivalent cytosolic phosphoglycerate must be protonated before it can be transferred into the chloroplasts for reduction. Pumping of protons from the cytosol into the vacuole also contributes to cytosolic alkalization. The dependence of light scattering by chloroplast thylakoids on the energy fluence rate was closely related to that of vacuolar acidification under different conditions for chloroplast energization. This indicates (i) transport of energy from the chloroplasts to the cytosol in the light and (ii) use of this energy for the transport of protons into the vacuoles. The light-dependent vacuolar acidification is interpreted to be caused by the increase in the activity of a proton-translocating enzyme of the tonoplast. The decrease of vacuolar acidification during photosynthetic carbon reduction or photorespiration is indicative of decreased cytosolic energization. In low light, the light-dependent vacuolar acidification was stimulated in the absence of CO2 when photorespiration was inhibited. The data do not support the view that photorespiration is capable of increasing the cytosolic energy state in the light.This work was supported by the Sonderforschungsbereiche 176 and 251 of the University of Würzburg. Z.-H. Y. acknowledges support by the Leibniz program of the Deutsche Forschungsgemeinschaft and by the Committee for Education of the People's Republic of China.  相似文献   

18.
In plants, the extracellular space (apoplast) is one of the main places where exchange of molecules occurs between cells. Not only is this compartment involved in the storage of multiple metabolites and ions, including calcium and protons, but it also plays a role in the transmission of signaling molecules for cell-to-cell communication. It has recently been shown multiple times that these two aspects are linked and can influence each other. In particular, apoplast pH was shown as a primary regulator of auxin (IAA) transport in Arabidopsis thaliana. To prove the role of apoplastic pH, we have developed a protocol for apoplastic fluid extraction from Arabidopsis leaves, followed by pH determination using the 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS) fluorescent dye. This technique successfully allows one to monitor apoplastic pH variations among different plant lines and to link changes in apoplastic pH to cellular responses in the plant.  相似文献   

19.
碱度和pH对西藏拟溞存活、生长和生殖的影响   总被引:2,自引:0,他引:2  
在温度为16±0.5℃和盐度15.5±0.5的条件下,研究了碱度和pH对西藏拟溞(Daphniopsis tibetanaSars)存活、生长和生殖的影响。结果表明,西藏拟溞的24h半致死pH为4.18和10.84;48h半致死pH为4.37和10.71;24h和48h半致死碱度分别为529.43mmol/L和503.69mmol/L。西藏拟在培养液的pH7—8时,生长率和存活率显著高于其他各组。pH7时,西藏拟溞的内禀增长率最大,为0.3014/d。pH8时次之,为0.2924/d。西藏拟溞在各碱度组中的生长率和存活率差异不显著。碱度为11.9mmol/L时,西藏拟溞产幼前发育期最短,为18.70±0.65d。在碱度11.9和18.9mmol/L时,其产卵率为1.1671和1.1877,高于其他各组。西藏拟溞在碱度为7.54mmol/L组中的rm最高,为0.3425/d,其他各组的rm在0.2889—0.3276/d之间。西藏拟溞生存的最适pH为7—8,最适碱度为4.75—18.9mmol/L。  相似文献   

20.
1. We compare the rates and mechanisms of processing of tussock (Chionochloa spp.) leaf litter in six New Zealand streams draining grassland catchments that contrast in the extent to which they have been developed for pasture. 2. Rates of processing, measured as rate of weight loss of leaf packs and rate of leaf softening, were at the slow end of the spectrum for vascular plant processing. Processing was faster at developed sites, mediated mainly through the influence of oxidized nitrogen concentration on microbial activity. 3. Few invertebrate shredders colonized leaf packs and it is unlikely that invertebrates had an appreciable effect on leaf processing in our study streams, which do not effectively retain leaf litter. Very small headwater tributaries appear to retain leaf litter and possess a more abundant shredder community. 4. Measures of leaf processing in our six streams were significantly correlated with Petersen's (1992) RCE score of stream condition. We discuss the potential for using rate of leaf litter processing as a method of bioassessment. 5. Even the most degraded stream in our study is classed as ‘good’ using the RCE inventory system. Human impact in the Taieri River is relatively small compared with the degradation observed in some parts of the world.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号