首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A basic tenet of ecology is that negative feedback on abundance plays an important part in the coexistence of species within guilds. Mutualistic interactions generate positive feedbacks on abundance and therefore are not thought to contribute to the maintenance of diversity. Here, I report evidence of negative feedback on plant growth through changes in the composition of their mutualistic fungal symbionts, arbuscular mycorrhizal (AM) fungi. Negative feedback results from asymmetries in the delivery of benefit between plant and AM fungal species in which the AM fungus that grows best with the plant Plantago lanceolata is a poor growth promoter for Plantago. Growth of Plantago is, instead, best promoted by the AM fungal species that accumulate with a second plant species, Panicum sphaerocarpon. The resulting community dynamic leads to a decline in mutualistic benefit received by Plantago, and can contribute to the coexistence of these two competing plant species.  相似文献   

2.
The association between Rhizobium and legumes and that between arbuscular mycorrhizal (AM) fungi and most land plants display a remarkable degree of similarity. Both events involve the recognition of, entrance into, and coexistence within the plant root, with the development of a specialized interface that always separates the two partners and at which nutrient exchange occurs. Molecules produced by rhizobia during the early stages of the symbiosis are related to fungal chitin, and the plant responds to both microbes with an increase in the production of flavonoids, which may assist in recognition and development of the symbioses. Many of the same plant genes are up-regulated in the two symbiotic pathways, and notably plants that are Nod? are often defective in the AM association as well. However, there are a number of differences between the associations, and these are important for understanding the relationship between the two symbioses. The Rhizobium and AM symbioses will be compared and the question of whether the nitrogen-fixing association evolved from the much more ancient AM symbiosis will be discussed.  相似文献   

3.
Interest in the diversity of arbuscular mycorrhizal (AM) fungal communities has been stimulated by recent data that demonstrate that fungal communities influence the competitive hierarchies, productivity, diversity, and successional patterns of plant communities. Although natural communities of AM fungi are diverse, we have a poor understanding of the mechanisms that promote and maintain that diversity. Plants may coexist by inhabiting disparate temporal niches; plants of many grasslands are either warm or cool season specialists. We hypothesized that AM fungi might be similarly seasonal. To test our hypothesis, we tracked the sporulation of individual AM fungal species growing within a North Carolina grassland. Data were collected in 1996 and 1997; in 1997, sampling focused on two common species. We found that AM fungi, especially Acaulospora colossica and Gigaspora gigantea, maintained different and contrasting seasonalities. Acaulospora colossica sporulated more frequently in the warm season, but Gi. gigantea sporulated more frequently in the cool season. Moreover, AM fungal species were spatially aggregated at a fine scale. Contrasting seasonal and spatial niches may facilitate the maintenance of a diverse community of AM fungi. Furthermore, these data may illuminate our understanding of the AM fungal influence on plant communities: various fungal species may preferentially associate with different plant species and thereby promote diversity in the plant community.  相似文献   

4.
The association between Rhizobium and legumes and that between arbuscular mycorrhizal (AM) fungi and most land plants display a remarkable degree of similarity. Both events involve the recognition of, entrance into, and coexistence within the plant root, with the development of a specialized interface that always separates the two partners and at which nutrient exchange occurs. Molecules produced by rhizobia during the early stages of the symbiosis are related to fungal chitin, and the plant responds to both microbes with an increase in the production of flavonoids, which may assist in recognition and development of the symbioses. Many of the same plant genes are up-regulated in the two symbiotic pathways, and notably plants that are Nod are often defective in the AM association as well. However, there are a number of differences between the associations, and these are important for understanding the relationship between the two symbioses. The Rhizobium and AM symbioses will be compared and the question of whether the nitrogen-fixing association evolved from the much more ancient AM symbiosis will be discussed.  相似文献   

5.
Patterns and regulation of mycorrhizal plant and fungal diversity   总被引:20,自引:1,他引:19  
The diversity of mycorrhizal fungi does not follow patterns of plant diversity, and the type of mycorrhiza may regulate plant species diversity. For instance, coniferous forests of northern latitudes may have more than 1000 species of ectomycorrhizal (EM) fungi where only a few ectomycorrhizal plant species dominate, but there are fewer than 25 species of arbuscular mycorrhizal (AM) fungi in tropical deciduous forest in Mexico with 1000 plant species. AM and EM fungi are distributed according to biome, with AM fungi predominant in arid and semiarid biomes, and EM fungi predominant in mesic biomes. In addition, AM fungi tend to be more abundant in soils of low organic matter, perhaps explaining their predominance in moist tropical forest, and EM fungi generally occur in soils with higher surface organic matter.EM fungi are relatively selective of host plant species, while AM tend to be generalists. Similar morphotypes of AM fungi collected from different sites confer different physiological benefits to the same plant species. While the EM fungi have taxonomic diversity, the AM fungi must have physiological diversity for individual species to be so widespread, as supported by existing studies. The environmental adaptations of mycorrhizal fungi are often thought to be determined by their host plant, but we suggest that the physiology and genetics of the fungi themselves, along with their responses to the plant and the environment, regulates their diversity. We observed that one AM plant species,Artemisia tridentata, was associated with different fungal species across its range, indicating that the fungi can respond to the environment directly and must not do so indirectly via the host. Different species of fungi were also active during different times of the growing season on the same host, again suggesting a direct response to the environment.These patterns suggest that even within a single functional group of microorganisms, mycorrhizal fungi, considerable diversity exists. A number of researchers have expressed the concept of functional redundancy within functional groups of microorganisms, implying that the loss of a few species would not be detectable in ecosystem functioning. However, there may be high functional diversity of AM fungi within and across habitats, and high species diversity as well for EM fungi. If one species of mycorrhizal fungus becomes extinct in a habitat, field experimental data on AM fungi suggest there may be significant shifts in how plants acquire resources and grown in that habitat.  相似文献   

6.
龙脑香科植物对丛枝菌根真菌的影响   总被引:2,自引:0,他引:2  
在天然林地和温室盆栽条件下,比较研究了龙脑香科植物对丛枝菌根(Arbuscular mycorrhizas,AM)真菌孢子密度、相对多度、频度、属的组成、丰度和侵染状况等方面的影响.结果表明,用坡垒作盆栽寄主加富培养后,菌根侵染率、泡囊、丛枝和侵入点都低于原采样植物,以原坡垒土壤中栽植苗木的侵染率为最高,可达20.3%;而以望天树根围土壤栽植的苗木为最低,仅为10.6%;坡垒还不同程度地改变了原采样植物根围土壤中AM真菌孢子的密度、相对多度、频度、属的组成、丰度等.在4种土壤中,栽植坡垒苗木后,AM真菌的孢子密度都有不同程度的增长.采用与原采样相同种类的植物作为AM真菌加富培养的寄主更有利于促进AM真菌的生长发育、保持AM的多样性.  相似文献   

7.
Associations between plants and arbuscular mycorrhizal (AM) fungi are widespread and well-studied. Yet little is known about the pattern of association between clonal plants and AM fungi. Here we report on the pattern of mycorrhizal association within the rhizome systems of mayapple, Podophyllum peltatum. Mayapple is a long-lived understory clonal herb that is classified as obligately mycorrhizal. We found that while all mayapple rhizome systems maintained mycorrhizal associations, the percent colonization of roots by AM fungi differed among ramets of different age. The highest concentrations of AM fungi were in the roots of intermediate-aged ramets, while roots beneath the youngest ramet were not colonized. This pattern of ramet age or position-dependent colonization was observed in two separate studies; each conducted in a different year and at a different site. The pattern of AM fungal colonization of mayapple rhizome systems suggests that the mycorrhizal relationship is facultative at the ramet level. This conclusion is reinforced by our observation that augmentation of soil phosphate lowers root colonization by AM fungi. We also found that soil phosphate concentrations were depleted by ca. 1% under the same ramet positions where roots bore the highest AM fungal loads. Three non-exclusive hypotheses are proposed regarding the mechanisms that might cause this developmentally dependent pattern of mycorrhizal association.  相似文献   

8.
Plant interactions with soil biota could have a significant impact on plant successional trajectory by benefiting plants in a particular successional stage over others. The influence of soil mutualists such as mycorrhizal fungi is thought to be an important feedback component, yet they have shown benefits to both early and late successional plants that could either retard or accelerate succession. Here we first determine if arbuscular mycorrhizal (AM) fungi differ among three stages of primary sand dune succession and then if they alter growth of plants from particular successional stages. We isolated AM fungal inoculum from early, intermediate or late stages of a primary dune succession and compared them using cloning and sequencing. We then grew eight plant species that dominate within each of these successional stages with each AM fungal inoculum. We measured fungal growth to assess potential AM functional differences and plant growth to determine if AM fungi positively or negatively affect plants. AM fungi isolated from early succession were more phylogenetically diverse relative to intermediate and late succession while late successional fungi consistently produced more soil hyphae and arbuscules. Despite these differences, inocula from different successional stages had similar effects on the growth of all plant species. Host plant biomass was not affected by mycorrhizal inoculation relative to un‐inoculated controls. Although mycorrhizal communities differ among primary dune successional stages and formed different fungal structures, these differences did not directly affect the growth of plants from different dune successional stages in our experiment and therefore may be less likely to directly contribute to plant succession in sand dunes.  相似文献   

9.
  1. Both mutualistic and pathogenic soil microbes are known to play important roles in shaping the fitness of plants, likely affecting plants at different life cycle stages.
  2. In order to investigate the differential effects of native soil mutualists and pathogens on plant fitness, we compared survival and reproduction of two annual tallgrass prairie plant species (Chamaecrista fasciculata and Coreopsis tinctoria) in a field study using 3 soil inocula treatments containing different compositions of microbes. The soil inocula types included fresh native whole soil taken from a remnant prairie containing both native mutualists and pathogens, soil enhanced with arbuscular mycorrhizal (AM) fungi derived from remnant prairies, and uninoculated controls.
  3. For both species, plants inoculated with native prairie AM fungi performed much better than those in uninoculated soil for all parts of the life cycle. Plants in the native whole prairie soil were either generally similar to plants in the uninoculated soil or had slightly higher survival or reproduction.
  4. Overall, these results suggest that native prairie AM fungi can have important positive effects on the fitness of early successional plants. As inclusion of prairie AM fungi and pathogens decreased plant fitness relative to prairie AM fungi alone, we expect that native pathogens also can have large effects on fitness of these annuals. Our findings support the use of AM fungi to enhance plant establishment in prairie restorations.
  相似文献   

10.
AM真菌在草原生态系统中的功能   总被引:3,自引:0,他引:3  
金樑  孙莉  王强  董梅  王晓娟  王茜  张亮 《生态学报》2016,36(3):873-882
AM真菌是土壤生态系统中重要的微生物类群,能与陆地生态系统中80%以上的高等植物建立共生体系。目前,AM真菌在维持草原生态系统稳定性中的功能已经成为生态学研究的热点问题之一。基于此,从植物个体、种群、群落和生态系统等不同层次探究AM真菌在维持植物群落多样性和草原生态系统稳定性中的功能。分析发现在个体水平上,AM真菌对宿主植物具有促生效应、抑制效应或中性效应。在种群水平上,分析AM真菌对不同宿主植物吸收土壤矿质营养的分配和调控策略,围绕构成草原植被的两大组成成分:牧草和有毒植物,论述AM真菌对植物种群增长和衰败的调控机制,并从草原植物群落的物种多样性和稳定性角度,探讨AM真菌与植物群落之间的相关性。在生态系统水平上,围绕AM真菌对草原生态系统的演替和退化草原的修复等展开论述,以期为利用AM真菌开展草原生态系统保护和恢复治理提供理论依据,并对草原菌根生态学领域未来的研究进行展望。  相似文献   

11.
Partitioning of soil phosphorus (P) pools has been proposed as a key mechanism maintaining plant diversity, but experimental support is lacking. Here, we provided different chemical forms of P to 15 tree species with contrasting root symbiotic relationships to investigate plant P acquisition in both tropical and subtropical forests. Both ectomycorrhizal (ECM) and arbuscular mycorrhizal (AM) trees responded positively to addition of inorganic P, but strikingly, ECM trees acquired more P from a complex organic form (phytic acid). Most ECM tree species and all AM tree species also showed some capacity to take up simple organic P (monophosphate). Mycorrhizal colonisation was negatively correlated with soil extractable P concentration, suggesting that mycorrhizal fungi may regulate organic P acquisition among tree species. Our results support the hypothesis that ECM and AM plants partition soil P sources, which may play an ecologically important role in promoting species coexistence in tropical and subtropical forests.  相似文献   

12.
The vast majority of plants obtain an important proportion of vital resources from soil through mycorrhizal fungi. Generally, this happens in exchange of photosynthetically fixed carbon, but occasionally the interaction is mycoheterotrophic, and plants obtain carbon from mycorrhizal fungi. This process results in an antagonistic interaction between mycoheterotrophic plants and their fungal hosts. Importantly, the fungal‐host diversity available for plants is restricted as mycoheterotrophic interactions often involve narrow lineages of fungal hosts. Unfortunately, little is known whether fungal‐host diversity may be additionally modulated by plant–plant interactions through shared hosts. Yet, this may have important implications for plant competition and coexistence. Here, we use DNA sequencing data to investigate the interaction patterns between mycoheterotrophic plants and arbuscular mycorrhizal fungi. We find no phylogenetic signal on the number of fungal hosts nor on the fungal hosts shared among mycoheterotrophic plants. However, we observe a potential trend toward increased phylogenetic diversity of fungal hosts among mycoheterotrophic plants with increasing overlap in their fungal hosts. While these patterns remain for groups of plants regardless of location, we do find higher levels of overlap and diversity among plants from the same location. These findings suggest that species coexistence cannot be fully understood without attention to the two sides of ecological interactions.  相似文献   

13.
中国AM真菌的生物多样性   总被引:8,自引:0,他引:8  
菌根是真菌与植物根系所建立的互惠共生体 ,其中以丛枝菌根在自然界中分布最广。AM真菌遍布各生态系统 ,不仅大量分布于农田和森林土壤 ,而且还广泛存在于多种逆境环境中。绝大多数的植物包括苔鲜、蕨类、裸子植物、被子植物都能被AM真菌侵染。我国的AM真菌研究始于 2 0世纪 80年代 ,迄今为止 ,已经对多种生态环境中多种寄主植物根围的AM真菌进行了调查研究 ,共报道了 7个属的 99种AM真菌。本文从物种多样性、生境多样性和寄主多样性等三个方面概括介绍了 2 0年来我国在AM真菌生物多样性研究中取得的进展 ,并探讨了未来的研究动向。  相似文献   

14.
王强  王茜  董梅  王晓娟  张亮  金樑 《植物生态学报》2014,38(11):1250-1260
重点围绕玻璃珠分室培养系统、H形分室培养系统、根排斥室培养系统、供体自养植物的双分室体外培养系统、丛枝菌根(AM)真菌与普通植物根器官的双重培养系统、AM真菌与Ri T-DNA转型根的双重单胞无菌培养系统、AM真菌与Ri T-DNA转型根双重培养的改良分室单胞培养系统等7个不同的分室培养装置, 对AM真菌的培养类型及其应用进行了系统的评述。其中, 采用玻璃珠分室培养装置易于将AM真菌与培养基质分开, 能获得大量纯净的AM真菌繁殖体, 用于研究AM真菌对矿质元素和微量元素的吸收, 具有不可替代的作用。H形分室培养系统和根排斥室(RECs)培养系统均能够获得连续的、可切断的共生菌根网络(CMNs), 可用于研究植物-植物、植物-昆虫之间化感作用产生的信息交流。供体自养植物的双分室培养系统有益于研究AM真菌对宿主植物在单作和混作条件下生长效应的影响。AM真菌与植物根器官的双重培养系统为研究AM真菌的侵染过程及生理、生化特性提供了极大的方便, 同时为纯培养研究提供了重要的理论依据。AM真菌与Ri T-DNA转型根的双重单胞无菌培养体系可以获得AM真菌纯净菌体, 是研究AM真菌遗传、生理、生化等特性的理想方法。以AM真菌与Ri T-DNA转型根的双重单胞无菌培养系统为基础, 可以在菌丝生长室置换培养基、在根室中补充适量碳源, 并多次收获AM真菌繁殖体。转型根改良双重培养系统是提高AM真菌孢子接种剂产量的有效方法。综上所述, AM真菌的分室培养系统已经取得显著进展, 为开展个体、种群、群落等不同层次的菌根生态学研究提供了依据。  相似文献   

15.
Mutualisms, beneficial interactions between species, are expected to be unstable because delivery of benefit likely involves fitness costs and selection should favour partners that deliver less benefit. Yet, mutualisms are common and persistent, even in the largely promiscuous associations between plants and soil microorganisms such as arbuscular mycorrhizal fungi. In two different systems, we demonstrate preferential allocation of photosynthate by host plants to the more beneficial of two AM fungal symbionts. This preferential allocation could allow the persistence of the mutualism if it confers sufficient advantage to the beneficial symbiont that it overcomes the cost of mutualism. We find that the beneficial fungus does increase in biomass when the fungi are spatially separated within the root system. However, in well-mixed fungal communities, non-beneficial fungi proliferate as expected from their reduced cost of mutualism. Our findings suggest that preferential allocation within spatially structured microbial communities can stabilize mutualisms between plants and root symbionts.  相似文献   

16.
Plant roots in natural ecosystems are typically colonized by a wide range of fungi. Some of these are pathogenic, others appear to be opportunistic and have no apparent impact, while mycorrhizal fungi are generally regarded as mutualistic. Of the various types of mycorrhizal fungi, the arbuscular mycorrhizal (AM) association is by far the most abundant and widespread. While the most widely accepted model of AM function depends upon plants benefiting from the facilitation of phosphorus uptake, recent data from field-based studies in temperate ecosystems indicate that only plant species with poorly branched root systems benefit from AM fungi in this way: species with highly branched root systems may benefit in other ways, such as by being protected against root pathogenic fungi. These two responses apparently represent extremes along a continuum of AM benefit determined by root system architecture.  相似文献   

17.
赵金莉  贺学礼 《生态学报》2010,30(5):1349-1355
克隆植物的生态功能在沙地植被恢复过程中占据着重要位置。在毛乌素沙地由北向南选择两个典型样地,以根茎克隆植物沙鞭和羊柴为试验材料,连续2a系统地研究了克隆植物生长对AM真菌物种多样性和菌根形成的影响。结果表明:克隆植物生长对AM真菌物种多样性和丛枝菌根形成的影响因植物种类和样地不同而异。沙鞭通过克隆生长侵入灌丛空地后,AM真菌多样性指数在中国科学院植物研究所鄂尔多斯沙地草地生态研究站(简称OSES)和陕西榆林珍稀沙生植物保护基地(简称RSCF)样地均上升;孢子密度、菌丝、丛枝和总定殖率均显著提高;泡囊定殖率也有所增加,在OSES样地达显著水平,在RSCF样地未达显著水平。羊柴通过克隆生长侵入灌丛空地后,AM(Arbuscular mycorrhizal)真菌多样性指数在OSES样地上升,而在RSCF样地下降;孢子密度和丛枝定殖率在OSES和RSCF样地均显著增加,而泡囊定殖率均显著降低;菌丝和总定殖率也降低,在OSES样地未达显著水平,在RSCF样地达显著水平。  相似文献   

18.
In late‐successional environments, low in available nutrient such as the forest understory, herbaceous plant individuals depend strongly on their mycorrhizal associates for survival. We tested whether in temperate European forests arbuscular mycorrhizal (AM) woody plants might facilitate the establishment of AM herbaceous plants in agreement with the mycorrhizal mediation hypothesis. We used a dataset spanning over 400 vegetation plots in the Weser‐Elbe region (northwest Germany). Mycorrhizal status information was obtained from published resources, and Ellenberg indicator values were used to infer environmental data. We carried out tests for both relative richness and relative abundance of herbaceous plants. We found that the subset of herbaceous individuals that associated with AM profited when there was a high cover of AM woody plants. These relationships were retained when we accounted for environmental filtering effects using path analysis. Our findings build on the existing literature highlighting the prominent role of mycorrhiza as a coexistence mechanism in plant communities. From a nature conservation point of view, it may be possible to promote functional diversity in the forest understory through introducing AM woody trees in stands when absent.  相似文献   

19.
Bever  James D. 《Plant and Soil》2002,244(1-2):281-290
While the mutualistic interaction between plants and AM fungi is of obvious importance to ecosystem processes, the factors influencing the ecological and evolutionary dynamics within this interaction are poorly understood. The mutual interdependence of plant and AM fungal relative growth rates could generate complex dynamics in which the composition of the AM fungal community changes due to association with host and this change in fungal composition then differentially feeds back on plant growth. I first review evidence for feedback dynamics and then present an approach to evaluating such complex dynamics. I specifically present evidence of host-specific differences in the population growth rates of AM fungi. Pure cultures of AM fungi were mixed to produce the initial fungal community. This community was then distributed into replicate pots and grown with one of four co-occurring plant species. Distinct compositions of AM fungal spores were produced on different host species. The AM fungal communities were then inoculated back onto their own host species and grown for a second growing season. The differentiation observed in the first generation was enhanced during this second generation, verifying that the measure of spore composition reflects host-specific differences in AM fungal population growth rates. In further work on this system, I have found evidence of negative feedback through two pairs of plant species. The dynamic within the AM fungal community can thereby contribute to the coexistence of plant species.  相似文献   

20.
Arbuscular mycorrhizal (AM) fungi are mutualistic symbionts living in the roots of 80% of land plant species, and developing extensive, below-ground extraradical hyphae fundamental for the uptake of soil nutrients and their transfer to host plants. Since AM fungi have a wide host range, they are able to colonize and interconnect contiguous plants by means of hyphae extending from one root system to another. Such hyphae may fuse due to the widespread occurrence of anastomoses, whose formation depends on a highly regulated mechanism of self recognition. Here, we examine evidences of self recognition and non-self incompatibility in hyphal networks formed by AM fungi and discuss recent results showing that the root systems of plants belonging to different species, genera and families may be connected by means of anastomosis formation between extraradical mycorrhizal networks, which can create indefinitely large numbers of belowground fungal linkages within plant communities.Key Words: arbuscular mycorrhizal symbiosis, extraradical mycelium, anastomosis, plant interconnectedness, self recognition, non-self incompatibility, mycorrhizal networks  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号