首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Neurospora crassa glycogen synthase (UDPglucose:glycogen 4-alpha-glucosyltransferase, EC 2.4.1.11) was purified to electrophoretic homogeneity by a procedure involving ultracentrifugation, DEAE-cellulose column chromatography, (NH4)2SO4 fractionation and 3-aminopropyl-Sepharose column chromatography. The final purified enzyme preparation was almost entirely dependent on glucose-6-P and had a specific activity of 6.9 units per mg of protein. The subunit molecular weight of the glycogen synthase was determined by electrophoresis in sodium dodecyl sulfate-polyacrylamide gel to be 88 000--90 000. The native enzyme was shown to have a molecular weight of 270 000 as determined by sucrose density gradient centrifugation. Thus, the glucose-6-P-dependent form of the N. crassa glycogen synthase can exist as trimer of the subunit. Limited proteolysis with trypsin or chymotrypsin converted the glucose-6-P-dependent form of the enzyme into an apparent glucose-6-P-independent form. The enzyme was shown to catalyze transfer of glucose from UDPglucose to glycogen as well as to its phosphorylase limit dextrin, but not to its beta-amylase limit dextrin. Moreover, glucose, maltose and maltotriose were not active as acceptors.  相似文献   

2.
We have tested the hypothesis that interconversion between multiple glucose-6-P-dependent forms of glycogen synthase helps regulate glycogen synthesis in adipose tissue. Our results indicate that interconversion of glycogen synthase in adipose tissue involves primarily dependent forms and that these interconversions were measured better by monitoring the activation constant (A0.5) for glucose-6-P than measuring the -: + glucose-6-P activity ratio. Insulin decreased and epinephrine increased the A0.5 for glucose-6-P without significant change in the activity ratio. Insulin consistently decreased the A0.5 in either the presence or absence of glucose, indicating that the insulin-promoted interconversion did not require increased hexose transport. Isoproterenol increased the A0.5 for glucose-6-P, while methoxamine was without effect, indicating beta receptors mediate adrenergic control of interconversion between glucose-6-P-dependent forms. The changes in the A0.5 produced by incubations with insulin or epinephrine were mutually reversible. We conclude that 1) glycogen synthesis in adipose tissue is catalyzed by multiple glucose-6-P-dependent forms of glycogen synthase, 2) hormones regulate glycogen metabolism by promoting reversible interconversions between these forms, and 3) there is no evidence that a glucose-6-P-independent form of glycogen synthase exists in intact adipose tissue.  相似文献   

3.
The human placental glucose-6-P-dependent form of glycogen synthase, in the absence of glucose-6-P, can be activated by MnSO4. Separately, Mn2+ and SO4(2-) have no significant effect. In the presence of glucose-6-P, Mn2+ activates the enzyme, but SO4(2-) inhibits; MnSO4 synergetically increases the enzyme activity. Mn2+ reduces the Ka for glucose-6-P to one-tenth of the control value; SO4(2-) increases the Ka 5-fold; however, MnSO4 has no effect on Ka. MnSO4, like glucose-6-P, increases the Vmax of the enzyme in the presence of its substrate, UDP-glucose; it slightly increases the Km for UDP-glucose. In the presence of glucose-6-P, Mn2+ increases and SO4(2-) decreases the Vmax of the enzyme, but neither has an effect on the Km for UDP-glucose. At physiological concentrations of UDP-glucose and glucose-6-P, either Mn2+ or MnSO4 at concentrations less than 1 mM increases the enzyme activity as much as 8 mM glucose-6-P does. At physiological concentrations of UDP-glucose and glucose-6-P, Mn2+ or MnSO4 reverses the inhibition of the enzyme by ATP.  相似文献   

4.
The effects of E. coli endotoxin administration on hepatic glycogen content and glycogen synthase activities in dogs were studied. Liver glycogen content was decreased by 80% 2 hr after endotoxin injection. When enzyme preparations were preincubated at 25 degrees C for 3 hr prior to their assays, 75% of total glycogen synthase was in I form in control dogs. Under such conditions, endotoxin administration decreased the percentage I activity from 75 to 37%; decreased the Vmax and Km for UDP-glucose for total glycogen synthase by 62.2 and 35.3%, respectively; decreased the Vmax and Km for UDP-glucose for glycogen synthase I by 75.6 and 15.6%, respectively; increased the A0.5 for glucose-6-P for the activation of glycogen synthase D by 126% at high (10 mM) and by 18-fold at low (1 mM) UDP-glucose concentration; increased the percentage D activity from 24 to 72%; decreased the I50 for ATP for the inhibition of total glycogen synthase by 49.7%; decreased the I50 for ATP for the inhibition of glycogen synthase I by 26.4%; and decreased the percentage I activity from 78 to 33% at ATP concentrations below 6 mM. When enzyme preparations were not preincubated prior to their assays, 90% of total glycogen synthase was in D form in control dogs. Under such conditions, endotoxin administration decreased the Vmax and Km for UDP-glucose for total glycogen synthase by 47.1 and 33.3%, respectively, and increased the A0.5 for glucose-6-P for the activation of glycogen synthase D by 24.2% at high (10 mM) and by 106% at low (1 mM) UDP-glucose concentration. From these results, it is clear that endotoxin administration greatly impaired hepatic glycogenesis by decreasing the activity of glycogen synthase; this impairment is at least in part responsible for the depletion of liver glycogen content in endotoxin shock. Kinetic analyses revealed that the decrease in the activity of glycogen synthase in endotoxic shock is a result of a decrease in the interconversion of this enzyme from inactive to active form and an increase in the interconversion from active to inactive form.  相似文献   

5.
Purified rabbit skeletal muscle glycogen synthetase, in both the glucose-6-phosphate (P)-dependent (phosphorylated) and the glucose-6-P-independent (dephosphorylated) forms, was subjected to limited proteolysis by trypsin. Both forms could be degraded from their original subunit molecular weight of 85,000 to 76,000 and subsequently to 68,000, as determined with acrylamide-gel electrophoresis in the presence of sodium dodecyl sulfate. Degradation of the glucose-6-P-dependent form of the enzyme resulted in essentially no change in the activity when measured either in the presence or in the absence of glucose-6-P. Degradation of the glucose-6-P-independent form was associated with a progressive increase in glucose-6-P dependency. Phosphorylation of the glucose-6-P-independent form with the adenosine 3′,5′-monophosphate-dependent protein kinase and subsequent digestion of the 32P-labeled enzyme showed that the phosphate group was retained on these subunits. The protein kinase phosphorylated both the original subunit with molecular weight 85,000 and the partially digested subunit with molecular weight 76,000. Upon further digestion of the enzyme into a form having a subunit molecular weight of 68,000, the enzyme was unable to accept a phosphate group from ATP. By contrast with the phosphorylation reaction, the dephosphorylation reaction catalyzed by partially purified glycogen synthetase phosphatase is not stringent in terms of structural integrity of the synthetase. The phosphatase dephosphorylated the glucose-6-P-dependent form of glycogen synthetase equally well at various degrees of degradation.  相似文献   

6.
Glycogen synthase in the glucose-6-phosphate (glucose-6-P)-dependent form was purified over 10,000-fold from an extract of term human placenta. The purified enzyme shows a single protein band on polyacry1amide-gel electrophoresis in the presence of sodium dodecyl sulfate. The enzyme activity in the presence of glucose-6-P is increased by the single addition of Mg2+, Ca2+, or Mn2+ and is reduced by the addition of either sulfate or phosphate. Addition of either Mg2+, Ca2+, or Mn2+ relieves the inhibition by sulfate or phosphate. The enzyme activity in the absence of glucose 6-P is greatly increased by the addition of MnSO4, CoSO4, and NiSO4 and is increased to a lesser extent by MgSO4, CaSO4, and FeSO4. The activation of the glucose-6-P-dependent form of the enzyme by these metal sulfates in the absence of glucose-6-P has never been reported. MnSO4, which shows homotropic cooperativity, is the best activator among the various metal sulfates tested. The human placental glucose-6-P-dependent form of glycogen synthase (D form) can be converted to the glucose-6-P-independent form (I form) of the enzyme by incubating the partially purified glycogen synthase, which is copurified with synthase phosphatase, with Mn2+. This conversion can be reversed by the addition of cyclic AMP-dependent protein kinase. The synthase D to synthase I converting system from human placenta is unique in its stringent requirement for Mn2+.  相似文献   

7.
Frog oocyte glycogen synthase properties differ significantly under in vitro or in vivo conditions. The K(mapp) for UDP-glucose in vivo was 1.4mM (in the presence or absence of glucose-6-P). The in vitro value was 6mM and was reduced by glucose-6-P to 0.8mM. Under both conditions (in vitro and in vivo) V(max) was 0.2 m Units per oocyte in the absence of glucose-6-P. V(max) in vivo was stimulated 2-fold by glucose-6-P, whereas, in vitro, a 10-fold increase was obtained. Glucose-6-P required for 50% activation in vivo was 15 microM and, depending on substrate concentrations, 50-100 microM in vitro. The prevailing enzyme obtained in vitro was the glucose-6-P-dependent form, which may be converted to the independent species by dephosphorylation. This transformation could not be observed in vivo. We suggest that enzyme activation by glucose-6-P in vivo is due to allosteric effects rather than to dephosphorylation of the enzyme. Regulatory mechanisms other than allosteric activation and covalent phosphorylation are discussed.  相似文献   

8.
Glycogenin, a Mn2+-dependent, self-glucosylating protein, is considered to catalyze the initial glucosyl transfer steps in glycogen biogenesis. To study the physiologic significance of this enzyme, measurements of glycogenin mediated glucose transfer to endogenous trichloroacetic acid precipitable material (protein-bound glycogen, i.e., glycoproteins) in human skeletal muscle were attempted. Although glycogenin protein was detected in muscle extracts, activity was not, even after exercise that resulted in marked glycogen depletion. Instead, a MnSO4-dependent glucose transfer to glycoproteins, inhibited by glycogen and UDP-pyridoxal (which do not affect glycogenin), and unaffected by CDP (a potent inhibitor of glycogenin), was consistently detected. MnSO4-dependent activity increased in concert with glycogen synthase fractional activity after prolonged exercise, and the MnSO4-dependent enzyme stimulated glucosylation of glycoproteins with molecular masses lower than those glucosylated by glucose 6-P-dependent glycogen synthase. Addition of purified glucose 6-P-dependent glycogen synthase to the muscle extract did not affect MnSO4-dependent glucose transfer, whereas glycogen synthase antibody completely abolished MnSO4-dependent activity. It is concluded that: (1) MnSO4-dependent glucose transfer to glycoproteins is catalyzed by a nonglucose 6-P-dependent form of glycogen synthase; (2) MnSO4-dependent glycogen synthase has a greater affinity for low molecular mass glycoproteins and may thus play a more important role than glucose 6-P-dependent glycogen synthase in the initial stages of glycogen biogenesis; and (3) glycogenin is generally inactive in human muscle in vivo.  相似文献   

9.
Chromatography of wild-type yeast extracts on DEAE-cellulose columns resolves two populations of glycogen synthase I (glucose-6-P-independent) and D (glucose-6-P-dependent) (Huang, K. P., Cabib, E. (1974) J. Biol. Chem. 249, 3851-3857). Extracts from a glycogen-deficient mutant strain, 22R1 (glc7), yielded only the D form of glycogen synthase. Glycogen synthase D purified from either wild-type yeast or from this glycogen-deficient mutant displayed two polypeptides with molecular masses of 76 and 83 kDa on sodium dodecyl sulfate-gel electrophoresis in a protein ratio of about 4:1. Phosphate analysis showed that glycogen synthase D from either strain of yeast contained approximately 3 phosphates/subunit. The 76- and 83-kDa bands of the mutant strain copurified through a variety of procedures including nondenaturing gel electrophoresis. These two polypeptides showed immunological cross-reactivity and similar peptide maps indicating that they are structurally related. The relative amounts of these two forms remained constant during purification and storage of the enzyme and after treatment with cAMP-dependent protein kinase or with protein phosphatases. The two polypeptides were phosphorylated to similar extent in vitro by the catalytic subunit of mammalian cyclic AMP-dependent protein kinase. Phosphorylation of the enzyme in the presence of labeled ATP followed by tryptic digestion and reversed phase high performance liquid chromatography yielded two labeled peptides from each of the 76- and 83-kDa subunits. Treatment of wild-type yeast with Li+ increased the glycogen synthase activity, measured in the absence of glucose-6-P, by approximately 2-fold, whereas similar treatment of the glc7 mutant had no effect. The results of this study indicate that the GLC7 gene is involved in a pathway that regulates the phosphorylation state of glycogen synthase.  相似文献   

10.
Studies of rat skeletal glycogen metabolism carried out in a perfused hindlimb system indicated that epinephrine activates phosphorylase via the cascade of phosphorylation reactions classically linked to the beta-adrenergic receptor/adenylate cyclase system. The beta blocker propranolol completely blocked the effects of epinephrine on cAMP, cAMP-dependent protein kinase, phosphorylase, and glucose-6-P, whereas the alpha blocker phentolamine was totally ineffective. Omission of glucose from the perfusion medium did not modify the effects of epinephrine. Glycogen synthase activity in control perfused and nonperfused muscle was largely glucose-6-P-dependent (-glucose-6-P/+glucose-6-P activity ratios of 0.1 and 0.2, respectively). Epinephrine perfusion caused a small decrease in the enzyme's activity ratio (0.1 to 0.05) and a large increase in its Ka for glucose-6-P (0.3 to 1.5 mM). This increase in glucose-6-P dependency correlated in time with protein kinase activation and was totally blocked by propranolol and unaffected by phentolamine. Comparison of the kinetics of glycogen synthase in extracts of control and epinephrine-perfused muscle with the kinetics of purified rat skeletal muscle glycogen synthase a phosphorylated to various degrees by cAMP-dependent protein kinase indicated that the enzyme was already substantially phosphorylated in control muscle and that epinephrine treatment caused further phosphorylation of synthase, presumably via cAMP-dependent protein kinase. These data provide a basis for speculation about in vivo regulation of the enzyme.  相似文献   

11.
Rat adipose tissue glycogen synthase has been kinetically characterized. The classical D form has an apparent Km for UDP-glucose of 0.7 mM and 0.4 mM in the absence and presence of glucose 6-phosphate, respectively. The apparent Ka for glucose 6-phosphate is 0.6 mM. The effect of glucose 6-phosphate on the D form is to enhance the Vmax 7-fold. The I form is also affected by glucose 6-phosphate (Ka, 0.025 mM) but the Vmax is increased only by 20%; apparent Km values for UDP-glucose are 0.4 mM and 0.045 mM in the absence and presence of glucose 6-phosphate, respectively. In addition, two new kinetically distinguishable forms have been observed. The first, designated glycogen synthase Q, arises from an Mg2+ATP-dependent deactivation of the I form. The apparent Km values of glycogen synthase Q for UDP-glucose are identical with those of the I form; however, the apparent Ka for glucose 6-phosphate (0.2 mM) is 8-fold higher than that for the I form and one-third that for the D form. Preparations from fasted or diabetic rats contain a form of glycogen synthase, designated glycogen synthase X, that has a much lower affinity for glucose 6-phosphate than the D form (apparent Ka, 3 mM); the apparent Km values for UDP-glucose are similar to those of the D form (0.7 mM and 0.3 mM in the absence and presence of glucose 6-phosphate, respectively). In preparations from fasted rats a stepwise Mg2+-dependent conversion was demonstrated of synthase X to D to Q to I; this sequential conversion was reversed on incubation with Mg2+ATP. In preparations from fed rats, synthase Q could be generated either by limited activation (from the D form) or, after conversion to the I form, by deactivation with Mg2+ATP. However, even prolonged incubation with Mg2+ATP failed to generate the D (or X) form.  相似文献   

12.
A cyclic AMP-independent casein (phosvitin) kinase eluted from a phosphocellulose column with 0.35 M KCl also possesses glycogen synthase kinase activity. This kinase, designated synthase kinase 1, is separable from other cyclic AMP-independent protein kinases, which also contain glycogen synthase kinase activity, by chromatography on a phosphocellulose column. This kinase was purified 15,000-fold from the crude extract. Synthase kinase activity co-purifies with casein and phosvitin kinase activities. Heat inactivation of these three kinase activities follow similar kinetics. It is suggested that these three kinase activities reside in a single protein. This kinase has a molecular weight of approximately 34,000 as determined by glycerol density gradient centrifugation and by gel filtration. The Km values for the synthase kinase-catalyzed reaction are 0.12 mg/ml (0.35 micronM) for synthase, 12 micronM for ATP, and 0.15 mM for Mg2+. The phosphorylation of glycogen synthase by the kinase results in the incorporation of 4 mol of phosphate/85,000 subunit; however, only two of the phosphate sites predominantly determine the glucose-6-P dependency of the synthase. Synthase kinase activity is sensitive to inhibition by NaCl or KCl at concentrations encountered during purification. Synthase kinase activity is insensitive to the allosteric effector (glucose-6-P) or substrate (UDP-glucose) of glycogen synthase at concentrations usually found under physiological condition.  相似文献   

13.
When deprived of glucose, the cultured HT 29 adenocarcinoma cells are able to mobilize their glycogen within 4 hours. Glycogen phosphorylase is strongly activated during the first hour of glucose starvation. Then, while the a/a + b ratio for phosphorylase is declining, glycogen synthase is partially converted into the a form; this conversion does occur although glycogen phosphorylase is far from being totally inactivated. After 4 hours, activity of both a and total forms of glycogen synthase decrease. Cell UDP-glucose and glucose-6-P levels are declining during the 24 hours period of glucose starvation. Cell ATP content decreases by only 50 percent over the same period of time.  相似文献   

14.
Rabbit skeletal muscle glycogen synthase was inhibited by pyridoxal 5'-phosphate and irreversibly inactivated after sodium borohydride reduction of the enzyme-pyridoxal-P complex. The irreversible inactivation by pyridoxal-P was opposed by the presence of the substrate UDP-glucose. With [3H]pyridoxal-P, covalent incorporation of 3H label into the enzyme could be monitored. UDP-glucose protected against 3H incorporation, whereas glucose-6-P was ineffective. Peptide mapping of tryptic digests indicated that two distinct peptides were specifically modified by pyridoxal-P. One of these peptides contained the NH2-terminal sequence of the glycogen synthase subunit. Chymotrypsin cleavage of this peptide resulted in a single-labeled fragment with the sequence: Glu-Val-Ala-Asn-(Pyridoxal-P-Lys)-Val-Gly-Gly-Ile-Tyr. This sequence is identical to that previously reported (Tagaya, M., Nakano, K., and Fukui, T. (1985) J. Biol. Chem. 260. 6670-6676) for a peptide specifically modified by a substrate analogue and inferred to form part of the active site of the enzyme. Sequence analysis revealed that the modified lysine was located at residue 38 from the NH2 terminus of the rabbit muscle glycogen synthase subunit. An analogous tryptic peptide obtained from the rabbit liver isozyme displayed a high degree of sequence homology in the vicinity of the modified lysine. We propose that the extreme NH2 terminus of the glycogen synthase subunit forms part of the catalytic site, in close proximity to one of the phosphorylated regions of the enzyme (site 2, serine 7). In addition, the work extends the known NH2-terminal amino acid sequences of both the liver and muscle glycogen synthase isozymes.  相似文献   

15.
Glycogen-free synthase I from human polymorphonuclear leukocytes is activated by its own substrate, glycogen, in a slow, time-dependent process (hysteretic activation). This lag in response to addition of glycogen depends on the concentration of glycogen, pH and temperature. At pH 7.4 and at a temperature of 30 degrees C, the half-time of activation t 1/2 decreases from 89 min at 0.004 mg/ml glycogen to 6 min at 25 mg/ml. The activation is accelerated by increasing temperature and pH, but is not influenced by enzyme concentration, glucose 6-phosphate, UDP, high ionic strength, EDTA, mercaptoethanol, glucose, sucrose or amylase limit dextrin. The Km for UDP-glucose (0.024 mM) and the activity ratio were unchanged during the activation process. The activation can be described by vt = vf + (vo - vf) e-kt where vt, vf and vo are velocities at times t, O and infinity and k is a complex rate constant. Evidence from ultracentrifugation and kinetic studies is presented to substantiate the hypothesis that the underlying mechanism is a simple biolecular process: enzyme + glycogen in equilibrium enzyme-glycogen complex, with the dissociation constant Ks = 0.003 mg/ml. The hysteretic activation may become rate-limiting during experiments in vitro with synthase. The possibility of a physiological role in glycogen metabolism, perhaps in the form of a concerted hysteresis with H+ is discussed.  相似文献   

16.
Kinetic constants of glycogen synthase (M0.5 for glucose-6-P and S0.5 for UDP-glucose) were determined after hepatocytes isolated from starved rats were incubated with either glucagon or epinephrine. Incubation with these hormones resulted in an increase in both S0.5 and M0.5. However, the action of glucagon resulted in great modifications on S0.5 whereas epinephrine affected mainly M0.5. Therefore, glucagon and epinephrine alter the kinetic properties of glycogen synthase provoke the phosphorylation of glycogen synthase at different site(s) acting through different mechanisms.  相似文献   

17.
Neurospora crassa branching enzyme [EC 2.4.1.18] acted on potato amylopectin or amylose to convert them to highly branched glycogen-type molecules which consisted of unit chains of six glucose units. The enzyme also acted on the amylopectin beta-limit dextrin, indicating that the enzyme acted on internal glucose chains as well as outer chains. By the combined action of N. crassa glycogen synthase [EC 2.4.1.11] and the branching enzyme, a glycogen-type molecule was formed from UDP-glucose. In the presence of primer glycogen, the glucose transfer reaction was accelerated by the addition of branching enzyme. On the other hand, the glucose transfer reaction by glycogen synthase did not occur without primers. When the branching enzyme was added, the glucose transfer occurred after a short time lag. This recovery of the glucose transfer reaction did not occur upon addition of the inactivated branching enzyme. The structure of the product formed by the combined action of the two enzymes was different from that of the intact N. crassa glycogen with respect to the distribution patterns of the unit chains.  相似文献   

18.
Glycogen synthase stimulated the autophosphorylation and autoactivation of phosphorylase kinase from rabbit skeletal muscle. This stimulation was additive to that by glycogen and the reaction was dependent on Ca2+. The effect by glycogen synthase was maximum within the activity ratio (the activity of enzyme without glucose-6-P divided by the activity with 10 mM glucose-6-P) of 0.3 and over 0.3 it was rather inhibitory. The results suggest that autophosphorylation of phosphorylase kinase in the presence of glycogen synthase on glycogen particles may be an important regulatory mechanism of glycogen metabolism in skeletal muscle.  相似文献   

19.
Previous studies have indicated that the glycogen content of adrenal glands of fasted rats can be depleted by insulin per se (Bindstein, E., Piras, R., and Piras, M. M., Endocrinology88, 223, 1971). In order to establish the mechanism of action of this hormone in the adrenal gland, the effect of insulin has been now investigated on glycogen synthetase (UDP-glucose: α-1,4 glucan α-4-glueosyl-transferase, EC 2.4.1.11), glycogen phosphorylase (α-1,4 glucan: orthophosphate glucosyl-transferase, EC 2.4.1.1) and metabolites related to these enzymes.Approximately 40% of total adrenal glycogen phosphorylase of fasted rats is in the active form, which increases to 75% 1 hr after insulin treatment (75 mU/100 g body wt). This conversion occurs without apparent large changes of 3′-5′ cyclic AMP. Concomitantly with the enzymatic change, the levels of glucose-6-P, UDP-glucose and Pi suffer alterations which favor an increased phosphorolytic activity during the first hour of insulin treatment. Glycogen synthetase, which did not change during this period, is converted to the glucose-6-P independent form during the 2–3 hr of treatment. This conversion is preceded by an increased glycogen synthetase phosphatase activity, which seems to follow an inverse relationship with the glycogen level.The results obtained suggest that the effect of insulin on the adrenal gland of fasted rats is glycogenolytic, that is, opposite to that described for this hormone in other normal tissues. The glycogen depletion, on the other hand, seems to set in motion the mechanism for glycogen synthetase activation, with the subsequent glycogen resynthesis.  相似文献   

20.
Hexose phosphates as regulators of hepatic glycogen synthase phosphatases   总被引:1,自引:0,他引:1  
The activity of glycogen synthase phosphatase from smooth endoplasmic reticulum of liver was stimulated markedly by galactose-6- and fructose-6-phosphates and to a lesser extent by glucose-1- and 2-deoxyglucose-6-phosphates. The synthase phosphatase of liver cytosol showed strong activation by glucose-1-, glucose-6- and fructose-6-phosphates and smaller activation by galactose-6- and 2-deoxyglucose-6-phosphates. Kinetic analysis showed that the activators did not affect the Km for glycogen synthase D, for either enzyme. The mechanism of activation of the two phosphatases by hexose phosphates appears to be by combination of the activator at a specific activator site on the enzyme rather than by substrate modulation. It is concluded that certain hexose phosphates, particularly fructose-6-phosphate and glucose-1-phosphate, can function as regulators of hepatic synthase phosphatase activity, and that this may explain the ability of elevated blood glucose to increase both glycogen synthase I activity and glycogen synthesis in the liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号