首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Rearrangements of the MLL gene, which is located at chromosome 11q23, are associated with aggressive acute leukemias in both children and adults. MLL regulates Hox gene expression through direct promoter binding and histone modification. MLL rearrangements occurring in leukemia include MLL fusion genes, partial tandem duplications of MLL and MLL amplification. MLL fusions and amplification upregulate Hox expression, apparently resulting in a block of hematopoietic differentiation. Future therapies for MLL-associated leukemia might involve blocking Hox gene upregulation by using fusion proteins or inhibiting the activity of Hox proteins themselves.  相似文献   

2.
MLL (mixed-lineage-leukemia) gene rearrangements are typical for acute leukemia and are associated with an aggressive course of disease, with a worse outcome than comparable case, and thus require intensified treatment. Here we describe a 69-year-old female with adult B cell precursor acute lymphoblastic leukemia (BCP-ALL) with hyperleukocytosis and immunophenotype CD10- and CD19+ with cryptic MLL rearrangements. G-banding at the time of diagnosis showed a normal karyotype: 46,XX. Molecular cytogenetics using multitude multicolor banding (mMCB) revealed a complex rearrangement of the two copies of chromosome 11. However, a locus-specific probe additionally identified that the MLL gene at 11q23.3 was disrupted, and that the 5′ region was inserted into the chromosomal sub-band 4q21; thus the aberration involved three chromosomes and five break events. Unfortunately, the patient died six months after the initial diagnosis from serious infections and severe complications. Overall, the present findings confirm that, by far not all MLL aberrations are seen by routine chromosome banding techniques and that fluorescence in situ hybridization (FISH) should be regarded as standard tool to access MLL rearrangements in patients with BCP-ALL.  相似文献   

3.
Sung PA  Libura J  Richardson C 《DNA Repair》2006,5(9-10):1109-1118
Faithful repair of chromosomal double-strand breaks (DSBs) is central to genome integrity and the suppression of genome rearrangements including translocations that are a hallmark of leukemia, lymphoma, and soft-tissue sarcomas [B. Elliott, M. Jasin, Double-strand breaks and translocations in cancer, Cell. Mol. Life Sci. 59 (2002) 373-385; D.C. van Gent, J.H. Hoeijmakers, R. Kanaar, Chromosomal stability and the DNA double-stranded break connection, Nat. Rev. Genet. 2 (2001) 196-206]. Chemotherapy agents that target the essential cellular enzyme topoisomerase II (topo II) are known promoters of DSBs and are associated with therapy-related leukemias. There is a clear clinical association between previous exposure to etoposide and therapy-related acute myeloid leukemia (t-AML) characterized by chromosomal rearrangements involving the mixed lineage leukemia (MLL) gene on chromosome band 11q23 [C.A. Felix, Leukemias related to treatment with DNA topoisomerase II inhibitors, Med. Pediatr. Oncol. 36 (2001) 525-535]. Most MLL rearrangements initiate within a well-characterized 8.3 kb region that contains both putative topo II cleavage recognition sequences and repetitive elements leading to the logical hypothesis that MLL is particularly susceptible to aberrant cleavage and homology-mediated fusion to repetitive elements located on novel chromosome partners. In this review, we will discuss the findings and implications of recent attempts to confirm this hypothesis.  相似文献   

4.
Chromosomal translocations are characteristic of hematopoietic neoplasias and can lead to unregulated oncogene expression or the fusion of genes to yield novel functions. In recent years, different lymphoma/leukemia-associated rearrangements have been detected in healthy individuals. In this study, we used inverse PCR to screen peripheral lymphocytes from 100 healthy individuals for the presence of MLL (Mixed Lineage Leukemia) translocations. Forty-nine percent of the probands showed MLL rearrangements. Sequence analysis showed that these rearrangements were specific for MLL translocations that corresponded to t(4;11)(q21;q23) (66%) and t(9;11) (20%). However, RT-PCR failed to detect any expression of t(4;11)(q21;q23) in our population. We suggest that 11q23 rearrangements in peripheral lymphocytes from normal individuals may result from exposure to endogenous or exogenous DNA-damaging agents. In practical terms, the high susceptibility of the MLL gene to chemically-induced damage suggests that monitoring the aberrations associated with this gene in peripheral lymphocytes may be a sensitive assay for assessing genomic instability in individuals exposed to genotoxic stress.  相似文献   

5.
6.
The mixed-lineage leukemia gene (MLL, ALL1, HRX) encodes a 3,969-amino-acid nuclear protein homologous to Drosophila trithorax and is required to maintain proper Hox gene expression. Chromosome translocations in human leukemia disrupt MLL (11q23), generating chimeric proteins between the N terminus of MLL and multiple translocation partners. Here we report that MLL is normally cleaved at two conserved sites (D/GADD and D/GVDD) and that mutation of these sites abolishes the proteolysis. MLL cleavage generates N-terminal p320 (N320) and C-terminal p180 (C180) fragments, which form a stable complex that localizes to a subnuclear compartment. The FYRN domain of N320 directly interacts with the FYRC and SET domains of C180. Disrupting the interaction between N320 and C180 leads to a marked decrease in the level of N320 and a redistribution of C180 to a diffuse nuclear pattern. These data suggest a model in which a dynamic post-cleavage association confers stability to N320 and correct nuclear sublocalization of the complex, to control the availability of N320 for target genes. This predicts that MLL fusion proteins of leukemia which would lose the ability to complex with C180 have their stability conferred instead by the fusion partners, thus providing one mechanism for altered target gene expression.  相似文献   

7.
Ruault M  Brun ME  Ventura M  Roizès G  De Sario A 《Gene》2002,284(1-2):73-81
We characterized MLL3, a new human member of the TRX/MLL gene family. MLL3 is expressed in peripheral blood, placenta, pancreas, testes, and foetal thymus and is weakly expressed in heart, brain, lung, liver, and kidney. It encodes a predicted protein of 4911 amino acids containing two plant homeo domains (PHD), an ATPase alpha_beta signature, a high mobility group, a SET (Suppressor of variegation, Enhancer of zeste, Trithorax) and two FY (phenylalanine tyrosine)-rich domains. The amino acid sequence of the SET domain was used to obtain a phylogenetic tree of human MLL genes and their homologues in different species. MLL3 is closely related to human MLL2, Fugu mll2, a Caenorhabditis elegans predicted protein, and Drosophila trithorax-related protein. Interestingly, PHD and SET domains are frequently found in proteins encoded by genes that are rearranged in different haematological malignancies and MLL3 maps to 7q36, a chromosome region that is frequently deleted in myeloid disorders. Partial duplications of the MLL3 gene are found in the juxtacentromeric region of chromosomes 1, 2, 13, and 21.  相似文献   

8.
In acute myelogenous and lymphoid leukemias, rearrangements involving the MLL (mixed lineage leukemia) gene at chromosome 11q23 are frequent. The truncated MLL protein is fused in-frame to a series of partner proteins. We previously identified the formin-binding protein 17 (FBP17) as such an MLL fusion partner. In this study, we explored in vivo physiological interaction partners of FBP17 using a two-hybrid assay and found tankyrase (TNKS), an ADP-ribose polymerase protein involved in telomere maintenance and mitogen-activated protein kinase signaling. We demonstrate that FBP17 binds via a special TNKS-binding motif to tankyrase. The physiological relevance is indicated by co-immunoprecipitation of endogenous proteins in 293T cells.  相似文献   

9.
Topoisomerase II inhibitors are effective chemotherapeutic agents in the treatment of cancer, in spite of being associated with the development of secondary leukemia. Our purpose was to determine the effects of etoposide on different genomic regions, aiming at discovering whether there are preferential sites which can be targeted by this drug in peripheral lymphocytes from healthy individuals. The in vitro treatment with low doses of etoposide (0.25, 0.5, and 1 μg/mL, in 1 hour-pulse or continuous-48 h treatment) induced a significant increase in chromosomal aberrations, detected by conventional staining and FISH with specific probes for chromosomes 8 and 11, compared with untreated controls (p < 0.05). Additionally, the frequencies of alterations at 11q23, detected by MLL specific probes, were significantly higher (p < 0.005) in treated cells than in controls. In contrast, an analysis of rearrangements involving the IGH gene did not disclose differences between treatments. The present results demonstrated the potential of etoposide to interact with preferential chromosome sites in human lymphocytes, even at concentrations below the mean plasma levels measured in cancer patients. This greater susceptibility to etoposide-induced cleavage may explain the more frequent involvement of MLL in treatment-related leukemia.  相似文献   

10.
11.
Translocations involving the mixed lineage leukemia (MLL) gene result in human acute leukemias with very poor prognosis. The leukemogenic activity of MLL fusion proteins is critically dependent on their direct interaction with menin, a product of the multiple endocrine neoplasia (MEN1) gene. Here we present what are to our knowledge the first small-molecule inhibitors of the menin-MLL fusion protein interaction that specifically bind menin with nanomolar affinities. These compounds effectively reverse MLL fusion protein-mediated leukemic transformation by downregulating the expression of target genes required for MLL fusion protein oncogenic activity. They also selectively block proliferation and induce both apoptosis and differentiation of leukemia cells harboring MLL translocations. Identification of these compounds provides a new tool for better understanding MLL-mediated leukemogenesis and represents a new approach for studying the role of menin as an oncogenic cofactor of MLL fusion proteins. Our findings also highlight a new therapeutic strategy for aggressive leukemias with MLL rearrangements.  相似文献   

12.
The mixed lineage leukemia (MLL) gene encodes a very large nuclear protein homologous to Drosophila trithorax (trx). MLL is required for the proper maintenance of HOX gene expression during development and hematopoiesis. The exact regulatory mechanism of HOX gene expression by MLL is poorly understood, but it is believed that MLL functions at the level of chromatin organization. MLL was identified as a common target of chromosomal translocations associated with human acute leukemias. About 50 different MLL fusion partners have been isolated to date, and while similarities exist between groups of partners, there exists no unifying property shared by all the partners. MLL gene rearrangements are found in leukemias with both lymphoid and myeloid phenotypes and are often associated with infant and secondary leukemias. The immature phenotype of the leukemic blasts suggests an important role for MLL in the early stages of hematopoietic development. Mll homozygous mutant mice are embryonic lethal and exhibit deficiencies in yolk sac hematopoiesis. Recently, two different MLL-containing protein complexes have been isolated. These and other gain- and loss-of-function experiments have provided insight into normal MLL function and altered functions of MLL fusion proteins. This article reviews the progress made toward understanding the function of the wild-type MLL protein. While many advances in understanding this multifaceted protein have been made since its discovery, many challenging questions remain to be answered.  相似文献   

13.
The mixed lineage leukemia (MLL) locus is involved in more than 60 different rearrangements with a remarkably diverse group of fusion partners in approximately 10% of human leukemias. MLL rearrangements include chromosomal translocations, gene internal duplications, chromosome 11q deletions or inversions and MLL gene insertions into other chromosomes, or vice versa. MLL fusion partners can be classified into four distinct categories: nuclear proteins, cytoplasmatic proteins, histone acetyltransferases and septins. Five different septin genes (SEPT2, SEPT5, SEPT6, SEPT9, and SEPT11) have been identified as MLL fusion partners, giving rise to chimeric fusion proteins in which the N terminus of MLL is fused, in frame, to almost the entire open reading frame of the septin partner gene. The rearranged alleles result from heterogeneous breaks in distinct introns of both MLL and its septin fusion partner, originating distinct gene fusion variants. MLL-SEPTIN rearrangements have been repeatedly identified in de novo and therapy related myeloid neoplasia in both children and adults, and some clinicopathogenetic associations are being uncovered. The fundamental roles of septins in cytokinesis, membrane remodeling and compartmentalization can provide some clues on how abnormalities in the septin cytoskeleton and MLL deregulation could be involved in the pathogenesis of hematological malignancies.  相似文献   

14.
Mixed lineage leukemia 1 (MLL1) is a gene that is disrupted by chromosomal translocation characteristically in a large proportion of infant leukemia and also in a fraction of childhood and adult leukemia. MLL1 encodes a chromatin regulatory protein related to the Drosophila Trithorax protein, a well-studied epigenetic factor that functions during development to maintain expression of its target genes. Although tremendous progress has been made understanding the downstream targets of MLL1 fusion oncoproteins and how manipulation of those targets impacts leukemogenesis, very little is known regarding how the initial expression of an MLL1 fusion protein impacts on that cell’s behavior, particularly how the cell cycle is affected. Here, we focused on the function of endogenous MLL1 in the stem and progenitor cell types that are likely to be transformed upon MLL1 translocation. Our studies reveal a differential response of stem or progenitor populations to acute loss of MLL1 on proliferation and survival. These data suggest that the effects of MLL1 fusion oncoproteins will initiate the leukemogenic process differentially depending on the differentiation state of the cell type in which the translocation occurs.  相似文献   

15.
We report a child with mental retardation, brain anomalies and congenital heart defect. His karyotype, after G-banding and FISH with a whole chromosome probe for chromosome 11 and a locus-specific probe for the MLL gene, was 46,XY,dup(11)(q23q23).ish dup(11)(q23q23)(wcp11+, MLL++) de novo; i.e., he had a pure partial 11q23 duplication. Clinical and cytogenetic findings of the present case were compared with the 7 previously reported cases with pure partial trisomy 11q; in 6/8 cases the region 11q23 was involved. We conclude that the scarce number of cases and their heterogeneity do not allow to establish a reliable genotype-phenotype correlation.  相似文献   

16.
组蛋白甲基转移酶MLL1因其基因易位重排所引起的混合系白血病(mixed lineage leukemia)而得名。MLL1蛋白在基因调控、细胞增殖、生长分化等正常生理功能中发挥着重要作用,染色体易位重排所产生的MLL1融合蛋白则与急性白血病的发生发展密切相关。目前人们对MLL1蛋白的结构和功能研究取得了很大的进展,为以MLL1和其相互作用蛋白为靶点的新型MLL白血病药物设计奠定了坚实的基础。  相似文献   

17.
The place of FISH in the monitoring of minimal residual disease (MRD) is yet to be fully characterised. Routine bone marrow cytogenetics at diagnosis in a 22 year old patient with acute myeloid leukemia FAB type M5 detected a translocation t(9;11)(p22;q23). We report our investigations to assess residual levels of translocation using a FISH probe designed to detect a gene split by the translocation. We used MLL (Oncor), a probe which spans the MLL gene at 11q23, in both metaphase and interphase preparations. At diagnosis, metaphase FISH showed 3 distinct cell lines-normal with 2 signals, abnormal with 3 signals and abnormal with 2 signals, while interphase FISH showed only 2 cell lines, one with 2 signals (which could be normal or abnormal) and one with 3 signals (split MLL). Following treatment, with the patient in clinical remission, 7 further cytogenetic analyses and 2 further FISH analyses were compared. Our results suggest that monitoring of the t(9;11) by metaphase FISH is feasible and straightforward compared to cytogenetics but interphase FISH may be problematic.  相似文献   

18.
Taspase1 catalyzes the proteolytic processing of the mixed lineage leukemia (MLL) nuclear protein, which is required for maintaining Hox gene expression patterns. Chromosomal translocations of the MLL gene are associated with leukemia in infants. Taspase1, a threonine aspartase, is a member of the type 2 asparaginase family, but is the only protease in this family. We report here the crystal structures of human activated Taspase1 and its proenzyme, as well as the characterization of the effects of mutations in the active site region using a newly developed fluorogenic assay. The structure of Taspase1 has significant differences from other asparaginases, especially near the active site. Mutation of the catalytic nucleophile, Thr234, abolishes autocatalytic processing in cis but does not completely block proteolysis in trans. The structure unexpectedly showed the binding of a chloride ion in the active site, and our kinetic studies confirm that chlorides ions are inhibitors of this enzyme at physiologically relevant concentrations.  相似文献   

19.
Kabuki syndrome (KS) is a rare genetic disease that causes developmental delay and congenital anomalies. Since the identification of MLL2 mutations as the primary cause of KS, such mutations have been identified in 56%-76% of affected individuals, suggesting that there may be additional genes associated with KS. Here, we describe three KS individuals with de novo partial or complete deletions of an X chromosome gene, KDM6A, that encodes a histone demethylase that interacts with MLL2. Although KDM6A escapes X inactivation, we found a skewed X inactivation pattern, in which the deleted X chromosome was inactivated in the majority of the cells. This study identifies KDM6A mutations as another cause of KS and highlights the growing role of histone methylases and histone demethylases in multiple-congenital-anomaly and intellectual-disability syndromes.  相似文献   

20.
The PHD fingers of the human MLL and Drosophila trx proteins have strong amino acid sequence conservation but their function is unknown. We have determined that these fingers mediate homodimerization and binding of MLL to Cyp33, a nuclear cyclophilin. These two proteins interact in vitro and in vivo in mammalian cells and colocalize at specific nuclear subdomains. Overexpression of the Cyp33 protein in leukemia cells results in altered expression of HOX genes that are targets for regulation by MLL. These alterations are suppressed by cyclosporine and are not observed in cell lines that express a mutant MLL protein without PHD fingers. These results suggest that binding of Cyp33 to MLL modulates its effects on the expression of target genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号