首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is now generally accepted that ADH-induced increase in water permeability in responsive epithelia is associated with the insertion of specific structures in the apical membrane of epithelial cells. Up to now, these structures have only been recognized in freeze-fractured preparations and their chemical nature is still unknown. In this study, we used the label-fracture method (Pinto da Silva and Kan, J. Cell Biol., 99, 1156-1161, 1984) to investigate the distribution of wheat germ agglutinin (WGA) on the luminal plasma membrane of freeze-fractured frog urinary bladder epithelial cells. With label-fracture, the cytochemical markers are seen superimposed with the conventional high resolution image of the E face. Label-fracture of tissue treated for 15 min with WGA and subsequently labeled with colloidal gold coated with ovomucoid showed uniform distribution of gold particles along the exoplasmic fracture face. Stereomicrographs show that the gold label is under the fracture face as it is attached to the outer surface of the membrane. Preincubation of the bladder with WGA for 3 hr induced a segregation of the intramembranous particles of the apical plasma membrane. In this condition, we observed a co-distribution of WGA-gold complexes with the segregated particles on the E face. This indicates that WGA-binding sites are located on glycoproteins which probably comprise the large intramembranous particles dispersed on the exoplasmic faces of freeze-fractured luminal membranes. In contrast, the numerous small intramembrane particles observed on P faces remained evenly distributed even after exposure to WGA and are, therefore, unrelated to WGA receptor sites. After WGA treatment, ADH still induced the formation of aggregates inside the smooth domains. A few WGA-binding sites appeared to be associated to these aggregates.  相似文献   

2.
《The Journal of cell biology》1983,97(5):1356-1364
We used fracture-label and surface labeling techniques to characterize the distribution and topology of wheat germ agglutinin (WGA) receptors in the plasma membrane of boar sperm heads. We show that freeze- fracture results in preferential, but not exclusive, partition of WGA- binding sites with the outer (exoplasmic) half of the plasma membrane. Labeling of the inner (protoplasmic) half of the membrane is significant, and is denser over the areas that overlie the acrosome. Exoplasmic membrane halves are uniformly labeled. Analysis of freeze- fracture replicas revealed that the distribution of intramembrane particles over protoplasmic faces parallels that of WGA-binding sites as observed by fracture-label. Coating of intact spermatozoa with cationized ferritin results in drastic reduction of the labeling of both protoplasmic and exoplasmic membrane halves. Labeling of sperm cells lysed by short hypotonic shock fails to reveal the presence of WGA-binding sites at the inner surface of the plasma membrane. We conclude that: (a) all WGA-binding glycoconjugates are exposed at the outer surface of the membrane; (b) some of these glycoconjugates correspond to transmembrane glycoproteins that, on fracture, partition with the inner half of the membrane; (c) these transmembrane proteins are accumulated in the region of the plasma membrane that overlies the acrosome; and (d) parallel distribution of intramembrane particles and WGA-binding glycoproteins provides renewed support for the view of particles as the morphological counterpart of integral membrane proteins.  相似文献   

3.
We examined the effect of a local anesthetic, dibucaine, on the plasma membrane of Tetrahymena pyriformis strain NT-1 using freeze-fracture electron microscopy. Intramembranous particles (IMPs) were distributed homogeneously on the plasma membrane of untreated cells. But, when Tetrahymena cells had been treated with 1.3 mM dibucaine for 5 min at growth temperature, freeze-fracture micrographs of the plasma membrane showed marked alterations. Although IMPs showed an almost homogeneous distribution, their density was elevated markedly on the protoplasmic fracture (PF) face but greatly reduce on the exoplasmic fracture (EF) face. Areas around deciliated portions had a reverse IMP density distribution for the PF and EF faces. These results suggest that dibucaine induced vertical displacement of the IMPs in the plasma membrane.  相似文献   

4.
Label-fracture: a method for high resolution labeling of cell surfaces   总被引:15,自引:4,他引:11       下载免费PDF全文
We introduce here a technique, "label-fracture," that allows the observation of the distribution of a cytochemical label on a cell surface. Cell surfaces labeled with an electron-dense marker (colloidal gold) are freeze-fractured and the fracture faces are replicated by plantinum/carbon evaporation. The exoplasmic halves of the membrane, apparently stabilized by the deposition of the Pt/C replica, are washed in distilled water. The new method reveals the surface distribution of the label coincident with the Pt/C replica of the exoplasmic fracture face. Initial applications indicate high resolution (less than or equal to 15 nm) and exceedingly low background. "Label-fracture" provides extensive views of the distribution of the label on membrane surfaces while preserving cell shape and relating to the freeze-fracture morphology of exoplasmic fracture faces. The regionalization of wheat germ agglutinin receptors on the plasma membranes of boar sperm cells is illustrated. The method and the interpretation of its results are straightforward. Label-fracture is appropriate for routine use as a surface labeling technique.  相似文献   

5.
Fracture Faces in the Cell Envelope of Escherichia coli   总被引:21,自引:12,他引:9       下载免费PDF全文
Freeze-fracturing of Escherichia coli cells in the presence of 30% (v/v) glycerol resulted in a double cleavage of the cell envelope exposing two convex and two concave fracture faces ([Formula: see text], [Formula: see text] and [Formula: see text], [Formula: see text]) with characteristic patterns. Complementary replicas revealed the relationship of the fracture faces to their corresponding fracture planes. The inner fracture plane splits the plasma membrane at one particular level. Apparently the outer fracture plane was located in the outer part of the wall, as it was separated by a layer ([Formula: see text]) from the fractured profile (CW1) presumably corresponding to the murein layer. The outer fracture plane did alternate toward the cell periphery, exposing complementary smooth areas ([Formula: see text] and [Formula: see text]). When cells were freeze-fractured in the absence of glycerol, the outer cell surface appeared as an etching face rather than a fracture face. A schematic representation of the relative location of the different fracture faces in the E. coli cell envelope is given.  相似文献   

6.
M. Melkonian  H. Robenek 《Protoplasma》1979,100(2):183-197
Summary The eyespot region of the flagellateTetraselmis cordiformis Stein (Chlorophyceae) was investigated with the freeze-fracture technique. The only fracture faces observed in this region were the two complementary fracture faces (PF and EF) of the outer chloroplast envelope membrane. Intramembranous particle numbers on both fracture faces of this membrane were significantly higher in the eyespot region as compared to regions outside the eye-spot. Higher numbers of particles on the PF face in the eyespot region were mainly caused by an increase in particle numbers of the size class 6–8 mm, while on the EF face particle size distribution was not significantly different between eyespot and other regions. Functional implications are discussed and evidence is presented that the outer chloroplast envelope membrane may be the site of photoreceptor location in green algal phototaxis.  相似文献   

7.
An "apical endocytic complex" in the ileal lining cells of suckling rats is described. The complex consists of a continuous network of membrane-limited tubules which originate as invaginations of the apical plasma membrane at the base of the microvilli, some associated vesicles, and a giant vacuole. The lumenal surface of this tubular network of membranes and associated vesicles is covered with a regular repeating particulate structure. The repeating unit is an ~7.5-nm diameter particle which has a distinct subunit structure composed of possibly nine smaller particles each ~3 nm in diameter. The ~7.5-nm diameter particles are joined together with a center-to-center separation of ~15 nm to form long rows. These linear aggregates, when arranged laterally, give rise to several square and oblique two-dimensional lattice arrangements of the particles which cover the surface of the membrane. Whether a square or oblique lattice is generated depends on the center-to-center separation of the rows and on the relative displacement of the particles in adjacent rows. Four membrane faces are revealed by fracturing frozen membranes of the apical tubules and vesicles: two complementary inner membrane faces exposed by the fracturing process and the lumenal and cytoplasmic membrane surfaces revealed by etching. The outer membrane face reveals a distinct array of membrane particles. This array also sometimes can be seen on the outer (B) fracture face and is sometimes faintly visible on the inner (A) fracture face. Combined data from sectioned, negatively stained, and freeze-etched preparations indicate that this regular particulate structure is a specialization that is primarily localized in the outer half of the membrane mainly in the outer leaflet.  相似文献   

8.
The lectin-gold technique was used to detect Helix pomatia lectin (HPL) binding sites directly on thin sections of rat pancreas embedded in Lowicryl K4M and on freeze-fractured preparations of rat pancreas submitted to fracture label. On thin sections of acinar cells, whereas the content of zymogen granules was negative or weakly labeled, the limiting membrane displayed a high degree of labeling. In the Golgi complex, labeling by HPL was localized on the trans saccules and the limiting membrane of the condensing vacuoles. The latter appeared to be more intensely labeled than the membrane of the zymogen granules. Intense labeling by HPL was also observed along the microvilli and the plasma membrane. In contrast to the weak labeling of the zymogen-granule content, labeling of the acinar lumen was intense. Fracture-label preparations revealed preferential partition of HPL-binding sites to the exoplasmic half of the zymogen-granule and plasma membranes. The population of zymogen granules was, however, heterogeneous with respect to labeling intensity; the exoplasmic fracture-face of the plasma membrane was intensely and uniformly labeled, while the protoplasmic membrane halves were only weakly labeled. These observations were further confirmed and extended by the thin-section fracture-label approach. In addition, favorable profiles of thin sections of freeze-fractured zymogen granules showed that the labeling was not associated with the external surface of the limiting membrane, but rather localized over the exoplasmic fracture-face. We conclude that 1) zymogen granules contain little HPL-binding glycoconjugates, 2) HPL-binding sites are preferentially associated with the exoplasmic half of the zymogen-granule and plasma membranes, and 3) the limiting membrane of the immature condensing vacuoles carries a greater number of HPL-binding sites than that of the mature zymogen granules. These last, in turn, constitute a heterogenous population with respect to labeling density. These results support the current view that glycoconjugates are directed toward the lumen in secretory granules but become external to the cell surface after fusion of the secretory-granule membrane with the plasma membrane. Also, the results reflect membrane modifications during the maturation process of secretory granules in the exocrine pancreas in which glycoproteins are removed from the limiting membrane of the granule to become soluble and secreted with the content.  相似文献   

9.
The two unit membranes which envelope the endosymbiont of the trypanosomatid protozoon, Blastocrithidia culicis, were studied using the freeze-fracture technique. The distribution of the intramembranous particles on both fracture faces of the inner and outer membrane of the endosymbiont was analyzed in the replicas. The protoplasmic face of the inner membrane (PFi) had a higher density of membrane particles than that observed on the extracellular face (EFi), a pattern typical of plasma membranes. The extracellular face of the outer membrane (EFo) presented a density of membrane particles much higher than that observed on the P face of the outer membrane (PFo) a distribution significantly different from that found in the inner membrane of the endosymbiont and in the plasma membrane of the protozoon, but similar to that observed in Gram-negative bacteria. The data obtained support the idea that the endosymbiont of trypanosomatids represents a Gram-negative bacterium-like microorganism enveloped by two unit membranes and lacking a peptidoglycan layer and which lives in direct contact with the cytoplasm of the protozoon.  相似文献   

10.
Freeze-etching was applied to preparations, with and without glycerol, of Acinetobacter sp. strain MJT/F5/199A, consisting of intact cells after normal growth or after incubation with chloramphenicol, spheroplasts, and isolated cell walls and outer membranes. Etched preparations show that a regular array of subunits forms the surface of normal cells. Near the zones of constriction in dividing cells, blebs and irregularities are seen, and some blebs, consisting of both surface subunits and outer membrane, are released from the cells. The cross-fractured cell envelope shows four layers which are related to the structures seen in section as follows: cw1, which is not visible in section, contains the surface subunits; cw2 consists of all or part of the outer membrane; cw3 includes the intermediate and dense, peptidoglycan-containing layers; within these cell wall layers is the plasma membrane. Internal fracture of the plasma membrane occurs under all conditions tested, but the fracture plane in the cell wall is only revealed in chloramphenicol-treated cells or normal cells freeze-fractured with glycerol present; the characteristic fracture faces are not seen in spheroplasts or isolated outer membranes. The concave fracture face cw2 consists of densely packed granules, while the convex face cw3 is fibrillar. The probable location of this fracture plane is discussed. After incubation with chloramphenicol, the outer surface of the cells is obscured by extracellular material, the dense peptidoglycan-containing layer is increased in thickness, and the cytoplasm contains rounded bodies bounded by one or more unit membranes.  相似文献   

11.
The effect of the local anesthetic dibucaine on the membrane ultrastructure of sterol-manipulated Tetrahymena pyriformis (NT-1 strain) was studied by freeze-fracture electron microscopy. Dibucaine-treated, ergosterol-replaced Tetrahymena cells had marked alterations in their plasma membranes. IMP-free small depressions (exoplasmic fracture face) and protrusions (protoplasmic fracture face) were formed on the plasma membranes which was in contact with the outer alveolar membrane. In addition, large IMP-free surface "blebs" covered with hexagonally-arranged depressions and protrusions appeared on both the plasma and outer alveolar membranes. These "blebs" were pinched off when the membranes were severely affected. Our previous study (28) demonstrated that the plasma membrane of dibucaine-treated native Tetrahymena cells that contain tetrahymanol showed vertical displacement of its intramembranous particles and that subsequently a smooth, flat surface appeared. Therefore, the structural changes in ergosterol-replaced membranes produced by dibucaine differ strikingly from changes in the native membranes. The remarkable difference in the ultrastructural deformation of the plasma membrane probably is due to a difference in the membrane lipid composition induced by sterol-manipulation.  相似文献   

12.
Changes in the number and sizes of membrane-associated particles have been quantitated in the protoplasmic (P) and exoplasmic (E) fracture faces of the outer membrane of nuclei isolated from the inner cortex following renal ischemia and reflow in the rat. No changes were observed in the inner nuclear membrane. After 20-min ischemia, the number of particles in both fracture faces decreased. With reflow, the total number of particles decreased after both 20- and 60-min ischemia. The partition coefficient (Kp = CPF/CEF) increased from 10 to 11 and 17 at 20- and 60-min ischemia then fell below control values to a Kp of 7 after 120 min. After reflow, Kp steadily decreased except after 20-min ischemia followed by 240-min reflow when Kp began to rise. The sizes of particles were predominantly 60 A in the P face of control outer membranes but became larger after ischemia. After 20- and 60-min ischemia with reflow, the size distribution became more normal. The shifts in particle numbers and sizes seem to indicate modifications within the membrane resulting from ischemia.  相似文献   

13.
Sieve element plasma membranes reveal a unique distribution of intramembrane particles (IMPs) in tissue cultures fixed and cyroprotected prior to freeze-fracturing. Sieve element IMPs are smaller than those found in the plasma membranes of callus parenchyma cells from these same cultures. The PF/EF ratio of plasma membrane IMPs is 9.6 for parenchyma cells and 1.21 for sieve elements. The increased binding of IMPs to the sieve element E face may be related to the role of membrane proteins in the loading of sucrose and other molecules by these cells. The enlargement of the cell wall at the site of sieve area pores creates complementary ridges and depressions in the E and P fracture faces of sieve element plasma membranes. No alteration of IMP density is seen at the sieve area pore site.  相似文献   

14.
Epstein-Barr virus-producing cells were used as a model to analyze, with a fracture-immunolabel technique, the distribution, behavior on fracture, and extent of glycosylation of viral transmembrane glycoproteins at the inner nuclear membrane. Surface and fracture immunolabeling with two monoclonal antibodies directed against the carbohydrate or polypeptide portions of the major viral envelope glycoproteins gp350/220 showed the following. (i) The glycoproteins present on the inner and outer nuclear membranes were labeled only with the monoclonal antibody directed against the polypeptide chain, whereas over the surface of virus-producing cells and on mature virions the labeling was dense and uniformly distributed with both monoclonal antibodies. (ii) The glycoproteins were nonuniformly distributed only over the inner nuclear membranes; at the sites of viral budding, the glycoproteins showed a preferential partition with the protoplasmic face. Since fully glycosylated glycoproteins were not present on the nuclear membranes, our observations support the proposed model of herpesvirus maturation. The peculiar distribution and partition on fracture of the envelope glycoproteins on the inner nuclear membrane are similar to those of Sindbis virus envelope glycoproteins on the plasma membrane of infected cells. Therefore, our results suggest that inner nuclear membranes may behave like plasma membranes during viral assembly.  相似文献   

15.
Plasmodium cynomolgi, Plasmodium knowlesi, and Plasmodium berghei sporozoites, before and after incubation with immune serum, were studied after freeze-fracture by electron microscopy. There were evenly distributed numerous intramembranous particles (IMP) on the P face of the outer membrane. The E face of the plasma membrane had fewer IMP than its P face. The E face of the intermediate membrane had few IMP and also linear arrays of slightly raised ridges running the length of the parasite. The P face of the intermediate membrane had many IMP aligned along the long axis of the sporozoite. On the P face of the inner membrane, IMP were arranged in very distinct rows conforming to the long axis of the parasite; the E face of this membrane had a few randomly distributed IMP. A prominent change in the sporozoite incubated in immune serum was the appearance of a layer of aggregated particles around the parasite. The P face of the plasma membrane had several clear areas devoid of IMP and IMP aggregates. No changes were seen in the other fractured faces of the pellicle. These observations suggest that immune serum acts only on the P face of the plasma membrane.  相似文献   

16.
Sindbis virus-infected baby hamster kidney cells were analyzed by thin section fracture-label. Specific immunolabel with antiviral glycoprotein antibodies or with conventional lectin label (wheat germ agglutinin) were used in conjunction with colloidal gold-conjugated protein A or ovomucoid, respectively. In addition, intact infected cells were analyzed with both labeling procedures. Experiments with Sindbis infected-chick embryo fibroblast cells were carried out as controls. Viral transmembrane glycoproteins appeared present in freeze-fractured inner and outer nuclear membrane, endoplasmic reticulum, Golgi stacks and vesicles, and plasma membranes; a clear preferential partition with the exoplasmic faces of all intracellular membranes was observed. By contrast, at the plasma membrane level, Sindbis glycoproteins were found to partition preferentially with the protoplasmic face. It seems likely that this protoplasmic partition is related to the binding with the nucleocapsid that takes place during the budding of the virus. At the cell surface, viral glycoproteins always appeared clustered and were predominantly associated with budding figures: moreover, large portions of the plasma membrane were devoid of both glycoproteins and budding viruses.  相似文献   

17.
Sindbis virus-infected baby hamster kidney (BHK) cells were analyzed by thin section fracture-label. Specific immunolabel with antiviral glycoprotein antibodies was used in conjunction with colloidal gold-conjugated protein A. As we previously reported (Torrisi, M. R., and S. Bonatti, 1985, J. Cell Biol., 101:1300-1306), Sindbis transmembrane glycoproteins are present in the inner nuclear membrane as well as in the outer nuclear membrane, endoplasmic reticulum, Golgi stacks and vesicles, and plasma membranes. Viral glycoproteins located on the inner nuclear membrane resemble those present on the outer membrane in terms of amount, distribution, and preferential partition after fracture. We show in this paper that Sindbis glycoproteins after treatment with cycloheximide are removed from the inner nuclear membrane with the same kinetics as their counterparts present on the outer membrane. This finding strongly suggests that newly synthesized transmembrane glycoproteins may freely diffuse to and from the inner nuclear membrane before entering into the intracellular transport pathway to the plasma membrane.  相似文献   

18.
M. Kroh  B. Knuiman 《Planta》1985,166(3):287-299
Exocytosis occurring during deposition of secondary wall material was studied by freeze-fracturing ultrarapidly frozen non-plasmolyzed and plasmolyzed tobacco pollen tubes. The secondary wall of tobacco pollen tubes shows a random orientation of microfibrils. This was observed directly on fractures through the tube wall and indirectly as imprints of microfibrils on fracture faces of the plasma membrane of non-plasmolyzed tubes. About half of the plasmatic fracture faces from non-plasmolyzed and plasmolyzed pollen tubes carried hexagonal arrays of intramembraneous particles in between randomly distributed particles. Deposition of secondary wall material was often accompanied by an undulated plasma membrane and the presence of membrane-bound vesicles in invaginations of the plasma membrane, between the plasma membrane and secondary wall and-especially in plasmolyzed tubes-within the secondary wall of tube flanks and wall cap. The findings are discussed in connection with published schemes of membrane behaviour during exocytosis.Abbreviations EF extraplasmatic fracture face - IMP(s) intramembraneous particle(s) - PF plasmatic fracture face Extended version of a contribution (poster) presented at the 8th Int. Symp. on Sexual Reproduction in Seed Plants, Ferns and Mosses, Wageningen, The Netherlands, August 1984 Dedicated to Prof. Dr. H.F. Linskens (Nijmegen) on the occasion of his 65th birthday in 1986  相似文献   

19.
We analyzed the outer membrane (OM) ultrastructure of four pathogenic members of the family Spirochaetaceae by freeze fracture. The OM of Treponema pallidum subsp. pertenue contained a low intramembranous particle concentration, indicating that it contains few OM transmembrane proteins. The concave OM fracture faces of Treponema hyodysenteriae and Borrelia burgdorferi contained dense populations of particles, typical of gram-negative organisms. A relatively low concentration of particles which were evenly divided between a small and a large species was present in the concave OM fracture face of Borrelia hermsii; the convex OM fracture face contained only small particles. As for gram-negative bacteria, the convex OM fracture face particle concentrations of these pathogens were low. These spirochetes cleaved preferentially within the OM, in contrast to typical gram-negative bacteria, which tend to fracture within the inner membrane. The OM ultrastructure of T. pallidum subsp. pertenue provides an explanation for the lack of antigenicity of the treponemal surface and may reflect a mechanism by which this pathogen evades the host immune response.  相似文献   

20.
The freeze-fracture appearance and concanavalin A-binding capacity of the plasma membrane of cells of the cleaving Xenopus embryo have been examined up to the 16-cell stage. It was found that membrane on the outer surface of the embryo, which faces the vitelline membrane and is remote from cleavage furrows, and membrane in the shallow regions of the furrow possessed a high population of intramembranous particles on the PF-face (1171 per mum2). The EF-face of these membranes showed a lower particle population (245 per mum2). By contrast, membrane deep in the furrow and bounding the blastocoel did not display a face with high particle numbers. Both faces of this membrane, which is newly exposed as the furrow grows, were relatively poorly supplied with particles (93 per mum2). Therefore it appears that, in this tissue, newly added membrane possesses fewer intramembranous particles than the pre-existing membrane. Concanavalin A, as detected cytochemically using peroxidase and haemocyanin techniques, bound extensively to both particle-rich and particle-poor membrane. Thus there was no correlation between intramembranous particle frequency and degree of concanavalin A binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号