首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Expression and methylation patterns of genes encoding DNA methyltransferases and their functionally related proteins were studied in organs of Arabidopsis thaliana plants. Genes coding for the major maintenance-type DNA methyltransferases, MET1 and CMT3, and the major de novo-type DNA methyltransferase, DRM2, are actively expressed in all organs. Similar constitutively active expression was observed for genes encoding their functionally related proteins, a histone H3K9 methyltransferase KYP and a catalytically non-active protein DRM3. Expression of the MET1 and CMT3 genes is significantly lower in developing endosperm compared with embryo. Vice versa, expression of the MET2a, MET2b, MET3, and CMT2 genes in endosperm is much more active compared with embryo. A special maintenance DNA methylation system seems to operate in endosperm. The DNMT2 and N6AMT genes encoding putative methyltransferases are constitutively expressed at low levels. CMT1 and DRM1 genes are expressed rather weakly in all investigated organs. Most of the studied genes have methylation patterns conforming to the “body-methylated gene” prototype. A peculiar feature of the MET family genes is methylation at all three possible site types (CG, CHG, and CHH). The most weakly expressed among genes of their respective families, CMT1 and DRM1, are practically unmethylated. The MET3 and N6AMT genes have unusual methylation patterns, promoter region, and most of the gene body devoid of any methylation, and the 3'-end proximal part of the gene body is highly methylated.  相似文献   

3.
Cytosine methylation of repetitive sequences is widespread in plant genomes, occurring in both symmetric (CpG and CpNpG) as well as asymmetric sequence contexts. We used the methylation-dependent restriction enzyme McrBC to profile methylated DNA using tiling microarrays of Arabidopsis Chromosome 4 in two distinct ecotypes, Columbia and Landsberg erecta. We also used comparative genome hybridization to profile copy number polymorphisms. Repeated sequences and transposable elements (TEs), especially long terminal repeat retrotransposons, are densely methylated, but one third of genes also have low but detectable methylation in their transcribed regions. While TEs are almost always methylated, genic methylation is highly polymorphic, with half of all methylated genes being methylated in only one of the two ecotypes. A survey of loci in 96 Arabidopsis accessions revealed a similar degree of methylation polymorphism. Within-gene methylation is heritable, but is lost at a high frequency in segregating F2 families. Promoter methylation is rare, and gene expression is not generally affected by differences in DNA methylation. Small interfering RNA are preferentially associated with methylated TEs, but not with methylated genes, indicating that most genic methylation is not guided by small interfering RNA. This may account for the instability of gene methylation, if occasional failure of maintenance methylation cannot be restored by other means.  相似文献   

4.
HLA-DR antigens are expressed as differentiation markers in certain human leukemias. To investigate whether DNA methylation plays a role in expression of DR genes in leukemia, we analyzed methylation patterns of the DR-alpha and D/DR-beta genes in the DR antigen-positive and -negative B-cell lines, in normal adults and in chronic lymphocytic leukemia (CLL) patients using Southern blot hybridization of DNA digested with Msp I and Hpa II. The DR-alpha and D/DR-beta genes of a DR antigen positive B-cell line, T5-1, were heavily methylated, while those of DR antigen-negative variant, 6.1.6, were hypomethylated. Blood cells collected from four normal adults contained different levels of DR-alpha and D/DR-beta mRNAs, but their relative amounts were about the same among the individuals. By contrast, the relative amounts of these mRNAs in CLL cells varied widely, indicating aberrant expression of one or both of these genes in CLL. The DR-alpha gene in four normal adults and six CLL patients produced only a 3 kb hybridizable band after Msp I digestion. Normal adult DR-alpha genes were resistant to Hpa II digestion, suggesting that all Hpa II sites are methylated. In contrast, digestion of CLL DNA with Hpa II yielded various bands of larger sizes which differed among the CLL patients, suggesting that Hpa II sites are differentially methylated in the CLL DNA. In the case of D/DR-beta genes, normal adult DNA gave Msp I bands which were slightly polymorphic among four individuals tested. In contrast, CLL DNA showed a high degree of restriction fragment length polymorphism (RFLP) on Msp I digestion. We speculate that the high RFLPs in the CLL DNA may result from differential methylation in CpG clusters in the D/DR-beta genes, and that this characteristic may be of use for diagnosis of CLL.  相似文献   

5.
6.
Male sterile cytoplasm plays an important role in hybrid rice, and cytoplasmic effects are sufficiently documented. However, no reports are available on DNA methylation affected by male sterile cytoplasm in hybrid rice. We used a methylation-sensitive amplified polymorphism technique to characterize DNA methylation in four male sterile cytoplasms that are widely commercialized in China. In total, 12 pairs of selective primers in combinations of EcoRI and MspI/HpaII amplified 350 bands among four male sterile (A) lines and the corresponding maintainer (B) lines. Sites b1 and b3 were fully methylated only in all the B lines, while b2 was fully methylated only in all the A lines. These results implied a relationship of DNA methylation at these sites specifically with male sterile cytoplasms, as well as male sterility, since the only difference between the A and B lines was the cytoplasm. The DNA methylation was markedly affected by male sterile cytoplasms. WA-type and Yinshui-type cytoplasms affected the methylation to a much greater degree than G-type and D-type cytoplasms, as indicated by the number and degree of methylated sites, ratio of methylated sites, number of fully methylated sites, ratio of fully methylated sites, and polymorphism between A and B lines for these cytoplasms. The genetic distance between the cytoplasm and nucleus for the WA-type is much greater than for G- and D-types because the former is between wild and cultivated species and the latter is within indica subspecies between African and Asian cultivars. This difference in genetic distance may be responsible for the variation in methylation which we observed.  相似文献   

7.
8.
9.
10.
We performed whole-genome analyses of DNA methylation in Shewanella oneidensis MR-1 to examine its possible role in regulating gene expression and other cellular processes. Single-molecule real-time (SMRT) sequencing revealed extensive methylation of adenine (N6mA) throughout the genome. These methylated bases were located in five sequence motifs, including three novel targets for type I restriction/modification enzymes. The sequence motifs targeted by putative methyltranferases were determined via SMRT sequencing of gene knockout mutants. In addition, we found that S. oneidensis MR-1 cultures grown under various culture conditions displayed different DNA methylation patterns. However, the small number of differentially methylated sites could not be directly linked to the much larger number of differentially expressed genes under these conditions, suggesting that DNA methylation is not a major regulator of gene expression in S. oneidensis MR-1. The enrichment of methylated GATC motifs in the origin of replication indicates that DNA methylation may regulate genome replication in a manner similar to that seen in Escherichia coli. Furthermore, comparative analyses suggest that many Gammaproteobacteria, including all members of the Shewanellaceae family, may also utilize DNA methylation to regulate genome replication.  相似文献   

11.
We have analyzed DNA methylation of plastid DNA from fully ripened red fruits, green mature fruits, and green leaves of tomato (Lycopersicon esculentum var. Firstmore). Essentially identical restriction profiles were obtained between chromoplast and chloroplast DNAs by EcoRI digestion. BstNI/EcoRII and HpaII/MspI are pairs of isoschizomers that can discriminate between methylated and unmethylated DNAs. These endonucleases produced different restriction patterns of plastid DNAs from tomato fruits compared to tomato leaves. Moreover, we have found from Southern blots that methylation was not detected in DNA fragments containing certain genes that are actively expressed in chromoplasts, whereas DNA fragments bearing genes that are barely transcribed in chromoplasts are methylated.  相似文献   

12.
Variable methylation of the ribosomal RNA genes of the rat.   总被引:11,自引:5,他引:11       下载免费PDF全文
Both the pattern and level of rRNA gene methylation vary in the rat. This variation reflects stages in the maturation process and perhaps the level of gene expression in different tissues. We studied methylation at a common site, the inner cytosine of the sequence CCGG, by hybridizing 32P-rRNA to DNA digests obtained with endonuclease Msp I (which cleaves CCGG and CMCGG) and its isochizomer, HpaII (which cleaves only CCGG). In the liver, the changing pattern of rRNA gene methylation reflected the late stages of development: the rRNA genes were mostly unmethylated at 14 days gestation; by 18 days gestation, about 30% of them were methylated, and this level persisted into adulthood. In 18-day DNA, the methylation was uniform, but in adult DNA, the methylation pattern was discontinuous, because otherwise methylated genes contained a demethylated region. Similar developmental changes were observed in brain DNA. In a tissue culture cell line, the change from the continuous to the discontinuous pattern of the methylation could be induced by transformation with Kirsten sarcoma virus. And, in adult tissues, the lowest level of rRNA gene methylation was found in rapidly growing jejunal epithelium, and the highest level, in non-growing spermatozoa.  相似文献   

13.
14.
15.
16.
Gene expression divergence between closely related species could be attributed to both cis- and trans- DNA sequence changes during evolution, but it is unclear how the evolutionary dynamics of epigenetic marks are regulated. In eutherian mammals, biparental DNA methylation marks are erased and reset during gametogenesis, resulting in paternal or maternal imprints, which lead to genomic imprinting. Whether DNA methylation reprogramming exists in insects is not known. Wasps of the genus Nasonia are non-social parasitoids that are emerging as a model for studies of epigenetic processes in insects. In this study, we quantified allele-specific expression and methylation genome-wide in Nasonia vitripennis and Nasonia giraulti and their reciprocal F1 hybrids. No parent-of-origin effect in allelic expression was found for >8,000 covered genes, suggesting a lack of genomic imprinting in adult Nasonia. As we expected, both significant cis- and trans- effects are responsible for the expression divergence between N. vitripennis and N. giraulti. Surprisingly, all 178 differentially methylated genes are also differentially methylated between the two alleles in F1 hybrid offspring, recapitulating the parental methylation status with nearly 100% fidelity, indicating the presence of strong cis-elements driving the target of gene body methylation. In addition, we discovered that total and allele-specific expression are positively correlated with allele-specific methylation in a subset of the differentially methylated genes. The 100% cis-regulation in F1 hybrids suggests the methylation machinery is conserved and DNA methylation is targeted by cis features in Nasonia. The lack of genomic imprinting and parent-of-origin differentially methylated regions in Nasonia, together with the stable inheritance of methylation status between generations, suggests either a cis-regulatory motif for methylation at the DNA level or highly stable inheritance of an epigenetic signal in Nasonia.  相似文献   

17.
18.
MicroRNAs play an important role in the regulation of expression of many genes and are involved in carcinogenesis. The regulation of miRNA gene expression can involve the methylation of promoter CpG islands. In this work, the methylation of six miRNA genes (mir-107, mir-125b-1, mir-130b, mir-137, mir-375, and mir-1258) in non-small-cell lung cancer (NSCLC) was studied for the first time by methylation-specific PCR using a representative set of specimens (39 cases). Four new genes (mir-125b-1, mir-137, mir-375, and mir-1258) methylated in primary NSCLC tumors were identified with frequencies of 56, 31, 56, and 36%, respectively. The frequencies of miRNA promoter methylation in DNA of tumors and histologically normal tissues differed significantly (P ≤ 0.05 by Fisher’s test). In lung tissues of 20 donors without a history of cancer, these genes were only methylated in a few cases. It was also shown that the previously unstudied promoter CpG islands of mir-107 and mir-130b were not methylated in NSCLC. The frequencies of mir-125b-1 and mir-137 methylation were shown for the first time to correlate with NSCLC progression (clinical stage and metastasis).  相似文献   

19.
20.
Patterns of DNA methylation in animal genomes are known to vary from an apparent absence of modified bases, via methylation of a minor fraction of the genome, to genome-wide methylation. Representative genomes from 10 invertebrate phyla comprise predominantly nonmethylated DNA and (usually but not always) a minor fraction of methylated DNA. In contrast, all 27 vertebrate genomes that have been examined display genome-wide methylation. Our studies of chordate genomes suggest that the transition from fractional to global methylation occurred close to the origin of vertebrates, as amphioxus has a typically invertebrate methylation pattern whereas primitive vertebrates (hagfish and lamprey) have patterns that are typical of vertebrates. Surprisingly, methylation of genes preceded this transition, as many invertebrate genes have turned out to be heavily methylated. Methylation does not preferentially affect genes whose expression is highly regulated, as several housekeeping genes are found in the heavily methylated fraction whereas several genes expressed in a tissue-specific manner are in the nonmethylated fraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号