首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract. Differentiation of Dictyostelium discoideum cells in submerged monolayers was studied and compared with in vivo development. The accumulation patterns of three developmentally regulated enzymes in cells of strain V12M2 differentiating in vivo on Millipore Filters or in vitro in monolayers at high cell-densities were found to be similar. Moreover, stalk cell formation occurred at approximately the same time in high or low cell density monolayers as it did during normal differentiation. These observations suggest that the timing of differentiation in vitro and in vivo is similar.
In vitro stalk cell formation requires exogenous cyclic AMP, and in its absence, the accumulation patterns of the three developmentally regulated enzymes are alterd. At low cell densities, in vitro stalk cell induction also requires a differentiation-inducing factor (DIF). The addition or removal of cyclic AMP or DIF during development under these conditions revealed the sequence of these two requirements. Cyclic AMP is not required for stalk cell induction for the first 8 hours of incubation, but thereafter, a gradually increasing proportion of cells are induced by cyclic AMP. After a brief delay there is a period of induction by DIF, and this period corresponds approximately to the period of DIF accumulation during in vivo development. The two induction events are clearly separate, in that each inducer can act in the absence of the other, as long as cyclic AMP induction precedes DIF induction. Cyclic AMP is only required at a concentration of 40 μM when added 8 hours after the beginning of the differentiation period.  相似文献   

2.
In Dictyostelium discoideum stalk cell formation is induced by cyclic AMP and differentiation-inducing factor (DIF) when cells are plated in in vitro monolayers (Kay et al., 1979, Differentiation 13: 7-14). The in vivo developmental stages at which cells became independent of these factors were determined. Independence was defined as the stage at which dispersed cells no longer required the factors for stalk cell formation in low density monolayers. Cyclic AMP independent cells were first detected at around 12 hr of development, a time that corresponds to the transition between the tipped aggregate and the first finger stages. In contrast cells did not become independent of DIF until late culmination. The prestalk cell-specific isozyme acid phosphatase II and a stalk cell-specific 41,000 Mr antigen (ST 41) were expressed during differentiation in low density monolayers in the presence of both cyclic AMP and DIF, but neither component was expressed in the presence of cyclic AMP alone. This result implies that DIF is essential for both prestalk and stalk cell formation. The two components were expressed within 2 hr of each other during differentiation in vitro, whereas during development in vivo acid phosphatase II was first detected at the first finger stage and ST 41 was first detected during late culmination, 8-12 hr later. These contrasting results suggest that the conversion of prestalk cells to stalk cells is unrestrained in monolayers, following directly after prestalk cell induction, but restrained in vivo until the culmination stage. This interpretation is consistent with the finding that cells become independent of DIF early during in vitro differentiation (A. Sobolewski, N. Neave, and G. Weeks, 1983, Differentiation 25, 93-100), but do not become independent of DIF until the culmination stage when differentiating in vivo.  相似文献   

3.
Previous work has shown that cells developing at high density release a low-molecular-weight factor that can induce isolated Dictyostelium discoideum amoebae of strain V12M2 to differentiate into stalk cells in the presence of cyclic AMP. We now show that this differentiation-inducing factor, called DIF, can be extracted from cells during normal development and that its production is strongly developmentally regulated. DIF is not detectable in vegetative cells but rises dramatically after aggregation to reach a peak during slug migration. DIF levels are very low in two mutants defective in aggregation. The postaggregative synthesis of DIF is stimulated by the addition of extracellular cyclic AMP. We propose that DIF is a morphogen controlling prestalk cell differentiation.  相似文献   

4.
The stalk cell differentiation inducing factor (DIF) has the properties required of a morphogen responsible for pattern regulation during the pseudoplasmodial stage of Dictyostelium development. It induces prestalk cell formation and inhibits prespore cell formation, but there is as yet no strong evidence for a morphogenetic gradient of DIF. We have measured DIF accumulation by monolayers of isolated prestalk and prespore cells in an attempt to provide evidence for such a gradient. DIF is accumulated in the largest quantities by a subpopulation of prestalk cells that specifically express the DIF-inducible genes pDd56 and pDd26. Since it has been shown recently that cells that express pDd56 are localized in the central core of the prestalk cell region of the pseudoplasmodia, our current results suggest a morphogenetic gradient generated by this region.  相似文献   

5.
Stalk cell formation in low-cell-density monolayers of Dictyostelium discoideum, strain V12-M2, occurs following the sequential addition of cyclic AMP and the differentiation-inducing factor (DIF). Both cyclic AMP and DIF are essential for the appearance of the prestalk-specific isozyme alkaline phosphatase-II, which suggests that both factors are necessary for prestalk cell formation. The available evidence suggests that the cyclic AMP requirement for stalk cell formation is mediated through the cell surface cyclic AMP receptor. However, stalk cell formation is inhibited by caffeine and this inhibition is reversed by the cell-permeable analogue 8-Br-cyclic AMP, which suggests in addition a possible involvement for elevated intracellular cyclic AMP concentrations in stalk cell formation. During in vivo development cells first become independent of cyclic AMP at the tipped aggregate stage, but the acquisition of cyclic AMP independence is advanced by several hours when cells are incubated in the presence of cyclic AMP for 2 hours. Cells do not become independent of DIF until the culmination stage of development, which suggests the possibility that DIF is required for the conversion of prestalk cells to stalk cells. There is an absolute requirement for DIF for stalk cell formation in low-density monolayers of prestalk cells but only part of population exhibits a requirement for cyclic AMP, which suggests that the prestalk cell population consists of two distinct cell types. Stalk cell formation from prespore cells is totally dependent on both cyclic AMP and DIF.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Cells from the pseudoplasmodial stage of Dictyostelium discoideum differentiation were dispersed and separated on Percoll gradients into prestalk and prespore cells. The requirements for stalk cell formation in low-density monolayers from the two cell types were determined. The isolated prespore cells required both the Differentiation Inducing Factor (DIF) and cyclic AMP for stalk cell formation. In contrast, only part of the isolated prestalk cell population required both cyclic AMP and DIF, the remainder requiring DIF alone, suggesting the possibility that there were two populations of prestalk cells, one independent of cyclic AMP and one dependent on cyclic AMP for stalk cell formation. The finding that part of the prestalk cell population required only a brief incubation in the presence of DIF to induce stalk cell formation, whilst the remainder required a considerably longer incubation in the presence of both DIF and cyclic AMP was consistent with this idea. In addition, stalk cell formation from cyclic-AMP-dependent prestalk cells was relatively more sensitive to caffeine inhibition than stalk cell formation from cyclic-AMP-independent prestalk cells. The latter cells were enriched in the most anterior portion of the migrating pseudoplasmodium, indicating that there is spatial segregation of the two prestalk cell populations. The conversion of prespore cells to stalk cells took longer and was more sensitive to caffeine when compared to stalk cell formation from cyclic-AMP-dependent prestalk cells.  相似文献   

7.
8.
9.
We have isolated cDNA clones derived from three mRNA sequences which are inducible by DIF, the putative stalk-specific morphogen of Dictyostelium. The three mRNA sequences are selectively expressed in cells on the stalk cell pathway of differentiation and we have compared them with previously characterized prestalk-enriched mRNA sequences. We find these latter sequences are expressed without a dependence on DIF, are much less highly enriched in prestalk over prespore cells and are expressed earlier during development than the DIF-inducible mRNA sequences. We propose two distinct mechanisms whereby a mRNA may become enriched in prestalk cells. An apparently small number of genes, represented by those we have isolated, is inducible by DIF and accumulates only in prestalk cells. We suggest that a second class of prestalk-enriched mRNA sequences are induced by cAMP to accumulate in all cells during aggregation and then become enriched in prestalk cells by selective loss from prespore cells.  相似文献   

10.
Previous work has shown that multicellular morphogenesis of submerged Dictyostelium cells is inhibited when they bind to glucosides covalently linked to polyacrylamide gels. The amoebae aggregate normally, but then the aggregates repeatedly disperse and reaggregate, whereas control cells go on to form tight aggregates. We have investigated the role of the stalk cell differentiation inducing factors (DIFs) in this process. In the presence of cyclic AMP, amoebae submerged at high cell density accumulate DIF and differentiate into stalk cells. We find that stalk cell differentiation is inhibited by interaction of the cells with glucoside gels in these conditions, but can be restored by the addition of exogenous DIF-1. Since the responsiveness of cells to DIF-1 is not altered, it appears likely that the effect of the glucoside gel is to block DIF-1 production. Further, the addition of DIF-1 or DIF-2 stimulates the formation of tight aggregates by cells developing on glucoside gels in the absence of cyclic AMP, thus preventing the rounds of aggregation and disaggregation otherwise seen. This suggests a role for DIF in morphogenesis as well as in controlling cell differentiation. We propose a model in which immobilized glucosides activate a specific receptor ("food sensor") which drives the amoebae toward the vegetative state and inhibits DIF accumulation. DIF, on the other hand, induces tight aggregate formation and so locks the amoebae into the developmental program.  相似文献   

11.
Dictyopyrones A and B (DpnA and B), whose function(s) is not known, were isolated from fruiting bodies of Dictyostelium discoideum. In the present study, to assess their function(s), we examined the effects of Dpns on in vitro cell differentiation in D. discoideum monolayer cultures with cAMP. Dpns at 1-20 microM promoted stalk cell formation to some extent in the wild-type strain V12M2. Although Dpns by themselves could hardly induce stalk cell formation in a differentiation-inducing factor (DIF)-deficient strain HM44, both of them dose-dependently promoted DIF-1-dependent stalk cell formation in the strain. In the sporogenous strain HM18, Dpns at 1-20 microM suppressed spore formation and promoted stalk cell formation in a dose-dependent manner. Analogs of Dpns were less effective in affecting cell differentiation in both HM44 and HM18 cells, indicating that the activity of Dpns should be chemical structure specific. It was also shown that DpnA at 2-20 microM dose-dependently suppressed spore formation induced with 8-bromo cAMP and promoted stalk cell formation in V12M2 cells. Interestingly, it was shown by the use of RT-PCR that DpnA at 10 microM slightly promoted both prespore- and prestalk-specific gene expressions in an early phase of V12M2 and HM18 in vitro differentiation. The present results suggest that Dpns may have functions (1) to promote both prespore and prestalk cell differentiation in an early stage of development and (2) to suppress spore formation and promote stalk cell formation in a later stage of development in D. discoideum.  相似文献   

12.
Prestalk cell differentiation in Dictyostelium is induced by DIF and two DIF-induced genes, ecmA and ecmB, have revealed the existence of multiple prestalk and stalk cell sub-types. These different sub-types are defined by the pattern of expression of subfragments derived from the ecmA and ecmB promoters. These markers have been utilised in three ways; for fate mapping in vivo, to investigate the molecular mechanisms underlying DIF signalling and to explore the relative requirement for DIF and other signalling molecules for prestalk and stalk cell differentiation in vitro. The heterogeneity of the prestalk and stalk populations seems to be reflected in differences in the cell signalling pathways that they utilise.  相似文献   

13.
We describe rblA, the Dictyostelium ortholog of the retinoblastoma susceptibility gene Rb. In the growth phase, rblA expression is correlated with several factors that lead to 'preference' for the spore pathway. During multicellular development, expression increases 200-fold in differentiating spores. rblA-null strains differentiate stalk cells and spores normally, but in chimeras with wild type, the mutant shows a strong preference for the stalk pathway. rblA-null cells are hypersensitive to the stalk morphogen DIF, suggesting that rblA normally suppresses the DIF response in cells destined for the spore pathway. rblA overexpression during growth leads to G1 arrest, but as growing Dictyostelium are overwhelmingly in G2 phase, rblA does not seem to be important in the normal cell cycle. rblA-null cells show reduced cell size and a premature growth-development transition; the latter appears anomalous but may reflect selection pressures acting on social ameba.  相似文献   

14.
15.
A number of factors that have been shown to influence cell type determination in Dictyostelium discoideum were assessed for their effects on the accumulation of the stalk cell differentiation-inducing factor (DIF) in high-cell-density monolayers of strain V12-M2. DIF accumulation is markedly enhanced by low pH, butyrate, and the proton pump inhibitor diethylstilbestrol (DES), conditions that induce stalk cell formation in low-cell-density monolayers in the absence of added DIF. These results are discussed in relation to a model for cell type determination recently proposed by (J.D. Gross, M.J. Peacey, and R. Pogge Von Strandmann (1988, Differentiation, 38: 91-98). DIF accumulates in high-cell-density monolayers after the cells have become independent of cyclic AMP for stalk cell formation. This accumulation is greatly enhanced by the addition of cyclic AMP. This result may explain why cyclic AMP stimulates stalk cell formation in low-density monolayers in the presence of suboptimal levels of DIF, following preincubation in the presence of saturating levels of cyclic AMP (L. Kwong, A. Sobolewski, and G. Weeks, 1988, Differentiation 37, 1-6). Adenosine has no effect on DIF accumulation in high-cell-density monolayers.  相似文献   

16.
We placed a specific inhibitor of cyclic AMP-dependent protein kinase (PKA) under the control of a prestalk-specific promoter. Cells containing this construct form normally patterned slugs, but under environmental conditions that normally trigger immediate culmination, the slugs undergo prolonged migration. Slugs that eventually enter culmination do so normally but arrest as elongated, hairlike structures that contain neither stalk nor spore cells. Mutant cells do not migrate to the stalk entrance when codeveloped with wild-type cells and show greatly reduced inducibility by DIF, the stalk cell morphogen. These results suggest that the activity of PKA is necessary for the altered pattern of movement of prestalk cells at culmination and their differentiation into stalk cells. We propose a model whereby a protein repressor, under the control of PKA, inhibits precocious induction of stalk cell differentiation by DIF and so regulates the choice between slug migration and culmination.  相似文献   

17.
Nature and distribution of the morphogen DIF in the Dictyostelium slug   总被引:11,自引:0,他引:11  
The Dictyostelium slug contains a simple anterior-posterior pattern of prestalk and prespore cells. It is likely that DIF, the morphogen which induces stalk cells, is involved in establishing this pattern. Previous work has shown that a number of distinct species of DIF are released by developing cells and that cell-associated DIF activity increases rapidly during the slug stage of development. In this paper we describe a comparison of the DIF extracted from slugs with the DIF released into the medium. Analysis by high-pressure liquid chromatography (HPLC) using different solvent systems shows that the major species of DIF activity extracted from slugs coelutes with DIF-1, the major species of released DIF and is similarly sensitive to sodium borohydride reduction. Since DIF specifically induces the differentiation of prestalk cells, the anterior cells of the slug, it could be anticipated that DIF is localized in the prestalk region. We have therefore determined the distribution of DIF within the slug. Migrating slugs from strain V12M2 were manually dissected into anterior one-third and posterior two-third fragments and the DIF activity extracted. Surprisingly, we found that DIF was not restricted to the prestalk fragment. Instead there appears to be a reverse gradient of DIF in the slug with at least twice the specific activity of total DIF in the prespore region than in the prestalk region.  相似文献   

18.
Selective induction of stalk-cell-specific proteins in Dictyostelium   总被引:6,自引:0,他引:6  
We compared the proteins synthesized and accumulated by Dictyostelium discoideum amoebae in response to the morphogenetic factor termed differentiation-inducing factor (DIF) to assess the proposed ability of DIF to regulate the choice of differentiation pathway. When amoebae of a mutant strain with low endogenous DIF levels were given DIF, they dramatically increased the expression of 21 of 23 proteins preferentially found in stalk cells, but drastically repressed 4 major spore-specific proteins. Most of the induced proteins were also expressed in amoebae of a developmentally competent strain developing at low cell densities and exposed to DIF, low extracellular pH, or the proton pump inhibitor diethylstilbestrol; this suggests that an intracellular acidification may be a key part of the mechanism of DIF action. We conclude from the similar morphology and extensive homology of proteins of DIF-induced and stalk cells that most stalk-pathway functions are DIF dependent.  相似文献   

19.
We have previously identified a stalk-specific wheat germ agglutinin (WGA)-binding protein, wst34, in the cellular slime mould Dictyostelium discoideum [Biochem. Cell Biol. 68 (1990) 699]. Here, we found another stalk-specific WGA-binding protein, wst25, which was detected with two antisera that recognize wst34. Using the two marker proteins, we then analyzed and compared the pathways of prestalk-to-stalk maturation and prespore-to-stalk conversion in vitro and in vivo. Prestalk cells isolated from normally formed slugs can be converted to stalk cells (designated StI) in vitro with 8-bromo-cAMP (Br-cAMP), whereas prespore cells isolated from slugs can be converted to fully vacuolated stalk cells (designated StII) in vitro with Br-cAMP and DIF-1. During the process of prespore-to-stalk conversion, prespore-specific mRNAs, D19 and 2H3, disappeared rapidly, while prestalk-specific mRNAs, ecmA and ecmB, appeared at 2h of incubation and increased thereafter. Most importantly, however, the StII cells thus formed were biochemically different from the StI cells originated from prestalk cells; that is, StI cells expressed wst34 but not wst25, while StII cells expressed wst25 but not wst34. When prespore cells isolated from slugs were allowed to develop on a substratum, they differentiated into spores and stalk cells and formed fruiting bodies, and the stalk cells formed from prespore cells in vivo expressed wst25 but not wst34. The present results indicate that there are two types of stalk cells, StI (prestalk-origin) and StII (prespore-origin), and that wst34 and wst25 are the specific markers for StI and StII, respectively.  相似文献   

20.
Abstract. The onset of prestalk differentiation of Dictyostelium discoideum has been thought to be triggered by differentiation inducing factor (DIF), which is secreted by differentiating cells. We characterized the cell-type specific proteins, wst31 (prestalk and stalk specific) and wst34 (stalk specific), using the mutant HM44 which is defective in DIF-production, and examined the effects of DIF and cAMP on the formation of the proteins. In the mutant HM44, wst34 was formed only in the presence of exogenous DIF as reported for other prestalk/stalk markers (e.g. pDd63 and acid phosphatase-2), which indicates the DIF-requirement for this protein. By contrast, the accumulation of wst31 in this mutant occurred in the presence of cAMP regardless of the presence of exogenous DIF. Thus, we propose a new and distinct state (or stage) in prestalk differentiation, where the expression of wst31 occurs but not that of pDd63 or acid phosphatase-2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号