首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Newly synthesized DNA-binding proteins were isolated from the nuclei and, separately from, the cytoplasm of sea urchin mofula stage embryos. The presence of 5-bromodeoxyuridine during embryogenesis did not appear to alter the synthesis of either class of DNA-binding proteins. This result tends to argue that cell differentiation in early embryos is not regulated by differential synthesis of DNA-binding proteins. Sea urchin mofulae synthesize a broad range, by molecular weight, or cytoplasmic DNA-binding proteins which dissociate from sea urchin DNA-cellulose at relatively high salt concentrations (0.6-2.0 M NaCl). The most prominant of these apparently high-binding-affinity proteins has an approximate molecular weight of 33,000.  相似文献   

2.
The mRNA's cap-binding protein eukaryotic translation initiation factor (eIF)4E is a major target for the regulation of translation initiation. eIF4E activity is controlled by a family of translation inhibitors, the eIF4E-binding proteins (4E-BPs). We have previously shown that a rapid dissociation of 4E-BP from eIF4E is related with the dramatic rise in protein synthesis that occurs following sea urchin fertilization. Here, we demonstrate that 4E-BP is destroyed shortly following fertilization and that 4E-BP degradation is sensitive to rapamycin, suggesting that proteolysis could be a novel means of regulating 4E-BP function. We also show that eIF4E/4E-BP dissociation following fertilization is sensitive to rapamycin. Furthermore, while rapamycin modestly affects global translation rates, the drug strongly inhibits cyclin B de novo synthesis and, consequently, precludes the completion of the first mitotic cleavage. These results demonstrate that, following sea urchin fertilization, cyclin B translation, and thus the onset of mitosis, are regulated by a rapamycin-sensitive pathway. These processes are effected at least in part through eIF4E/4E-BP complex dissociation and 4E-BP degradation.  相似文献   

3.
A rapid, gentle technique is described for the isolation of nuclei from sea urchin embryos. Using this technique, we have analyzed the synthesis and accumulation of nonhistone nuclear proteins during sea urchin development by two-dimensional gel electrophoresis. Most nuclear proteins fall into one of three patterns of synthesis, which are distinguished by maximal rates of accumulation at early (prior to hatching blastula), middle (hatching blastula/gastrula), or late (prism/pluteus) stages of development. Over 60% of observed nuclear proteins undergo apparent qualitative changes in synthesis and accumulation between the 64-cell and pluteus stages. Most of these changes represent appearances of new proteins. A large number of qualitative changes occur very early in development; the period of greatest change is between the 64-cell and 200-cell stages. Over half of the proteins which first appear in the nucleus subsequent to the 64-cell stage are synthesized at stages prior to the time of their initial appearance in nuclei, but are excluded from nuclei for some time.  相似文献   

4.
Inhibitors of microtubule polymerization have been found in extracts of unfertilized sea urchin eggs using neural tubulin polymerization assays without glycerol. The inhibitory activity is partially destroyed by boiling or by reduction and carboxymethylation and is nondialyzable. When chromatographed on DEAE-cellulose, the inhibitory activity is eluted over a broad NaCl gradient and is in association with several peaks. This partially purified inhibitor is not destroyed by incubation with RNase A. When the partially purified inhibitor is incubated with brain microtubule protein under conditions which support microtubule polymerization, both high molecular weight-microtubule associated proteins and tubulin appear to be digested when analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Proteolytic digestion as well as inhibition of microtubule polymerization depend upon similar concentrations of partially purified inhibitor present in the polymerization reaction. It appears as though at least part of the microtubule polymerization inhibitory activity present in unfertilized sea urchin eggs is due to this protease.  相似文献   

5.
Cold environments represent a substantial volume of the biosphere. To study developmental physiology in subzero seawater temperatures typically found in the Southern Ocean, rates and costs of protein synthesis were measured in embryos and larvae of Sterechinus neumayeri, the Antarctic sea urchin. Our analysis of the "cost of living" in extreme cold for this species shows (1) that cost of protein synthesis is strikingly low during development, at 0.41 +/- 0.05 J (mg protein synthesized)(-1) (n = 16); (2) that synthesis cost is fixed and independent of synthesis rate; and (3) that a low synthesis cost permits high rates of protein turnover at -1 degrees C, at rates comparable to those of temperate species of sea urchin embryos developing at 15 degrees C. With a low synthesis cost, even at the highest synthesis rates measured (gastrulae), the proportion of total metabolism accounted for by protein synthesis in the Antarctic sea urchin was 54%-a value similar to that of temperate sea urchin embryos. In the Antarctic sea urchin, up to 87% of metabolic rate can be accounted for by the combined energy costs of protein synthesis and the sodium pump. We conclude that, in Antarctic sea urchin embryos, high rates of protein synthesis can be supported in extreme-cold environments while still maintaining low rates of respiration.  相似文献   

6.
Reports of the reduced ability of sea urchin egg ribosomes to participate in synthetic mRNA-directed protein synthesis have fostered the suggestion that the low protein synthesis rate of eggs is due to ribosome-associated inhibitors. To test this hypothesis with a natural message, we have isolated 80S ribosomes and microsomal ribosomes of sea urchin eggs and zygotes and compared their activity at synthesizing protein from rabbit α and β globin mRNA in a Krebs II ascites tumor cell-free system. Both egg and zygote 80S ribosomes responded to added mRNA and were shown to synthesize complete α and β globin chains by CM-cellulose chromatography. In most cases, the activity of the egg ribosomes was in comparable instances higher than the zygote ribosomes. Attempts to determine the cause of this difference indicated that it was not a function of K+ or Mg2+ concentration, type of tRNA used, or ribosomal wash proteins. From these studies it is apparent that sea urchin egg ribosomes are functional at a level equivalent to or better than zygote ribosomes, and it appears that the lack of protein synthetic activity in unfertilized eggs is not due to the presence of a population of inhibited ribosomes.  相似文献   

7.
Expression of the arylsulfatase (Ars) gene in sea urchin embryos begins just before hatching and ceases at the pluteus stage. Initiation of the Ars gene expression is inhibited by aphidicolin, which inhibits DNA synthesis without arresting the total RNA synthesis. Based on these finding it is supposed that DNA replication is a prerequisite for initiation of the Ars gene expression in developing sea urchin embryos.  相似文献   

8.
One major milestone in the development of the sea urchin embryo is the assembly of a single cilium on each blastomere just before hatching. These cilia are constructed both from pre-existing protein building blocks, such as tubulin and dynein, and from a number of 9+2 architectural elements that are synthesized de novo at ciliogenesis. The finite or quantal synthesis of certain key architectural proteins is coincident with ciliary elongation and proportional to ciliary length. Upon deciliation, the synthesis of architectural proteins occurs anew, a new cilium grows, and the stores of various building blocks are replenished. This routine of coordinated ciliary gene expression may be replayed experimentally many times without delaying normal development. The ability to regenerate cilia has allowed elucidation of these various protein synthetic relationships and has led to the discovery of the pathways by which membrane-associated tubulin and axoneme-associated architectural proteins are conveyed into the highly compartmentalized growing cilium. The sea urchin embryo thus provides a very convenient model system for studies of ciliary assembly and maintenance, coordinate gene expression and membrane dynamics.  相似文献   

9.
Chromatin-associated non-histone proteins of the sea urchin embryo are heterogeneous, and undergo qualitative as well as quantitative changes throughout early development. The rate of synthesis of these proteins is fairly constant to the pluteus stage and, in contrast to histone synthesis, does not parallel changes in the rates of synthesis of DNA. Evidence for a pool of chromatin-associated nonhistone proteins is provided by following the kinetics of entry into chromatin of labeled protein in pulse-chase experiments of prolonged duration. This pool is synthesized during cleavage and some non-histone proteins continue to associate with chromatin until gastrulation. In addition, different rates of entry of non-histone proteins into chromatin could be detected at different stages.  相似文献   

10.
Fertilization of sea urchin eggs results in a large stimulation of protein synthesis. This increase in protein synthesis is mediated by the mobilization of stored maternal mRNA (mRNPs) into polysomes, but the details of the molecular mechanisms which regulate this process are not well understood. Using a sea urchin egg cell-free translation system, evidence has been obtained which indicates that the capacity to initiate protein synthesis on new mRNAs is limited. Addition of exogenous mRNAs failed to stimulate overall protein synthesis, whereas supplementing the system with a nuclease-treated reticulocyte lysate, an S-100 supernatant fraction, or purified eIF-2 stimulated nearly twofold. In addition, the levels of 43 S preinitiation complexes containing a 40 S ribosomal subunit and methionyl-tRNA were increased at pH 7.4 compared to pH 6.9, or when reticulocyte S-100 was added. However, other experiments showed clearly that mRNA availability may also regulate translation in the sea urchin egg. Sea urchin lysates only stimulated poorly the nuclease-treated reticulocyte lysate system, and the mRNPs in the sea urchin lysate did not bind to reticulocyte 43 S preinitiation complexes. Since purified sea urchin egg mRNA was active in both assays, the bulk of sea urchin mRNA must be masked in the egg, and remain masked in the in vitro assays. Thus, protein synthesis appears to be regulated at both the level of mRNA availability and the activity of components of the translational machinery.  相似文献   

11.
The protein synthesis inhibitor emetine was used to establish the times of synthesis of mitotic proteins, whose presence in the cell are essential in the mitotic processes of chromosome condensation, nuclear membrane breakdown, and possibly, chromosome alignment at metaphase. In embryos of the purple sea urchin, Strongylocentrotus purpuratus, protein synthesis required for chromosome condensation and nuclear membrane breakdown occurs between 20 and 35 min after fertilization. In Lytechinus variegatus embryos the time of synthesis of the mitotic proteins is more variable, occurring between 4 and 15 min after fertilization. Furthermore, in both species the mitosis of each cell cycle requires new synthesis of these proteins with the synthesis occurring at the beginning of each cycle. This observation indicates that the mitotic proteins, which are active at prophase and metaphase, lose their activity at late ana- and telophase.  相似文献   

12.
Isolated nuclei from sea urchin embryos synthesize RNA at a rate comparable to other animal cell nuclei. All three RNA polymerases are active as judged by alpha-amanitin sensitivity and hybridization to specific cloned DNAs. Extracts were prepared from sea urchin eggs and embryos by extraction with 0.35 M KCl. None of the crude extracts had a large effect on total RNA synthesis. However, extracts from sea urchin eggs inhibited RNA polymerase III activity in nuclei from blastula and gastrula embryos. There was no effect on the synthesis of ribosomal RNA by RNA polymerase I or on the synthesis of two RNA polymerase II products, histone mRNA and the sea urchin analogue of U1 RNA. The inhibitor is present in two different species of sea urchin and has been 50-fold purified by diethylaminoethylcellulose and hydroxylapatite chromatography. The inhibitor is not present in extracts prepared from sea urchin blastula embryos.  相似文献   

13.
Effect of reduced protein synthesis on the cell cycle in sea urchin embryos   总被引:2,自引:0,他引:2  
We have reinvestigated the existence of cyclical fluctuations of protein synthesis and have examined the effects of reducing it in early embryos of the purple sea urchin, Strongylocentrotus purpuratus. The results show that protein synthesis increases linearly during the first 45-60 minutes after fertilization, then transiently decreases during mitosis, and rises again at first cleavage. Reducing protein synthesis of embryos to 35% its normal value only slightly affects the rate of progression through the cell cycle. It is also shown that the observed retardations of the cell cycle, under depressed protein synthesis, are attributable (by 80%) to a lengthening of the premitotic phase but also, to a lesser extent (20%), to a lengthening of the mitotic phase itself. These results suggest that mitotic proteins, in sea urchin embryos, are stable and little affected by an imposed decrease of protein synthesis during their accumulation phase. This analysis supports the view that specific mechanisms, other than decreased protein synthesis, need be turned on only at appropriate times during the cell cycle in order to explain the destruction or deactivation of mitotic proteins. Finally, a one-dimensional SDS-PAGE analysis of synthesized proteins, labeled with 35S-methionine, reveals the presence of a 50-kDa cyclin showing the expected characteristics of mitotic proteins deduced from our results.  相似文献   

14.
Results obtained in various species, from mammals to invertebrates, show that arrest in the cell cycle of mature oocytes is due to a high ERK activity. Apoptosis is stimulated in these oocytes if fertilization does not occur. Our previous data suggest that apoptosis of unfertilized sea urchin eggs is the consequence of an aberrant short attempt of development that occurs if ERK is inactivated. They contradict those obtained in starfish, another echinoderm, where inactivation of ERK delays apoptosis of aging mature oocytes that are nevertheless arrested at G1 of the cell cycle as in the sea urchin. This suggests that the cell death pathway that can be activated in unfertilized eggs is not the same in sea urchin and in starfish. In the present study, we find that protein synthesis is necessary for the survival of unfertilized sea urchin eggs, contrary to starfish. We also compare the effects induced by Emetine, an inhibitor of protein synthesis, with those triggered by Staurosporine, a non specific inhibitor of protein kinase that is widely used to induce apoptosis in many types of cells. Our results indicate that the unfertilized sea urchin egg contain different mechanisms capable of leading to apoptosis and that rely or not on changes in ERK activity, acidity of intracellular organelles or intracellular Ca and pH. We discuss the validity of some methods to investigate cell death such as measurements of caspase activation with the fluorescent caspase indicator FITC-VAD-fmk or acidification of intracellular organelles, methods that may lead to erroneous conclusions at least in the sea urchin model.  相似文献   

15.
Biogenesis of the mitochondrial ATPase from sea urchin embryos   总被引:1,自引:0,他引:1  
The mitochondrial rutamycin-sensitive ATPase from sea urchin eggs was purified to homogeneity. The subunit structure of the enzyme was characterized by SDS-gel electrophoresis. Eight polypeptides were identified with molecular weights of 55,000, 52,000, 39,000, 31,000, 28,000, 23,000, 17,000 and 10,000. Developing sea urchin embryos were incubated with [2H]leucine in the presence of emetine preferentially to label mitochondrially made proteins. Under these conditions sea urchin mitochondria synthesize eight different polypeptides. Two of these proteins, with molecular weights of 31,000 and 23,000, co-purify with the ATPase. Antibody directed against the pure rutamycin-sensitive ATPase precipitated only these two proteins. Therefore, two of the eight sea urchin ATPase subunits appear to be made by mitochondria.  相似文献   

16.
The reproduction, or duplication, of the centrosome is an important event in a cell's preparation for mitosis. We sought to determine if centrosome reproduction is regulated by the synthesis and accumulation of cyclin proteins and/or the synthesis of centrosome-specific proteins at each cell cycle. We continuously treat sea urchin eggs, starting before fertilization, with a combination of emetine and anisomycin, drugs that have separate targets in the protein synthetic pathway. These drugs inhibit the postfertilization incorporation of [35S]methionine into precipitable material by 97.3-100%. Autoradiography of SDS-PAGE gels of drug-treated zygotes reveals that [35S]methionine incorporates exclusively into material that does not enter the gel and material that runs at the dye front; no other labeled bands are detected. Fertilization events and syngamy are normal in drug-treated zygotes, but the cell cycle arrests before first mitosis. The sperm aster doubles once in all zygotes to yield two asters. In a variable but significant percentage of zygotes, the asters continue to double. This continued doubling is slower than normal, asynchronous between zygotes, and sometimes asynchronous within individual zygotes. High voltage electron microscopy of serial semithick sections from drug-treated zygotes reveals that 90% of the daughter centrosomes contain two centrioles of normal appearance. From these results, we conclude that centrosome reproduction in sea urchin zygotes is not controlled by the accumulation of cyclin proteins or the synthesis of centrosome-specific proteins at each cell cycle. New centrosomes are assembled from preexisting pools of ready-to-use subunits. Furthermore, our results indicate that centrosomal and nuclear events are regulated by separate pathways.  相似文献   

17.
A method for large-scale culture of isolated blastomeres of sea urchin embryos in spinner flasks was developed. Micromeres and meso-, macromeres isolated from sea urchin embryos at the 16-cell stage were cultured by this method and the patterns of protein synthesis by their descendants were examined by two-dimensional gel electrophoresis of [35S] methionine-labeled proteins. Six distinct proteins with molecular weights of 140–kDa, 105–kDa, 43–kDa, 32–kDa, and 28–kDa (two components) were specifically synthesized by differentiating micromeres. Quantitative analysis of the two-dimensional gel patterns demonstrated that all these proteins, except the 32–kDa protein, appeared at the time of ingression of primary mesenchyme cells (PMC's) in vivo , several hours earlier than the onset of spicule formation. The synthesis of 32–kDa protein was paralleled to active spicule formation and the uptake of Ca2+. Cell-free translation products directed by poly (A)+ RNAs isolated from descendant cells of micromeres and meso-, macromeres were compared by two-dimensional gel electrophoresis. Several spots specific to the micromere lineage were detected. However, none of them comigrated with the proteins synthesized specifically by the cultured micromeres. The results suggest that the expression of these proteins specific to differentiating micromeres may involve post-translational modification.  相似文献   

18.
A maternal store of histones in unfertilized sea urchin eggs is demonstrated by two independent criteria. Stored histones are identified by their ability to assemble into chromatin of male pronuclei of fertilized sea urchin eggs in the absence of protein synthesis, suggesting a minimum of at least 25 haploid equivalents for each histone present and functional in the unfertilized egg. In addition, electrophoretic analysis of proteins from acid extracts of unfertilized whole eggs and enucleated merogons reveals protein spots comigrating with cleavage stage histone standards, though not with other histone variants found in later sea urchin development or in sperm. Quantification of the amount of protein per histone spot yields an estimate of several hundred haploid DNA equivalents per egg of stored histone. The identity of some of the putative histones was verified by a highly sensitive immunological technique, involving electrophoretic transfer of proteins from the two-dimensional polyacrylamide gels to nitrocellulose filters. Proteins in amounts less than 2 x 10(-4) micrograms can be detected by this method.  相似文献   

19.
20.
Fertilization of the sea urchin egg triggers a Ca(2+)-dependent cortical granule exocytosis and cytoskeletal reorganization, both of which are accompanied by an accelerated protein synthesis. The signaling mechanisms leading to these events are not completely understood. The possible role of Rho GTPases in sea urchin egg activation was studied using the Clostridium botulinum C3 exotoxin, which specifically ADP-ribosylates Rho proteins and inactivates them. We observed that incubation of eggs with C3 resulted in in situ ADP-ribosylation of Rho. Following fertilization, C3-treated eggs were capable of performing cortical granule exocytosis but not the first cytokinesis. C3 caused in both unfertilized eggs and early embryos alterations in the state of actin polymerization and inhibition of the spindle formation. Moreover, C3 diminished markedly the rate of protein synthesis. These findings suggested that Rho is involved in regulating the acceleration of protein synthesis that accompanies the egg activation by sperm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号