首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pony mares (n=480) and 16 stallions were assigned to four herds of 60 mares and one stallion (large herds) and to 12 herds of 20 mares and one stallion (small herds). The stallions remained with the herds continuously for all of the large herds and seven of the small herds. In the five remaining small herds the stallion was put into a herd for three hours every two days for 12 observation periods. Pregnancy rates and day of ovulation were estimated by size of embryonal enlargements. Mean pregnancy rates of 51% and 54% were obtained in the small herds and 42% in the large herds during a 48-day period (equivalent to two estrous cycles). Pregnancy rates for herds with the stallion present continuously were higher (P<0.01) for the small herds than for the large herds for days 1-24 (42% versus 19%). There was no effect of herd size on number of mares becoming pregnant per herd on days 1-24, but more mares (P<0.01) became pregnant during days 25-48 in the large herds (13.2 mares per herd versus 1.8). In the herds in which the stallion was present intermittently, the number of times that the stallion rebred the same mare when more than one mare was in estrus was greater (P<0.01) than what would be expected to occur by chance (observed, 21%; expected, 11%). Repeated breeding of the same mare seemed related to the availability or activity of the mare, since such mares more frequently followed and positioned themselves in the vicinity of the stallion. Most of the interferences by a mare which involved keeping the stallion and another mare apart were directed at the mare, whereas most of the interferences during mounting were directed at the stallion (P<0.01). Mares were more likely (P<0.01) to interfere when in estrus than when in nonestrus. When interfering mares were in nonestrus, their hostility was usually directed at the stallion (92%), whereas when in estrus their interference was more frequently directed at a mare (73%, P<0.01).  相似文献   

2.
Horses (Equus caballus) belong to the group of seasonally polyestrous mammals. Estrous cycles typically start with increasing daylight length after winter, but mares can differ greatly in the timing of onset of regular estrus cycles. Here, we test whether spatial proximity to a stallion also plays a role. Twenty-two anestrous mares were either exposed to one of two stallions (without direct physical contact) or not exposed (controls) under experimental conditions during two consecutive springs (February to April). Ovarian activity was monitored via transrectal ultrasound and stallion's direct contact time with each mare was determined three times per week for one hour each. We found that mares exposed to a stallion ovulated earlier and more often during the observational period than mares that were not exposed to stallions. Neither stallion identity nor direct contact time, mare age, body condition, size of her largest follicle at the onset of the experiment, or parasite burden significantly affected the onset of cyclicity. In conclusion, the timing of estrous cycles and cycle frequency, i.e., crucial aspects of female reproductive strategy, strongly depend on how the mares perceive their social environment. Exposing mares to the proximity of a stallion can therefore be an alternative to, for example, light programs or elaborated hormonal therapies to start the breeding season earlier and increase the number of estrous cycles in horses.  相似文献   

3.
Observations of sociosexual behavior of adult ponies, made on two harem groups (each comprised of one vasectomized male and three females), were correlated with follicular development and ovulation for a total of 15 cycles (minimum of 2 cycles per female). Mean cycle length (interovulatory interval) was found to be 19.7 days, with behavioral estrus lasting 7–8 days (5.5 days preovulatory; 2.3 days postovulatory). Estrous females typically showed increased frequencies of approaching and following the stallion, urinating, presenting, clitoral winking, and tail raising. Approaching and following the stallion appeared earlier and persisted longer than other estrous responses. Deviations from the modal estrous pattern included cycles with subestrus, continual estrus, behavioral estrus in the absence of ovulation, and displays of female mounting. Dominance tests revealed that a mare's status was unaffected by the phases of the estrous cycle. The presence of more than one estrous female affected the copulatory performance of both stallions, most notably in reduced latencies to first mount, intromission, and ejaculation, in spite of differences between the stallions in sexual vigor. Each stallion usually selected the dominant mare for copulation when there were multiple estrous females present, but mounts were not displayed exclusively to one female per test. The social testing situation made apparent the importance of use of space in sociosexual communication in this species, particularly in avoidance of the stallion by diestrous mares and standing alone or in proximity to him by estrous mares.  相似文献   

4.
Semen quality, mare status and mare management during estrus will have the greatest impact on pregnancy rates when breeding mares with frozen semen. If semen quality is not optimal, mare selection and reproductive management are crucial in determining the outcome. In addition to mare selection, client communication is a key factor in a frozen semen program. Old maiden mares and problem mares should be monitored for normal cyclicity and all, except young maidens, should have at least a uterine culture and cytology performed. Mares with positive bacterial cultures and cytologies should be treated at least three consecutive days when in estrus with the proper antibiotic. With frozen semen, timing the ovulation is highly desirable in order to reduce the interval between breeding and ovulation. The use of ovulation inducing agents such as human chorionic gonadotropin (hCG) or the GnRH analogue, deslorelin, are critical components to accurately time the insemination with frozen semen. Most hCG treated mares ovulate 48h post-treatment (12-72h) while most deslorelin (Ovuplant) treated mares ovulate 36-42h post-treatment. However, mares bred more than once during the breeding cycle appear to have a slight but consistent increase in pregnancy rate compared to mares bred only once pre- or post-ovulation. In addition, the "capacitation-like" changes inflicted on the sperm during the process of freezing and thawing appear to be responsible for the shorter longevity of cryopreserved sperm. Therefore, breeding closer to ovulation should increase the fertility for most stallions with frozen semen. Recent evidence would suggest that breeding close to the uterotubal junction increases the sperm numbers in the oviduct increasing the chances of pregnancy. Post-breeding examinations aid in determining ovulation and uterine fluid accumulations so that post-breeding therapies can be instituted if needed. Average pregnancy rates per cycle of mares bred with frozen semen are between 30 and 40% with a wide range between sires. Stallion and mare status are major factors in determining the success of frozen semen inseminations. Pregnancy rates are lower for barren and old maiden mares as well as those mares treated for uterine infections during the same cycle of the insemination. To maximize fertility with frozen semen, a careful selection of the stallions and mares, with proper client communication is critical. Dedication and commitment of mare owner and inseminator will have the most significant impact on the pregnancy rates.  相似文献   

5.
The freezability of stallion semen defined as the number of selected ejaculates/total number of ejaculates frozen from 161 different stallions was analyzed. Of the stallions, 19, 30, 27 and 24% had a freezability of 0%, 0 to 33%, 33 to 66%, over 66%, respectively In 85 different stallions, the correlation of freezability between first and second year was 0.60 (P < 0.001). The relationship between fertility with fresh and frozen semen and freezability was analyzed in 40 stallions whose freezability and fertility information was recorded during 5 years. There was a strong relationship between fertility of fresh semen and semen freezability (P < 0.001). However, the relationship between fertility of frozen semen and freezability was not as marked (P < 0.05). Analysis of the field fertility per cycle results when mares were bred with 300 or 150 x 10(6) total spermatozoa at different frequencies until ovulation indicated that mares that were inseminated 2 times or more per estrus show an improved fertility in comparison with mares inseminated only once (34%, n = 1576 vs 26%, n = 626; P < 0.001). Foaling rate when mares were inseminated with frozen semen (1858 mares during 8 breeding seasons) was mainly influenced by mare age (< 16 years: 54% vs >/= 16 years 42% p < 0.001). Date of first insemination (before May 15: 58% vs after May 15: 37%) also had a significant effect on foaling rate (P < 0.001).  相似文献   

6.
Age-specific fertility is an essential parameter of life history. Here we report age-specific fertility rates, measured as the number of foals per mare per year, for Jeju ponies aged 2–28 years. The total sample consisted of 545 foals produced by 178 mares from 1988 to 2002. The mean fertility rate across all ages of the mares was 0.65 foals/mare per year (±0.24 SD). The fertility rates were above average for the 7- to 8- and 19- to 20-year-old mares, whereas they were relatively low for mares under 4 years old. The fertility rates tended to increase with the age of the stallion, but the relationship was not significant (n =15, P =0.09). The incidence of inter-birth interval was not associated with the age that the mare first reproduced (n =64 mares, P =0.99). However, mares that reproduced later in life tended to have a reduced fertility rate due to an increase in the duration of inter-birth intervals relative to mares that reproduced earlier (n =4 years of first reproduction, P =0.068). The fertility rates of Jeju ponies were lower than for other horses, perhaps because only one stallion was introduced to a relatively large herd every year. We suggest that the introduction of more stallions to the herd each year would increase fertility rates.  相似文献   

7.
A tendency for deslorelin implants to suppress subsequent follicular growth and delay return to estrus following induced ovulation has been documented in nonlactating mares. To investigate this phenomenon in lactating mares, 22 broodmares in southeast Texas were administered either deslorelin or hCG to induce ovulation in the first postpartum estrus during February and March 2001. Mares were teased daily and examined twice weekly (Tuesdays and Thursdays) by transrectal ultrasonography. When a follicle >35 mm diameter was detected on Tuesday, mares were treated with either 2,500 U hCG administered intravenously or with one implant (2.1 mg) deslorelin administered subcutaneously. Mares were bred every other day until ovulation was detected or until they ceased behavioral estrus, and were examined 16 days after treatment to detect pregnancy. Follicular measurements were recorded for all mares during each examination, and interestrous intervals were recorded for mares not becoming pregnant. Treatment of mares with either hCG or deslorelin resulted in similar ovulatory responses and pregnancy rates. Deslorelin-treated mares had fewer ovarian follicles >20 mm in diameter 16 days after treatment than hCG-treated mares (P < 0.01). Interestrous intervals for mares failing to become pregnant on foal heat breeding were prolonged in deslorelin-treated compared to hCG-treated mares (P < 0.01). Date of treatment was negatively correlated with length of the interestrous interval in deslorelin-treated mares (P < 0.01), but was not correlated with length of interestrous interval in hCG-treated mares (P > 0.10). All mares failing to become pregnant from foal heat breedings became pregnant from later breedings, but the parturition to conception interval was prolonged in deslorelin-treated compared to hCG-treated mares that did not become pregnant on foal heat (P < 0.01).  相似文献   

8.
Mounting interactions in mares isolated from stallions and the relationship to stage of the estrous cycle and level of circulating hormones were studied for 3 years in a herd averaging 105 mares. Mares were assigned to mounting, standing, and control groups. A control mare was selected by being within 1 day of the number of days after ovulation in a mounting mare. A total of 15 mounting interactions were detected by chance observation during the 3 years. A blood sample was collected immediately after the mounting interaction from each mare in the three groups, and a transrectal ultrasonographic examination of the reproductive tract was done. Two mounting interactions occurred during the early luteal phase and 13 during the follicular phase. The interactions that occurred during the follicular phase were used for comparisons among groups. The interval between mounting and the next ovulation, diameter of the two largest follicles, and the number of follicles larger and smaller than 20 mm were not different significantly among the mounting, standing, and control groups. Testosterone concentrations were higher (P<0.01) in the mounting group (17.7+/-2.3 pg/ml) than in standing group (10.9+/-0.5 pg/ml), and the difference between the mounting group and the control group (12.8+/-0.6 pg/ml) approached significance (P<0.08). Concentrations of androstenedione, estradiol, estrone, and progesterone did not differ significantly among groups. Results indicated that mounting behavior between mares is rare, usually occurs during the follicular phase, and is related to high circulating concentrations of testosterone.  相似文献   

9.
A survey of the fertility of Icelandic stallions   总被引:1,自引:0,他引:1  
Very limited information is available on the breeding performance of Icelandic stallions, let alone the effect that management practices may have had on such performance. As an extensively kept, largely genetically isolated breed of horse it provides a good model for the study of factors that affect reproductive performance without the additional complication of selective breeding, infectious infertility and breed effect. A survey was conducted using 27 Icelandic stallions covering 1590 mares within the normal Icelandic breeding system (May to September). During the season, stallions cover mares within three periods of time, each period being of a similar length (average 35.5 days). During period 1, mares are covered in hand and at pasture. During periods 2 and 3, all mares are covered at pasture. The overall fertility rate for Icelandic stallions was calculated. The effect of a range of variables on fertility was investigated statistically using a number of models in an attempt to minimise the effect of confounding factors. An overall adjusted fertility rate for Icelandic stallions of 67.7% was obtained. The following factors were shown to have a significant effect on fertility: age of mare (P<0.001), training level of stallion (P<0.05) and method of breeding (P<0.05). For some individual stallions reproductive status of the mare also had a significant (P<0.001) effect. Many of these factors have been observed to effect FR in other more intensively managed equine populations. However, the less dramatic detrimental effect of age and the lack of a significant effect of mare reproductive status in most stallions suggests that infertility problems are less evident in Icelandic mares, possibly due to less emphasis on selection for athletic performance and the accepted culling of subfertile stock.  相似文献   

10.
Four herds of pony mares, each consisting of a stallion and six mares, were used to characterize the nature of herding by the stallion and the factors that induced the herding behavior. Herding behaviors were compared among four successive treatments (six mares alone, stallion added, two new mares added, and entire herd moved to a new pasture). A new treatment was initiated every 7 days and behavior was studied for 5 consecutive days (Days 1-5) for each treatment. Observations were made every 10 min during a 2-h period for each day. The extent of herding was quantitated by the mean distances between mares. The extent of snaking (herding with the head and neck extended and ears held back) was scored 0, 1, 2, or 3 (nil, minimal, intermediate, and maximal, respectively). The mean distance among the original mares on Day 1 when the mares were alone was 5.0 mare lengths and was reduced (P < 0.05) to 1.9 mare lengths when the stallion was added. The mean distance among the original mares of an established stallion/mare herd (3.8 mare lengths) was reduced (P < 0.05) on the day the herd was moved to a new pasture (1.9 mare lengths), similar to the effect of the introduction of the stallion. Scores for the extent of snaking, as well as the extent of herding, were highest (P < 0.05) on Day 1 when the stallion was added or the stallion/mare herd was moved to a new pasture. The extent of herding and snaking decreased (P < 0.05) by Day 2 and was seen only occasionally on Days 3-5. The addition of new mares to the herd did not induce herding of the original mares. However, the new mares maintained mean distances of 8-12 mare lengths from the original mares, resulting primarily from chasing by the stallion. By Day 4, the distances between the new and original mares were not different (P > 0.05) from the distances among the original mares.  相似文献   

11.
Two pony mares were administered 150 mg of testosterone propionate every other day for 20 days (ten injections) and every ten days there-after. An additional two mares and one stallion were not treated and served as controls. Testosterone propionate was dissolved in absolute ethanol and administered subcutaneously. Sex behavior tests were conducted 26 and 40 days after the first injection. Control mares exhibited very little male sex behavior. Both testosterone propionatetreated mares, however, exhibited mounting, sniffing, flehmen, biting and vocalization behavior in the presence of an estrous mare. The testosterone propionate-treated mares mounted and bit estrous mares more frequently than the stallion but exhibited less sniffing, flehmen and vocalization behavior in the presence of an estrous mare than the stallion. Testosterone propionate-treated mares and the stallion mounted an estrous mare 23.3 +/- 9.7 seconds and 172.5 +/- 22.5 seconds, respectively, after being introduced into the pen. Mares in estrus were mounted by the testosterone propionate-treated mares and the stallion an average of 4.0 +/- 1.3 and 1.0 +/- 0 times, respectively, during a ten-minute test. None of the non-estrous mares was ever mounted by the testosterone propionate-treated mares. In summary, testosterone propionate induced male sex behavior in intact mares and the testosterone propionate-treated mares effectively detected estrous mares.  相似文献   

12.
Two trials were conducted to investigate the effects of intrauterine infusion of PGE2 and uterine horn insemination on pregnancy rates in mares achieved by breeding with a suboptimal number of normal spermatozoa. Estrus was synchronized and mares were teased daily with a stallion to detect estrus. Mares in estrus were examined by transrectal palpation and ultrasonography to monitor follicular status. On the first day a 35-mm diameter follicle was present, hCG (1500 IU, iv) was administered and the mares were bred the next day. Mares (Trial 1, n = 34; Trial 2, n = 28) were inseminated with 25 million total spermatozoa from either a stallion with good semen quality (Trial 1) or poor semen quality (Trial 2). In each trial, mares were assigned to 1 of 4 treatment groups as follows: Group PGE-HI - infusion of 0.25 mg PGE2 into the proximal end of the uterine horn ipsilateral to the dominant follicle 2 h prior to insemination in the proximal end of the same uterine horn; Group PGE-BI - infusion of 0.25 mg PGE2 into the proximal end of the uterine horn ipsilateral to the dominant follicle 2 h prior to insemination in the uterine body; Group SAL-HI - infusion of 1 mL sterile saline into the proximal end of the uterine horn ipsilateral to the dominant follicle 2 h prior to insemination in the proximal end of the same uterine horn; or Group SAL-BI - infusion of 1 mL sterile saline into the proximal end of the uterine horn ipsilateral to the dominant follicle 2 h prior to insemination in the uterine body. After breeding, mares were examined daily by transrectal ultrasonography to confirm ovulation, and were re-examined 14 to 16 d after ovulation for pregnancy status. Data were analyzed by Chi-square. Overall pregnancy rates were 59% for stallion 1 and 29% for stallion 2. Group pregnancy rates did not differ for mares bred by either stallion (P > 0.10). Pregnancy rates were not altered by horn insemination for either stallion (P > 0.10). Intrauterine infusion of PGE2 improved pregnancy rate in mares bred by the stallion with good quality semen (P < 0.05), but did not alter pregnancy rate in mares bred by the stallion with poor quality semen (P > 0.10). Further research is warranted to determine if intrauterine infusion of PGE2 will enhance spermatozoal colonization of the oviduct and pregnancy rates in mares, and if PGE-treatment will improve pregnancy rates achieved by subfertile stallions.  相似文献   

13.
Ultrasonically detected changes in the equine preovulatory follicle were characterized for the 3 d preceding ovulation early (n = 47) and late (n = 14) in the ovulatory season. Values for the following follicle end points increased progressively over the 3 d: diameter, incidence of nonspherical shape, echogenicity of the apparent granulosa layer, and prominence of an anechoic layer beneath the granulosa. The latter 2 echotexture end points were scored from 1 to 3 (minimal to maximal). Follicle diameter and the 2 echotexture characteristics were more prominent early than late in the ovulatory season. Early in the season, both echotexture characteristics were at the maximal score of 3 in 33/47 (70%) follicles on Day -1 (Day 0 = ovulation). None of the follicles ovulated before both characteristics reached a score of > or = 2. Use of follicle diameter alone to predict impending ovulation seemed ineffective because of a wide range in diameters on Day -1 (31 to 49 mm). The efficiency of a score of > or = 2 for both granulosa echogenicity and prominence of the anechoic layer as an echotexture indicator for the initiation of breeding early in the ovulatory season was compared to diameter indicators of > or = 30 mm, > or = 35 mm, or > or = 40 mm. Data were evaluated as though mares had been bred every other day beginning when an indicator was attained. If the echotexture and > or = 30 mm indicators had been used, none of 34 mares would have ovulated before breeding. However, the mean number of breedings per bred mare would have been greater (P < 0.05) for the > or = 30 mm indicator (2.1 +/- 0.1) than for the echotexture indicator (1.6 +/- 0.1 breedings). The number of breedings per mare would have been equivalent for the echotexture indicator and the diameter indicators of > or = 35 mm (1.5 +/- 0.1) and > or = 40 mm (1.4 +/- 0.2). However, 21 and 74% of the mares would have ovulated before breeding for the > or = 35 mm and > or = 40 mm indicators, respectively. Results suggested that the echotexture indicator would have been more efficient for initiation of breeding than any of the diameter indicators.  相似文献   

14.
In a blinded trial, the effectiveness and safety of 2.2 mg of the GnRH analog deslorelin acetate, administered in a short–term implant (STI) to normally cycling mares in estrus with a dominant ovarian follicle of 30 mm in diameter or larger, were evaluated, using a placebo implant as a negative control. A total of 39 mares received treatments at admittance with pre–randomized implants containing either 2.2 mg or 0 mg deslorelin. Mares were teased daily and examined rectally with ultrasound at 24 h intervals to determine time to Ovulation and duration of estrus. The number of breedings and the pregnancy rate at 18 (±3) and 38 (±3) days were recorded, as were systemic side effects and local reactions at the implantation sites. Pregnancies resulting from breedings during the treatment estrus and/or from breedings during the next estrus were followed and the early and late pregnancy loss rate, the number of pregnancies going to term and of live–born foals was recorded. Mean follicle diameter at treatment was not significantly different between the deslorelin and placebo treatment group with 41.6 mm and 40.8 mm, respectively. Treatment with deslorelin STI reduced the time interval to Ovulation significantly from 69.5±25.48 h to 42.7±12.35 h (p<0.001). The percentage of mares having ovulated within 48 h rose from 26.3% to 95.0%, respectively, for placebo and deslorelin STI (p<0.001). As a consequence, the duration of estrus in days and the percent of animals requiring more than 1 breeding were significantly reduced in deslorelin treated animals from 5.4 days to 4.6 days, and from 55.6% to 5.0%, respectively (p=0.009 and =0.001). The percent of mares pregnant from breedings at the treatment estrus (65.0% versus 44.4%) or the next estrus (83.3% versus 92.3%) was satisfactory and similar for deslorelin and placebo treated mares (p>0.005), and in 70.0% and 66.7% of these once or twice bred mares did pregnancies go to term and live foals were born. kw|Keywords|k]GnRH  相似文献   

15.
It is probable that reduced pregnancy rates in mares bred to subfertile stallions is attributable, in part, to the reduced number of normal spermatozoa that colonize the oviduct. Administration of oxytocin stimulates both uterine and oviductal contractility. The hypothesis that oxytocin may enhance sperm transport to/into the oviducts, and thereby increase pregnancy rates, was tested in 2 trials. For both trials, fertile estrous mares with follicles > or = 35 mm in diameter were inseminated once at 24 h after administration of 1500 to 2000 U hCG. The inseminate dose was limited to 100 million spermatozoa in order to lower pregnancy rates and thus increase the chance of detecting a treatment effect. Pregnancy status was determined by transrectal ultrasound examination 14 to 16 d after insemination. In Trial 1, 49 mares were inseminated with 4 mL extended semen from 1 of 3 stallions (1 fertile and 2 subfertile males). Immediately after insemination, the mares were administered either 20 U oxytocin or 1 mL saline intravenously. In Trial 2, 51 mares were inseminated with 4 mL extended semen from 1 of 4 stallions (1 fertile and 1 subfertile male used in Trial 1, and 2 additional fertile males). Immediately after insemination, and again 30 min later, mares were administered either 5 U oxytocin or 0.25 mL saline intramuscularly. To test for effects of treatment with oxytocin and for the interaction between semen quality and treatment, a generalized linear mixed regression model was used that accounted for the split-plot design (treatment within stallions), the random effect of stallion, the fixed effect of semen quality, the binary outcome of a single breeding trial, and the varying number of trials per stallion/treatment groups. Three treatment protocols or regimens were used: placebo, 5 U oxytocin injected twice intramuscularly, and 20 units oxytocin injected twice intravenously. Semen was classified as high (fertile stallions) or low (subfertile stallions) quality. No interaction between semen quality and treatment was detected (P > 0.10). The pregnancy rate of mares treated with oxytocin immediately after insemination was 30% (15/50) compared with 50% (25/50) for mares treated with saline immediately after breeding. Administration of oxytocin did not affect pregnancy rates (P > 0.10).  相似文献   

16.
In order to investigate the factors affecting the reproduction efficiency of Arab breeding mares in Tunisia, breeding data corresponding to 2340 mated cycles, over 5 years (from 2000 to 2004), from 555 mares offspring of 50 sires and bred with 17 stallions were analysed using a multivariate logistic regression. We chose logit link function and binomial distribution and we used log-likelihood-ratio (LL) and Wald tests (X2 Wald) to test the mean values. The factors of variation included in the model were the year, the stallion, the age of the mare at mating, the sire and the category of the mare. Logistic regression results showed that age and sire affected both the overall conception rate and the first-cycle conception rate of the mares whilst category and stallion influenced only the overall conception rate. To our knowledge, this is the first study showing that the sire of the mare can affect both the first-cycle conception rate and the overall conception rate of the mares.  相似文献   

17.
The influence of steroids of adrenal cortical origin on estrous behavior in the ovariectomized mare was evaluated by adrenal suppression via dexamethasone (DEX) administration in two experiments. In Experiment I, 12 mares (six DEX, six control) were tested for sexual behavior in harem groups (two DEX and two control mares plus one stallion per group) for 9 consecutive days. In Experiment II, estradiol (E2) was given to a group of DEX-treated mares as an additional control. Twelve mares (four DEX, four DEX + E2, and four control) were tested in harem groups (one DEX, one DEX + E2, and one control mare plus one stallion per group) for 10 days. All DEX mares showed a clear suppression of sexual response compared to control or DEX + E2 mares, indicating that the estrous behavior seen in ovariectomized mares may be due to steroids from the adrenal cortex. The control and DEX + E2 mares were similar in all measures of proceptivity. Despite being more receptive, as indicated by fewer negative responses, the DEX + E2 mares received fewer intromissions and ejaculations than did the control animals. The ability of estradiol to induce estrous behavior in the dexamethasone-suppressed mare notwithstanding, other adrenal steroids, e.g., androgens, may be involved in estrous behavior in the untreated, ovariectomized mare.  相似文献   

18.
Breeding groups with multiple stallions occur sympatrically with single-stallion breeding groups in feral horse, Equus caballus, populations. Mutualism and reciprocal altruism between stallions have been proposed to explain the origin and functioning of multistallion bands. However, empirical support for these hypotheses is contradictory and incomplete. Furthermore, there are no explicit tests of the predictions that each hypothesis makes about stallion behaviour and social structure. We compared nine multistallion and 18 single-stallion bands in the Kaimanawa Ranges, New Zealand. Compared with agonistic behaviours, affiliative behaviours were relatively unimportant in the relationships between stallions within bands. The number of stallions in the band did not have a positive influence on mare group size, stability, home range quality or reproductive success in bands. Furthermore, there was a positive relationship between aggression ('intolerance') by the dominant towards subordinate stallions and the subordinates' effort in mare group defence ('helping') but a negative relationship between helping effort by subordinates and their proximity to, and mating with, the bands' mares. Therefore, the predictions of the mutualism and reciprocal altruism hypotheses were not supported. Indeed, for some of the predictions we found the opposite outcomes to be true. Multistallion bands had significantly poorer reproductive success, and dominant stallions were less tolerant of subordinates that helped most and reduced their access to mares. Nevertheless, in all other respects Kaimanawa stallions in multistallion bands behaved like those described elsewhere. Thus, we reject cooperative hypotheses for multimale breeding groups in horses and discuss the mate parasitism and consort hypotheses as better alternatives. Copyright 2000 The Association for the Study of Animal Behaviour.  相似文献   

19.
The mare is seasonally polyestrus, having an anovulatory period during the short light days of late fall and early winter, and beginning to ovulate as the days become longer during the winter. The complete estrus cycle is typically about 3 weeks, with 5 to 7 days of estrus and approximately 2 weeks of diestrus. When a mare lives within the natural social structure of the horse, i.e. a family band with several adult mares and one or more stallions, estrus is characterized by repeatedly approaching the stallion, frequent urination, deviating the tail away from the perineum, and standing still with the hind limbs spread apart. Diestrus is characterized by avoidance of an approaching stallion, and aggression toward the stallion, such as squealing, striking, and kicking, if he persists in attempting to court the diestrus mare. However, mares and stallions with long-term social relationships will often rest together, graze together and groom each other, all without sexual interactions. Hormonally, estrous behavior in the mare is initiated by estradiol that is secreted by the follicle, while estrous behavior is suppressed by progesterone, secreted by the corpus luteum. Mares are unusual among the ungulates in that they periodically exhibit estrous behavior during the anovulatory period. This is probably due to the release of estrogenic steroids secreted by the adrenal cortex. The display of sexual behavior by the mare throughout the year is thought to facilitate maintenance of the horse's social structure, in which the male remains with a group of females year round, in contrast with most ungulates in which the females and males only come together during the mating season.  相似文献   

20.
Sieme H  Katila T  Klug E 《Theriogenology》2004,61(4):769-784
This study analyzed effects of different methods and intervals of semen collection on the quantity and quality of fresh, cool-stored, and frozen-thawed sperm and fertility of AI stallions. In Experiment 1, ejaculates were obtained from six stallions (72 ejaculates per stallion) using fractionated versus non-fractionated semen collection techniques. Initial sperm quality of the first three jets of the ejaculate was not different from that of total ejaculates. Centrifugation of sperm-rich fractions before freezing improved post-thaw motility and sperm membrane integrity when compared to non-centrifuged sperm-rich fractions or non-fractionated centrifuged ejaculates (P<0.05). In Experiment 2, semen from four stallions (60-70 ejaculates per stallion) was collected either once daily or two times 1h apart every 48 h. The first ejaculates of double collections had significantly higher sperm concentrations, percentages of progressively motile sperm (PMS) after storage for 24h at 5 degrees C and lower percentages of midpiece alterations than single daily ejaculates. Semen collected once daily showed significantly lower values of live sperm after freezing and thawing than the first ejaculate of two ejaculates collected 1h apart every 48 h. In Experiment 3, semen was collected from 36 stallions (> or =12 ejaculates per stallion) during the non-breeding season and the time to ejaculation and the number of mounts was recorded. When time to ejaculation and the number of mounts increased, volume and total sperm count (TSC) also increased (P<0.05), whereas a decrease was observed in sperm concentration, percentage of PMS after storage for 24 h at 5 degrees C, percentage of membrane-intact sperm in fresh semen (P<0.05) as well as motility and percentage of membrane-intact sperm of frozen-thawed sperm (P<0.05). In Experiment 4, AI data of 71 stallions were retrospectively analyzed for the effect of number of mounts per ejaculation and frequency, time interval of semen collections on pregnancy, and foaling rates (FRs) of mares. Semen volume increased, but sperm concentration and percentage of PMS after 24-h cool-storage decreased with increasing number of mounts on the phantom (P<0.05). A statistically significant inter-relationship was demonstrated between frequency and interval of semen collection and FR. Mares inseminated with stallions from which semen was collected frequently (> or =1 on an average per day) showed significantly higher FRs than mares inseminated with semen from stallions with a daily collection frequency of 0.5-1 or <0.5. FR of mares inseminated with stallions having 0.5-1 days between semen collections was significantly better than FR of mares that were inseminated with stallions having semen collection intervals of 1-1.5 days or >2.5 days.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号