首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of streptozotocin-induced diabetes mellitus upon mitochondria from rat skeletal muscle and kidney were examined. The rate of amino acid incorporation in vitro by isolated skeletal muscle mitochondria from diabetic animals was decreased by 50–60% from control values. Treatment of diabetic animals with insulin lowered blood glucose levels to control values and restored the rate of muscle mitochondrial protein synthesis in vitro to control levels. The rates of skeletal muscle mitochondrial protein synthesis were also decreased 23–27% by a 2-day fast. Comparison of the translation products synthesized by isolated muscle mitochondria from control and diabetic rats by dodecyl sulfate polyacrylamide-gel electrophoresis revealed a uniform decrease in the synthesis of all polypeptides. Aurintricarboxylic acid and pactamycin, inhibitors of chain initiation, blocked protein synthesis to a greater extent in muscle mitochondria from control as compared to diabetic animals suggesting that mitochondria from diabetics are unable to initiate protein synthesis at a rate comparable to control. Phenotypic changes observed in diabetic muscle mitochondria included a 36% decrease in the content of cytochromes aa3 and a 27% decrease in cytochrome b, both established as containing mitochondrial translation products in lower eucaryotes. State 3 respiration with glutamate as substrate decreased by 27% and uncoupler-stimulated respiration decreased by 23% in the diabetic mitochondria. By contrast, the specific activities of NADH and succinate dehydrogenases, established as products of cytoplasmic protein synthesis in lower eucaryotes, were not decreased in skeletal muscle mitochondria from the diabetic animals. These results suggest that the considerable muscular atrophy observed in diabetics may involve decreases in both cytoplasmic and mitochondrial protein synthesis, the latter reflected in profound changes in the respiratory chain. By contrast, comparison of kidney mitochondria from control and diabetic rats revealed no differences in the rates of protein synthesis in vitro, nor in the mitochondrial translation products, which corresponded closely to liver and skeletal muscle translation products. Similarly, the mitochondrial content of cytochromes b, c + c1, and aa3, the specific activity of succinate dehydrogenase, the rate of state 3 respiration, and the recovery of mitochondria from kidney homogenates did not differ in control and diabetic animals. Kidney mitochondria are thus like liver mitochondria in being relatively unaffected by insulin deprivation.  相似文献   

2.
Electrophoresis of thylakoid membrane polypeptides from Chlamydomonas reinhardi revealed two major polypeptide fractions. But electrophoresis of the total protein of green cells showed that these membrane polypeptides were not major components of the cell. However, a polypeptide fraction whose characteristics are those of fraction c (a designation used for reference in this paper), one of the two major polypeptides of thylakoid membranes, was resolved in the electrophoretic pattern of total protein of green cells. This polypeptide could not be detected in dark-grown, etiolated cells. Synthesis of the polypeptide occurred during greening of etiolated cells exposed to light. When chloramphenicol (final concentration, 200 µg/ml) was added to the medium during greening to inhibit chloroplastic protein synthesis, synthesis of chlorophyll and formation of thylakoid membranes were also inhibited to an extent resulting in levels of chlorophyll and membranes 20–25% of those found in control cells. However, synthesis of fraction c was not affected by the drug. This polypeptide appeared in the soluble fraction of the cell under these conditions, indicating that this protein was synthesized in the cytoplasm as a soluble component. When normally greening cells were transferred from light to dark, synthesis of the major membrane polypeptides decreased. Also, it was found that synthesis of both subunits of ribulose 1, 5-diphosphate carboxylase was inhibited by chloramphenicol, and that synthesis of this enzyme stopped when cells were transferred from light to dark.  相似文献   

3.
Synthetic abilities of Euglena chloroplasts in darkness   总被引:1,自引:0,他引:1  
Protein synthesis, normally a light-dependent process in isolated mature chloroplasts of Euglena gracilis var. bacillaris will take place in darkness if ATP and Mg2+ (ATP/Mg) are supplied. Either 5 or 10 mM ATP plus 15 mM MgCl2 are optimal and rates equal to those in the light can be obtained. Since ATP and Mg2+ are not stoichiometrically related, and since the optimal Mg2+ concentration is similar to that which stabilizes chloroplast ribosomes in vitro, it is suggested that the chloroplast is freely permeable to Mg2+ under these conditions. Protein synthesis under these conditions is not inhibited appreciably by DCMU, FCCP, cycloheximide, or by the addition of ribonuclease, but is highly sensitive to chloramphenicol. Carbon dioxide fixation is also a light-dependent process in isolated mature chloroplasts from Euglena, but addition of ATP (5 mM) and fructose bisphosphate (5 mM) plus aldolase (1.0 unit/ml) (fructose-1,6-bisphosphate/aldolase) yields CO2 fixation rates in darkness that are 43% of those normally obtained in the light. Mg2+ higher than 1.0 mM (e.g., 16 mM) is somewhat inhibitory. Chlorophyll synthesis from 5-aminolevulinate in 36 h developing chloroplasts from Euglena is also light-dependent, but addition of ATP/Mg and fructose-1,6-bis-phosphate/aldolase in darkness brings about the accumulation of a compound having the same RF on chromatography as protochlorophyllide from Barley; a subsequent brief illumination of the chloroplasts converts this compound to a compound with the RF of chlorophyll. Thus Euglena chloroplasts supplied with appropriate additions can carry out protein synthesis, carbon dioxide fixation and most of chlorophyll synthesis in darkness. This versatility is appropriate in photosynthetic organelles isolated from photo-organotrophic cells.  相似文献   

4.
Intact chloroplasts isolated from greening cucumber (Cucumis sativus L. var Beit Alpha) cotyledons regenerated protochlorophyllide (Pchlide) in the dark with added cofactors from either exogenous glutamate or endogenous substrates. No other intermediates of the chlorophyll biosynthetic pathway accumulated. When inhibitors of 5-aminolevulinic acid (ALA) dehydratase were added, the Pchlide that failed to form was replaced by an excessive amount of ALA. When greening seedlings were returned to the dark, ALA-synthesizing activity in the isolated chloroplasts decreased dramatically and recovered if the dark-treated seedlings were again exposed to continuous white light prior to chloroplast isolation. Both the decline and the recovery of ALA-synthesizing activity were complete in approximately 50 minutes. Changes in chloroplast structure during in vivo light to dark and dark to light transitions (as evidenced by electron microscopy) were much slower. Exposing isolated chloroplasts from dark-treated seedlings to short white flashes before incubation transformed nearly all the endogenous Pchlide, but hardly stimulated ALA synthesis, suggesting that Pchlide does not act as a feed-back inhibitor on ALA synthesis. Chloroplasts isolated from dark-treated tissue did not form Pchlide from glutamate when incubated in the dark with added cofactors; moreover, the endogenous Pchlide did not turn over in organello. However, these chloroplasts did synthesize Pchlide from added ALA at the normal rate and synthesized ALA from glutamate at a reduced, but still significant, rate. Mg chelation was not affected by in vivo dark treatment.  相似文献   

5.
The kinetics of ribonucleic acid (RNA) and protein synthesis in rifampicin-inhibited normal and ethylenediaminetetraacetic acid (EDTA)-treated Escherichia coli was measured. Approximately 200-fold higher external concentrations of rifampicin were needed to produce a level of inhibition in normal cells comparable to that observed in EDTA-treated cells. The rates of RNA and protein synthesis in both kinds of cells decreased exponentially, after an initial lag phase, at all rifampicin concentrations tested. The lag phase was longer and the final exponential slope less for protein synthesis than for RNA synthesis at a given rifampicin concentration. Below certain rifampicin concentrations, both the lag phase and the subsequent exponential decrease in the rates of RNA and protein synthesis were found to be rifampicin concentration dependent. At greater concentrations only the time of the lag phase was decreased by higher rifampicin concentrations, whereas the slope of the exponential decrease in the rates of RNA and protein synthesis was unaffected. In all cases, the exponential decrease continued to at least a 99.8% inhibition of the original rate of synthesis. These in vivo results are consistent with the mode of rifampicin action determined from in vitro studies; rifampicin prevents initiations of RNA polymerase on deoxyribonucleic acid, but not its propagation, by binding the enzyme essentially irreversibly. The results also indicate the size distribution of messenger RNA molecules in E. coli under our conditions.  相似文献   

6.
7.
Chloroplasts isolated from Populus deltoides leaves were used to study age-dependent changes in the rate of cyclic photophosphorylation. Single leaves were used to measure CO2 fixation by leaf discs, chlorophyll concentration, and ATP synthesis. The ability of chloroplasts to synthesize ATP diminished steadily from the time of full leaf expansion, regardless whether the results are expressed on a leaf area or chlorophyll basis. This decline in the rates of ATP synthesis was paralleled by the decline in the rate of CO2 fixation. The results suggest that the efficiency of the membrane-bound ATP synthesizing system declines with age.  相似文献   

8.
The effects of nuclear genome duplication on the chlorophyll-protein content and photochemical activity of chloroplasts, and photosynthetic rates in leaf tissue, have been evaluated in haploid, diploid, and tetraploid individuals of the castor bean, Ricinus communis L. Analysis of this euploid series revealed that both photosystem II (2,6-dichlorophenolindophenol reduction) and photosystem I oxygen uptake (N,N,N′,N′-tetramethyl-p-phenylenediamine to methyl viologen) decrease in plastids isolated from cells with increasingly larger nuclear complement sizes. Photosynthetic O2-evolution and 14CO2-fixation rates in leaf tissue from haploid, diploid, and tetraploid individuals were also found to decrease with the increase in size of the nuclear genome. Six chlorophyll-protein complexes, in addition to a zone of detergent complexed free pigment, were resolved from sodium dodecyl sulfate-solubilized thylakoid membranes from cells of all three ploidy levels. In addition to the P700-chlorophyll a-protein complex and the light-harvesting chlorophyll a/b-protein complex, four minor complexes were revealed, two containing only chlorophyll a and two containing both chlorophyll a and b. The relative distribution of chlorophyll among the resolved chlorophyll-protein complexes and free pigment was found to be similar for all three ploidy levels.  相似文献   

9.
Turner JG 《Plant physiology》1986,80(3):760-765
Mesophyll cells in discs cut from primary leaves of Phaseolus vulgaris L. were exposed to a concentration of phaseolotoxin that inhibited ornithine carbamoyltransferase (OCTase) measured in an extract of the tissue. This treatment also blocked incorporation of exogenous [14C] ornithine into protein-arginine of the mesophyll cells. By contrast more than 80% of the [14C]ornithine supplied to untreated tissue was incorporated into protein-arginine in 565 minutes. Protein synthesis in mesophyll cells was unaffected by phaseolotoxin because treated tissue continued to incorporate [14C]leucine into protein at the same rate as the untreated control. The phaseolotoxin-treated tissue should therefore remain metabolically competent and this prediction was reinforced by the finding that the rate of photosynthetic O2 evolution per unit chlorophyll was similar for tissue from the phaseolotoxin-induced chlorosis and from green healthy tissue. Phaseolotoxin also blocked OCTase but not protein synthesis in exponentially growing cell suspension cultures. Phaseolotoxin rapidly inhibited growth of Escherichia coli and this effect was rapidly reversed by arginine. Thus, the toxic effects of phaseolotoxin may be attributed to the inhibition of OCTase which, in turn, blocks arginine synthesis. Protein accumulation is blocked as a consequence, but protein synthesis is unaffected. Chlorosis is due to reduced chlorophyll synthesis and this is presumably a consequence of the lower protein level in affected tissue.  相似文献   

10.
11.
Negm FB 《Plant physiology》1986,80(4):972-977
Intact chloroplasts isolated from Euglena gracilis exhibit high rates of light-driven protein synthesis, whereas protein synthesis by isolated proplastids is absolutely dependent upon the addition of an exogenous energy source in the form of equimolar ATP and Mg2+. ATP and Mg2+ also stimulate translation by chloroplasts. The greatly increased rates of protein synthesis obtained by supplementing proplastids with ATP and Mg2+ have allowed the first clear characterization of proplastid translation products. Two-dimensional polyacrylamide gel electrophoretic analysis of proteins synthesized in organello shows that, while many translation products are common to both plastid types, most are unique to either the proplastid or the chloroplast. Pulse-chase experiments using both proplastids and chloroplasts indicate similar rates of turnover of newly synthesized proteins in both types of plastids. Thus, the differences seen between proplastid and chloroplast translation products are apparently not due to turnover. Immunoprecipitation of large subunit of ribulose-1,5-bisphosphate carboxylase (LS) from pulse-chase experiments indicates that LS is made in both proplastids and in chloroplasts and that the rate of LS turnover is similar in both types of plastids.  相似文献   

12.
Hepatocytes were isolated at specified times from livers of diabetic and insulin-treated diabetic rats during the course of a 48-h refeeding of a fat-free diet to previously fasted rats. The rates of synthesis of fatty acid synthetase and acetyl-CoA carboxylase in the isolated cells were determined as a function of time of refeeding by a 2-h incubation with l-[U-14C]leucine. Immunochemical methods were employed to determine the amount of radioactivity in the fatty acid synthetase and acetyl-CoA carboxylase proteins. The amount of radioactivity in the fatty acid synthetase synthesized by the isolated cells was also determined following enzyme purification of the enzyme to homogeneity. Enzyme activities of the fatty acid synthetase and acetyl-CoA carboxylase in the cells were measured by standard procedures. The results show that isolated liver cells obtained from insulintreated diabetic rats retain the capacity to synthesize fatty acid synthetase and acetyl-CoA carboxylase. The rate of synthesis of the fatty acid synthetase in the isolated cells was similar to the rate found in normal refed animals in in vivo experiments [Craig et al. (1972) Arch. Biochem. Biophys. 152, 619–630; Lakshmanan et al. (1972) Proc. Nat. Acad. Sci. USA69, 3516–3519]. In addition the relative rate of synthesis of fatty acid synthetase was stimulated greater than 20-fold in the diabetic animals treated with insulin. Immunochemical assays, when compared with enzyme activities, indicated the presence of an immunologically reactive, but enzymatically inactive, form or “apoenzyme” for both the fatty acid synthetase and acetyl-CoA carboxylase. The synthesis of these immunoreactive and enzymatically inactive species of protein, as well as the synthesis of the “holoenzyme” forms of both enzymes, requires insulin.  相似文献   

13.
Summary To establish the energetic cost of protein synthesis, isolated trout hepatocytes were used to measure protein synthesis and respiration simultaneously at a variety of temperatures. The presence of bovine serum albumin was essential for the viability of isolated hepatocytes during isolation, but, in order to measure protein synthesis rates, oxygen consumption rates and RNA-to-protein ratios, BSA had to be washed from the cells. Isolated hepatocytes were found to be capable of protein synthesis and oxygen consumption at constant rates over a wide range of oxygen tension. Cycloheximide was used to inhibit protein synthesis. Isolated hepatocytes used on average 79.7±9.5% of their total oxygen consumption on cycloheximide-sensitive protein synthesis and 2.8±2.8% on maintaining ouabain-sensitive Na+/K+-ATPase activity. The energetic cost of protein synthesis in terms of moles of adenosine triphosphate per gram of protein synthesis decreased with increasing rates of protein synthesis at higher temperatures. It is suggested that the energetic cost consists of a fixed (independent of synthesis rate) and a variable component (dependent on synthesis rate).Abbreviations BSA bovine serum albumin - dpm disintegrations per min - k s fractional rate of protein synthesis - HEPES N-2-hydroxyethylpiperazine-N-2-ethane sulphonic acid - PHE phenylalanine; PO2 oxygen tension - PCA perchloric acid  相似文献   

14.
Rates of chlorophyll synthesis and degradation were analyzed in Synechocystis sp. PCC 6803 wild type and mutants lacking one or both photosystems by labeling cells with (15NH4)2SO4 and Na15NO3. Pigments extracted from cells were separated by HPLC and incorporation of the 15N label into porphyrins was subsequently examined by MALDI-TOF mass spectrometry. The life time (τ) of chlorophyll in wild-type Synechocystis grown at a light intensity of 100 μmol photons m−2 s−1 was determined to be about 300 h, much longer than the cell doubling time of about 14 h. Slow chlorophyll degradation (τ ∼200-400 h) was also observed in Photosystem I-less and in Photosystem II-less Synechocystis mutants, whereas in a mutant lacking both Photosystem I and Photosystem II chlorophyll degradation was accelerated 4-5 fold (τ ∼50 h). Chlorophyllide and pheophorbide were identified as intermediates of chlorophyll degradation in the Photosystem I-less/Photosystem II-less mutant. In comparison with the wild type, the chlorophyll synthesis rate was five-fold slower in the Photosystem I-less strain and about eight-fold slower in the strain lacking both photosystems, resulting in different chlorophyll levels in the various mutants. The results presented in this paper demonstrate the presence of a regulation that adjusts the rate of chlorophyll synthesis according to the needs of chlorophyll-binding polypeptides associated with the photosystems.  相似文献   

15.
16.
The herbicide SAN 9789 (4-chloro-5-(methylamino)-2-(α,α,α-trifluoro-m-tolyl-3- (2H)pyridazinone) blocks carotenoid synthesis in growing and resting cells of Euglena at concentrations of 20 to 100 μg/ml without affecting cell viability. Although the inhibition is immediate and complete, in resting cells no decrease in already synthesized carotenoids is found indicating a lack of turnover. In cells growing in the dark, carotenoids are diluted out as the cells divide. Cells dividing in the light in the presence of SAN 9789, eventually lose viability, presumably because of photooxidations usually prevented by carotenoids. During 72 hours of light-induced plastid development in dark-grown resting cells, none of the usual carotenoids increase while phytoene accumulates, indicating that SAN 9789 blocks carotenoid synthesis at this point. Chlorophyll synthesis and membrane formation are also blocked by the herbicide, but these inhibitions appear to be secondary to the inhibition of carotenoid synthesis. That carotenoid levels are strongly correlated with and may control the synthesis of chlorophyll and the formation of plastid membranes is suggested by the following data. (a) If dark-grown dividing cells are placed in the presence of the herbicide for various periods, rested and exposed to light in the presence of the drug, different amounts of carotenoids remain in the cells and the amount of chlorophyll finally synthesized is proportional to the amount of carotenoids present. (b) Photodestruction of chlorophyll is excluded, since the same amounts of chlorophyll are formed at intensities of 10 to 100 foot-candles of light. (c) Photoconversion of protochlorophyll(ide) to chlorophyll(ide) in dark-grown cells is not blocked by the herbicide. (d) Initial rates of chlorophyll synthesis are the same in treated and nontreated cells. (e) The extent of membrane formation appears to parallel the amount of carotenoids present as judged by electron microscopy.  相似文献   

17.
The presence of low concentrations of cobalt ions (200 μMCoCl2) retarded the growth of the cyanobacterium Spirulina platensis. However, cells grown in the presence of CoCl2 exhibited an enhancement in the levels of phycocyanin and carotenoids, while showed a decrease in the content of chlorophyll a, when compared to the untreated control cells. Thylakoid membranes isolated from CoCl2 treated cells demonstrated enhanced rates of both photosystem II (H2O → pBQ) and photosystem I (DCPIPH2 → MV) mediated electorn transport activities. The stimulation in the rates of photosynthetic electron transport activities in the CoCl 2 grown cells are attributed to the alterations occurring in the thylakoid membrane organization, as the thylakoids from CoCl2 grown cells possessed more membrane fluidity. The decrease in the chlorophyll a content may have occurred due to modifications in the chlorophyll a complexes in this cynaobacterium. The enhancement in the phycocyanin levels in the CoCl2 grown cells appears to be because of the stimulated induction of heme oxygenase. Thus, the cobalt ion treatment appears to be useful in studying the thylakoid membrane and antennae organizations in cyanobacteria.  相似文献   

18.
Photorespiration in Chlorella pyrenoidosa Chick. was assayed by measuring 18O-labeled intermediates of the glycolate pathway. Glycolate, glycine, serine, and excreted glycolate were isolated and analyzed on a gas chromatograph/mass spectrometer to determine isotopic enrichment. Rates of glycolate synthesis were determined from 18O-labeling kinetics of the intermediates, pool sizes, derived rate equations, and nonlinear regression techniques. Glycolate synthesis was higher in high CO2-grown cells than in air-grown cells when both were assayed under the same O2 and CO2 concentrations. Synthesis of glycolate, for both types of cells, was stimulated by high O2 levels and inhibited by high CO2 levels. Glycolate synthesis in 1.5% CO2-grown Chlorella, when exposed to a 0.035% CO2 atmosphere, increased from about 41 to 86 nanomoles per milligram chlorophyll per minute when the O2 concentration was increased from 21% to 40%. Glycolate synthesis in air-grown cells increased from 2 to 6 nanomoles per milligram chlorophyll per minute under the same gas levels. Synthesis was undetectable when either the O2 concentration was lowered to 2% or the CO2 concentration was raised to 1.5%. Glycolate excretion was also sensitive to O2 and CO2 concentrations in 1.5% CO2-grown cells and the glycolate that was excreted was 18O-labeled. Air-grown cells did not excrete glycolate under any experimental condition. Indirect evidence indicated that glycolate may be excreted as a lactone in Chlorella. Photorespiratory 18O-labeling kinetics were determined for Pavlova lutheri, which unlike Chlorella and higher plants did not directly synthesize glycine and serine from glycolate. This alga did excrete a significant proportion of newly synthesized glycolate into the media.  相似文献   

19.
Tobin EM 《Plant physiology》1981,67(6):1078-1083
Translation products of poly(A) mRNA isolated from Lemna gibba L. G-3 include a major polypeptide of 32,000 daltons which is immunoprecipitated by antiserum to chlorophyll a/b-protein from Chlamydomonas. This 32,000 dalton polypeptide represents a precursor to the light-harvesting chlorophyll a/b-protein of molecular weight 28,000 found in the thylakoid membranes of Lemna gibba. The amount of this translatable mRNA decreases relative to other translatable mRNAs when green plants grown in continuous white light are placed in darkness. This decrease occurs rapidly. The most rapid decline occurs during the first day; after 4 days of darkness, only a low level of this mRNA can be detected by in vitro translation. When the plants are returned to white light there is an increase in the relative level of this mRNA which can be easily detected within two hours. The in vivo synthesis of this protein has been assayed under the different light conditions. The light effects on the in vivo synthesis of the chlorophyll a/b-protein reflect the light effects on the translatable mRNA for the polypeptide. The results indicate that light induced changes in the synthesis, processing, or degradation of chlorophyll a/b-protein mRNA could account for the light-induced changes observed in the effective synthesis rates for the chlorophyll a/b-protein in vivo.  相似文献   

20.
Cells of Arthrobacter atrocyaneus and A. crystallopoietes, harvested during their exponential phase, were starved in 0.03 M phosphate buffer (pH 7.0) for 28 days. During this time, the cells maintained 90 to 100% viability. Experimental results were similar for both organisms. Total cellular deoxyribonucleic acid was maintained. Measurable degradation rates for deoxyribonucleic acid as determined by radioisotope techniques were not observed, and only during the initial hours of starvation could a synthetic rate be determined. Total ribonucleic acid levels remained stable for the first 24 h of starvation, after which slow, continuous loss of orcinol-reactive material occurred. Synthetic and degradative rates of ribonucleic acid, as determined by radioisotope techniques, dropped quickly at the onset of starvation. Constant basal rates were attained after 24 h. In A. atrocyaneus, total cell protein was degraded continuously from the onset of starvation. In A. crystallopoietes, total cell protein remained stable for the first 24 h, after which slow continuous loss occurred. After 28 days, the total protein per cell was similar for both organisms. In the first week, amino acid pools stabilized at about 50% of the values characteristic of growth. Rates of degradation of protein decreased rapidly for the first 24 h for both organisms, but leveled to a constant basal rate thereafter. Rates of new protein synthesis dropped during the first 24 h and by 48 h achieved a constant basal rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号