首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The granule rich-fraction isolated from human resting polymorphonuclear leukocytes is capable of CN-insensitive NADH oxidation and O2-uptake, accompanied by production of superoxide anion, hydroxyl radicals and H2O2. We showed that H2O2 initiates and maintains NADH oxidation and O2-uptake but is also necessary for the formation of superoxide anion and hydroxyl radicals. It acts as a primary substrate for CN-insensitive protein-mediated formation of hydroxyl radicals, which in turn produce superoxide anions, probably through univalent oxidation of NADH as an intermediary.  相似文献   

2.
Superoxide radicals in high concentrations were generated from alkaline H2O2 without using catalysts or irradiation. The dependence of the intensity and parameters of the superoxide radical EPR spectrum on pH, temperature, viscosity and H2O2 concentration were studied. The observed changes are explained on the base of matrix effects. The addition of superoxide dismutase to alkaline H2O2 led initially to a drop in the EPR spectrum intensity, followed by an increase in the concentration of superoxide radicals.  相似文献   

3.
Superoxide free radicals are produced in glyoxysomes   总被引:6,自引:2,他引:4       下载免费PDF全文
The production of superoxide free radicals in pellet and supernatant fractions of glyoxysomes, specialized plant peroxisomes from watermelon (Citrullus vulgaris Schrad.) cotyledons, was investigated. Upon inhibition of the endogenous superoxide dismutase, xanthine, and hypoxanthine induced in glyoxysomal supernatants the generation of O2 radicals and this was inhibited by allopurinol. In glyoxysomal pellets, NADH stimulated the generation of superoxide radicals. Superoxide production by purines was due to xanthine oxidase, which was found predominantly in the matrix of glyoxysomes. The generation of O2 radicals in glyoxysomes by endogenous metabolites suggests new active oxygen-related roles for glyoxysomes, and for peroxisomes in general, in cellular metabolism.  相似文献   

4.
The superoxide scavenging activities of copper(II) complexes with the ligands, 6,6′-methylene-bis(5′-amino-3′,4′-benzo-2′-thiapentyl)-1,11-diamino-2,3:9,10-dibenzo-4,8-dithiaundecane (H4L), and 6,6′-bis(5′-amino-3′,4′-benzo-2′-thiapentyl)-1,11-diamino-2,3:9,10-dibenzo-4,8-dithiaundecane (H4L′), were investigated by xanthine–xanthine oxidase (X/XO) assays using nitroblue tetrazolium (NBT) as indicator molecule, and the results were compared with respect to the particular type of anion (ClO·4, Cl·, NO·3) on the apical site of the copper(II) complexes. All of the complexes inhibited the reduction of NBT by superoxide radicals, with the [Cu2(L′)](ClO4)2 complex exhibiting the highest scavenging activity against superoxide radicals among the complexes examined. The catalytic efficiency of the complexes for dismutation of superoxide radicals depends on the particular anion liganded to Cu(II) ion in the complexes, and the order of potency was observed to be ClO4 > Cl > NO·3 in phosphate buffer at pH 7.40. The Cu(II)-H4L′ complexes had the lowest IC50 and catalytic rate constant values indicating that the distorted geometry of the Cu(II)-H4L′ complexes influence their catalytic activities for dismutation of superoxide radicals more efficiently. The difference in the activities of the complexes toward superoxide radicals can also be attributed to the nature of the anions on the apical site of the copper(II) complexes and the superoxide dismutase-like activity. © 1997 John Wiley & Sons, Inc. J Biochem Toxicol 12: 53–59, 1998  相似文献   

5.
In this work, we evaluated the antioxidant properties of the eight novel silybin analogues for their capacity to scavenge free radicals including superoxide anion radicals and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals in vitro. Compound 7d demonstrated an excellent antioxidant effect in scavenging superoxide anion free radical with an IC50 value of 26.5 μM, while the IC50 of quercetin (the reference compound) was 38.1 μM. Compounds 7b, 7e, 7h showed certain scavenging activities for both types of free radicals.  相似文献   

6.
The present investigation was made to evaluate biologically relevant quinones as possible catalysts in the generation of hydroxyl radicals from hydrogen peroxide and superoxide radicals. ESR spectra demonstrated that menadione, plastoquinone, and ubiquinone derivatives could all be reduced to their semiquinone forms by electron transfer from superoxide radicals. Reductive homolytic cleavage of H2O2 was observed to be dependent upon the presence of semiquinones in the reaction medium. Our data strongly support the concept that quinones normally involved in physiological processes may also play a role as catalysts of the Haber-Weiss reaction in the biological generation of hydroxyl radicals.  相似文献   

7.
In peroxisomes isolated from pea leaves (Pisum sativum L.) the production of superoxide free radicals (O2) by xanthine and NADH was investigated. In peroxisomal membranes, 100 micromolar NADH induced the production of O2 radicals. In the soluble fractions of peroxisomes, no generation of O2 radicals was observed by incubation with either NADH or xanthine, although xanthine oxidase was found located predominantly in the matrix of peroxisomes. The failure of xanthine to induce superoxide generation was probably due to the inability to fully suppress the endogenous Mn-superoxide dismutase activity by inhibitors which were inactive against xanthine oxidase. The generation of superoxide radicals in leaf peroxisomes together with the recently described production of these oxygen radicals in glyoxysomes (LM Sandalio, VM Fernández, FL Rupérez, LA del Río [1988] Plant Physiol 87: 1-4) suggests that O2 generation could be a common metabolic property of peroxisomes and further supports the existence of active oxygen-related rôles for peroxisomes in cellular metabolism.  相似文献   

8.
The oxidation of NADH and accompanying reduction of oxygen to H2O2 stimulated by polyvanadate was markedly inhibited by SOD and cytochrome c. The presence of decavanadate, the polymeric form, is necessary for obtaining the microsomal enzyme-catalyzed activity. The accompanying activity of reduction of cytochrome c was found to be SOD-insensitive and therefore does not represent superoxide formation. The reduction of cytochrome c by vanadyl sulfate was also SOD-insensitive. In the presence of H2O2 all the forms of vanadate were able to oxidize reduced cytochrome c, which was sensitive to mannitol, tris and also catalase, indicating H202-dependent generation of hydroxyl radicals. Using ESR and spin trapping technique only hydroxyl radicals, but not superoxide anion radicals, were detected during polyvanadate-dependent NADH oxidation.  相似文献   

9.
The inhibition by superoxide dismutase of cytochrome c reduction by a range of semiquinone radicals has been studied. The semiquinones were produced from the parent quinones by reduction with xanthine and xanthine oxidase. Most of the quinones studied were favored over O2 as the enzyme substrate, and in air as well as N2, semiquinone radicals rather than superoxide were produced and they caused the cytochrome c reduction. With all but one of the quinones (benzoquinone), cytochrome c reduction in air was inhibited by superoxide dismutase, but the amount of enzyme required for inhibition was up to 100 times greater than that required to inhibit reduction by superoxide. It was highest for the quinones with the highest redox potential. These results demonstrate how superoxide dismutase can inhibit cytochrome c reduction by species other than superoxide. They can be explained by the dismutase displacing the equilibrium: semiquinone + O2 ? quinone + O2? to the right, thereby allowing the forward reaction to out-compete other reactions of the semiquinone. The implication from these findings that superoxide dismutase-inhibitable reduction of cytochrome c may not be a specific test for superoxide production is discussed.  相似文献   

10.
The pulse-radiolytic oxidation of hydroxylamine by either hydroxyl radicals (OH), superoxide anions (O2?), or a combination of both radicals was investigated. It was found that only OH radicals efficiently attack the substrate, while O2? is necessary for the subsequent formation of nitrite. Determination of the latter reaction thus allows the detection of the combined presence of both oxygen radical species.  相似文献   

11.
Previous evidence for superoxide radicals as initial reduction products of oxygen by NADPH cytochrome P-450 reductase has been indirect. In this paper a technique is described to spin trap radicals produced in incubations of oxygen and reductase. Reference spin trap adducts were synthesized by adding phenyl-t-butyl nitrone (PBN) to superoxide radicals (PBN-OOH) or to hydroxyl radicals (PBN-OH). Both PBN adducts are stable in water or ethyl acetate for hours. Electron Paramagnetic Resonance (EPR) spectra measured in N2-saturated ethyl acetate allow clear resolution of the hyperfine extrema of PBN-OH and PBN-OOH (2.1 and 4.5 G splitting, respectively). Comparison of EPR spectra from reductase and oxygen incubations with those of synthetic PBN-OOH suggest that superoxide radicals are the major primary reduction product of oxygen.  相似文献   

12.
《Free radical research》2013,47(1-2):7-18
Generation and reactivity of superoxide (02?) and hydroxyl (OH') radicals in enzymatic and radiolytic systems were investigated over the temperature range from 20o-50oC. The generation rate and reaction kinetics of both enzymatically and radiolytically produced superoxide radicals were determined by a cytochrome c reduction assay. For OH' radical reaction studies the degradation of hyaluronic acid was assayed. An increase in temperature leads to a greater reactivity of both radicals, but in the case of an enzymatic source a disproportionate increase in the rate of generation is observed. In the pulse radiolysis system, the reactivity of superoxide radicals was found to be stimulated 15-fold over the temperature range from 20oC to 60oC, although the activity of superoxide dismutase was only minimally increased (about 1.6-fold). The results are discussed with respect to the possible importance of active oxygen species to the biological effects of hyperthermia.  相似文献   

13.
Summary The enzymatic destruction of oxidizing products produced during metabolic reduction of oxygen in the cell (such as singlet oxygen, H2O2 and OH radical) involves the concerted action of superoxide dismutase-which removes O 2 - and yields H2O2-and H2O2 removing enzymes such as catalase and glutathione peroxidase. A difference in distribution or ratio of these enzymes in various tissues may result in a different reactivity of oxygen radicals.It was found that in red blood cells superoxide dismutase and catalase are extracted in the same fraction as hemoglobin, while glutathione peroxidase appears to be loosely bound to the cellular structure. This suggests that in red blood cells catalase acts in series with superoxide dismutase against bursts of oxygen radicals formed from oxyhemoglobin, while glutathione & peroxidase may protect the cell membrane against low concentrations of H2O2. On the other hand, catalase activity is absent in various types of ascites tumor cells, while glutathione peroxidase and superoxide dismutase are found in the cytoplasm. However, the peroxidase/dismutase ratio is lower than in liver cells, and this may provide an explanation for the higher susceptibility of tumor cells to treatments likely to involve oxygen radicals.  相似文献   

14.
The effects of the lipopolysaccharide (LPS) of Proteus mirabilis on the production of thiobarbituric acid reactive substances (TBARS) and the generation of superoxide radicals (O2?) by pig blood platelets were studied in vitro. The effect of LPS on TBARS formation in platelets was dependent on the concentration of endotoxin. LPS at concentrations above 0.1 μg/108 platelets caused the production of TBARS concomitant with the generation of superoxide radicals. The responses of platelets to LPS suggest that endotoxin, like thrombin (a strong platelets agonist), stimulates an enzymatic cascade of platelet arachidonate via cyclooxygenase and produces thromboxane A2 (TXA2) concomitant with malonyldialdehyde (MDA).  相似文献   

15.
Rolf A. Løvstad 《Biometals》2003,16(3):435-439
Xanthine oxidase reduces molecular oxygen to H2O2 and superoxide radicals during its catalytic action on xanthine, hypoxanthine or acetaldehyde. Ascorbate is catalytically oxidized by the superoxide radicals generated, when present in the reaction solution (Nishikimi 1975). The present study shows that iron ions markedly stimulate the enzyme dependent ascorbate oxidation, by acting as a red/ox-cycling intermediate between the oxidase and ascorbate. An apparent Km-value of 10.8 M characterized the iron stimulatory effect on the reaction at pH 6.0. Reduced transition-state metals can be oxidized by H2O2 through a Fenton-type reaction. Catalase was found to reduce the effect of iron on the enzyme dependent ascorbate oxidation, strongly suggesting that H2O2, produced during catalysis, is involved in the oxidation of ferrous ions.  相似文献   

16.
Becana M  Klucas RV 《Plant physiology》1992,98(4):1217-1221
Reactions involving changes that affect the function of leghemoglobin (Lb) are reviewed. The chemical nature of Lb and conditions inside nodules, such as slightly acid pH and the presence of metal ions, chelators, and toxic metabolites (nitrite, superoxide radical, peroxides), are conducive for oxidation of ferrous Lb (Lb2+) or its oxygenated form (LbO2) to nonfunctional ferric Lb (Lb3+) and ferryl Lb. Because Lb3+ is nearly nonexistent in nodules and undergoes observable reduction in vivo, mechanisms must operate in nodules to maintain Lb in the Lb2+ state. Redox reactions of Lb are mediated, for the most part, by activated oxygen species: (a) oxidation of LbO2 to Lb3+ involves superoxide; (b) excess peroxide oxidizes LbO2 and Lb3+ to ferryl Lb and may cause breakdown of heme, release of iron, and generation of hydroxyl radicals (protein radicals may be formed in this process); (c) enzymatic reduction of Lb3+ requires active flavin and thiol groups and involves formation of peroxide; and (d) direct reduction of Lb3+ by NADH is mediated by superoxide and peroxide. Transition metal ions and certain small molecules of nodules such as flavins may act as intermediate electron carriers between NADH and Lb3+, increasing the rate of reaction, which then proceeds via superoxide or flavin radicals, respectively.  相似文献   

17.
Polysaccharides extracted from Ulva pertusa Kjellm (Chlorophyta) are a group of sulfated heteropolysaccharides, the ulvans. In this study, different molecular weight ulvans were prepared by H2O2 degradation and their antioxidant activities investigated including superoxide and hydroxyl radical scavenging activity, reducing power and metal chelating ability. The molecular weights of natural and degraded ulvans were 151.7, 64.5, 58.0, and 28.2 kDa, respectively, as determined by high performance gel permeation chromatography. Among the four samples, U3 (the lowest molecular weight sample) showed significant inhibitory effects on superoxide and hydroxyl radicals with IC50 values of 22.1 μ g mL−1 and 2.8 mg mL−1; its reducing power and metal chelating ability were also the strongest among the four samples. All the other samples also demonstrated strong activity against superoxide radicals. The results indicated that molecular weight had a significant effect on the antioxidant activity of ulvan with low molecular weight ulvan having stronger antioxidant activity.  相似文献   

18.
Egg yolk phosphatidylcholine monolamellar liposomes (1000 Å in diameter) loaded with cytochrome c were placed into an external solution, in which superoxide radicals, O2, were generated by a xanthine-xanthine oxidase system. The penetration of the superoxide radicals across the liposomal membrane was detected by cytochrome c reduction in the inner liposome compartment. The effects of modifiers and temperature on this process were studied. The permeability of liposomal membrane for O2(PO2 = (7.6 ± 0.3) · 10-8 cm/s), or HO2 (PHO2 = 4.9 · 10-4 cm/s) were determined. The effect of the transmembrane electric potential (K+ concentration gradient, valinomycin) on the permeability of liposomal membranes for O2 were investigated. It was found that O2 can penetrate across liposomal membrane in an uncharged form. The feasibility of penetration of superoxide radicals through liposomal membrane, predominantly via anionic channels, was demonstrated by the use of an intramolecular cholesterol-amphotericin B complex.  相似文献   

19.
We demonstrated that oxidative stress plays a role in freeze-thaw-induced killing of Campylobacter coli following analysis of mutants deficient in key antioxidant functions. Superoxide anions, but not H2O2, were formed during the freeze-thaw process. However, a failure to detoxify superoxide anions may lead to spontaneous disproportionation of the radicals to H2O2.  相似文献   

20.
Progress of wound healing is critically dependent on the balance between oxidants and antioxidants at the wound site, and transition metals such as iron can exacerbate ROS generation. In the present study, cyanobacterial exopolymers from three strains of Anabaena and Tolypothrix tenuis have been characterized for their antiradical and Fe2+-chelating activity. All the four exopolymers exhibited antioxidant activities against O2·, H2O2, OH·, and NO·, with the exopolymer from Anabaena oryzae showing strong inhibition of NO· and ·OH radicals followed by that from Anabaena anomala. Correlation analysis of antioxidant activities and sulphate, uronic and phenolic content of the exopolymers showed a strong correlation of sulphate content to superoxide scavenging and activity against nitric oxide radicals. H2O2 scavenging was related to the presence of phenolics in the preparation which also contributed to the reducing power. Iron chelation had a strong bearing upon the overall reducing power and superoxide control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号