首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Glucose-6-phosphate dehydrogenase (G6PDH) is an important lens enzyme diverting about 14% of the tissue glucose to the hexose monophosphate shunt pathway. The main function of such a pronounced activity of the enzyme is to support reductive biosyntheses, as well as to maintain a reducing environment in the tissue so as to prevent oxy-radical induced damage and consequent cataract formation. Sugars are one of the well-known cataractogenic agents. Several reports suggest that the cataractogenic effect of the sugars in diabetes as well as in normal aging is initiated by the glycation of the proteins including the enzymes and subsequent formation of more complex and biologically inactive or harmful structures. In a diabetic lens the concentration of fructose exceeds significantly the concentration of glucose, suggesting that the contribution of fructosylation may be greater than that of glucosylation. These studies were undertaken to examine further the possibility that in addition to glycation, generation of oxygen free radicals by fructose and consequent oxidative modifications in certain enzymes may be an important participant in the cataractogenic process. This hypothesis was tested by using G6PDH. The enzyme was incubated with various levels of fructose (0–20 mM) and its activity determined as a function of time. This led to a significant loss of its activity, which was prevented by superoxide dismutase, catalase, mannitol and myoinositol. Most interestingly, pyruvate at levels between 0.2 and 1.0 mM also offered substantial protection. Hence, the results, while elucidating further the mechanism of enzyme deactivation by sugars such as fructose, also demonstrate the possibility of therapeutic prevention of cataracts by pyruvate and other such keto acids, in diabetes and other disabilities involving oxygen free radicals in the pathogenetic process.  相似文献   

2.
3.
4.
Activities of glucose-6-phosphate dehydrogenase and 6-phospho-gluconate dehydrogenase as well electrophoretic mobility of glucose-6-phosphate dehydrogenase from erythrocytes of Brazilian monkeys were investigated. Glucose-6-phosphate dehydrogenase activity of simian was 4 times higher than the human values. Regarding electrophoretic studies, the results, did not reveal any intraspecific polymorphism. A comparison of erythrocyte glucose-6-phosphate dehydrogenases among primates is also presented.  相似文献   

5.
How anti-neoplastic agents induce MDR (multidrug resistance) in cancer cells and the role of GSH (glutathione) in the activation of pumps such as the MRPs (MDR-associated proteins) are still open questions. In the present paper we illustrate that a doxorubicin-resistant human colon cancer cell line (HT29-DX), exhibiting decreased doxorubicin accumulation, increased intracellular GSH content, and increased MRP1 and MRP2 expression in comparison with doxorubicin-sensitive HT29 cells, shows increased activity of the PPP (pentose phosphate pathway) and of G6PD (glucose-6-phosphate dehydrogenase). We observed the onset of MDR in HT29 cells overexpressing G6PD which was accompanied by an increase in GSH. The G6PD inhibitors DHEA (dehydroepiandrosterone) and 6-AN (6-aminonicotinamide) reversed the increase of G6PD and GSH and inhibited MDR both in HT29-DX cells and in HT29 cells overexpressing G6PD. In our opinion, these results suggest that the activation of the PPP and an increased activity of G6PD are necessary to some MDR cells to keep the GSH content high, which is in turn necessary to extrude anticancer drugs out of the cell. We think that our data provide a new further mechanism for GSH increase and its effects on MDR acquisition.  相似文献   

6.
7.
Glycation initiated changes in tissue proteins, which are triggered by the Schiff base formation between the sugar carbonyl and the protein -NH2, have been suggested to play an important role in the development of diabetes-related pathological changes such as the formation of cataracts. While the initial reaction takes place by the interaction of >C=O of the parent sugars with the -NH2 of proteins, reactive oxygen species (ROS) dependent generation of more reactive dicarbonyl derivatives from the oxidation of sugars also plays a significant role in these changes, altering the structural as well as functional properties of proteins. The purpose of this study was to examine whether the activities of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), catalase and superoxide dismutase (SOD) could be affected by the high levels of fructose prevalent in diabetic lenses. Incubation of the enzymes with this sugar led to a significant loss of their activities. GAPDH was inactivated within a day. This was followed by the inactivation of catalase (3–4 days) and SOD (6 days). The loss of the activities was prevented significantly by incorporation of pyruvate in the incubation mixture. The protective effect is ascribable to its ability to competitively inhibit glycation as well as to its ROS scavenging activity. Hence, it could play a significant role in the maintenance of lens physiology and cataract prevention.  相似文献   

8.
Glycation initiated changes in tissue proteins, which are triggered by the Schiff base formation between the sugar carbonyl and the protein -NH2, have been suggested to play an important role in the development of diabetes-related pathological changes such as the formation of cataracts. While the initial reaction takes place by the interaction of >C=O of the parent sugars with the -NH2 of proteins, reactive oxygen species (ROS) dependent generation of more reactive dicarbonyl derivatives from the oxidation of sugars also plays a significant role in these changes, altering the structural as well as functional properties of proteins. The purpose of this study was to examine whether the activities of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), catalase and superoxide dismutase (SOD) could be affected by the high levels of fructose prevalent in diabetic lenses. Incubation of the enzymes with this sugar led to a significant loss of their activities. GAPDH was inactivated within a day. This was followed by the inactivation of catalase (3-4 days) and SOD (6 days). The loss of the activities was prevented significantly by incorporation of pyruvate in the incubation mixture. The protective effect is ascribable to its ability to competitively inhibit glycation as well as to its ROS scavenging activity. Hence, it could play a significant role in the maintenance of lens physiology and cataract prevention.  相似文献   

9.
10.
11.
12.
13.
14.
Abstract The specific activity of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase changed when Penicillium chrysogenum was grown on different carbon sources. In the presence of 2% lactose, the activities of these enzymes were approximately 25–35% lower than those in media containing 2% glucose or 2% fructose. We assume that an increase in cAMP concentration was responsible for the observed decreases in the enzyme activities, because a higher cAMP concentration could be detected when the mycelium was grown in a medium containing solely lactose as carbon source. The likely role played by cAMP in the regulation was also demonstrated by the addition of either cAMP or caffeine to the medium.  相似文献   

15.
Summary The ultrastructural localization of glucose-6-phosphate dehydrogenase (NADP-linked) has been attempted in steroid-secreting cells. Rat adrenocortical cells and newt testicular glandular cells were fixed in an ice-cold mixture of 1% methanol-free formaldehyde and 0.25% glutaraldehyde. Potassium ferricyanide was used as the final electron acceptor.After incubation, the final copper ferrocyanide precipitate is exclusively observed in the hyaloplasm of these cells, provided that an electron carrier (1.0 mM PMS) has been added to the medium in order to by-pass the tissue diaphorase (NADPH-ferricyanide reductase) reaction. No precipitate appears in the absence of glucose-6-phosphate (substrate). Incubation in a medium devoid of PMS results in an exclusively mitochondrial reaction; the latter is that of the diaphorase, which in these cells is mitochondrial. These results prove the importance of utilizing exogenous electron carriers (such as PMS) in coenzyme-linked dehydrogenase cytochemistry.Although polyvinyl alcohol was included in the washing and incubation media, in order to increase their viscosity, problems still exist concerning ultracytochemical localization of this soluble enzyme; these problems are discussed in the paper.  相似文献   

16.
Summary Glucose-6-phosphate dehydrogenase (G6PDH) activity was measured in follicular oocytes and in ovulated eggs of prepubertal, adult and aged mice. G6PDH activity in ovulated eggs was 60% of the activity in follicular oocytes in all age groups. The mean G6PDH activity was significantly higher in follicular oocytes of adult mice than in oocytes of both prepubertal and aged mice. In aged mice, the decreased mean activity in follicular oocytes as well as in ovulated eggs was mainly due to a high percentage of cells with extremely low activity (25 and 18%, respectively). The percentage of preovulatory oocytes with low activity in prepubertal mice was 9% and in adult mice 0.3%. For ovulated eggs these percentages were 0% for both prepubertal and adult mice. In every age group, all ovulated eggs showed a normal morphology. When ovulated eggs with extremely low G6PDH activity can still be fertilized, it can be questioned whether this loss of activity could cause disturbances in development of (preimplantation) embryos. Our findings emphasize the potentialities of investigating intact single oocytes for changes in enzyme activities, which could be applied as parameters for quality control of these cells.  相似文献   

17.
Hemolysis in glucose-6-phosphate dehydrogenase deficiency   总被引:1,自引:0,他引:1  
  相似文献   

18.
19.
20.
Phenylketonuria is a recessive autosomal disorder that is caused by a deficiency in the activity of phenylalanine-4-hydroxylase, which converts phenylalanine to tyrosine, leading to the accumulation of phenylalanine and its metabolites phenyllactic acid, phenylacetic acid, and phenylpyruvic acid in the blood and tissues of patients. Phenylketonuria is characterized by severe neurological symptoms, but the mechanisms underlying brain damage have not been clarified. Recent studies have shown the involvement of oxidative stress in the neuropathology of hyperphenylalaninemia. Glucose-6-phosphate dehydrogenase plays an important role in antioxidant defense because it is the main source of reduced nicotinamide adenine dinucleotide phosphate (NADPH), providing a reducing power that is essential in protecting cells against oxidative stress. Therefore, the present study investigated the in vitro effect of phenylalanine (0.5, 1, 2.5, and 5?mM) and its metabolites phenyllactic acid, phenylacetic acid, and phenylpyruvic acid (0.2, 0.6, and 1.2?mM) on the activity of enzymes of the pentose phosphate pathway, which is involved in the oxidative phase in rat brain homogenates. 6-Phosphogluconate dehydrogenase activity was not altered by any of the substances tested. Phenylalanine, phenyllactic acid, and phenylacetic acid had no effect on glucose-6-phosphate dehydrogenase activity. Phenylpyruvic acid significantly reduced glucose-6-phosphate dehydrogenase activity without pre-incubation and after 1?h of pre-incubation with the homogenates. The inhibition of glucose-6-phosphate dehydrogenase activity caused by phenylpyruvic acid could elicit an impairment of NADPH production and might eventually alter the cellular redox status. The role of phenylpyruvic acid in the pathophysiological mechanisms of phenylketonuria remains unknown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号