首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Analysis of the serum of duck hepatitis B virus (DHBV)-infected ducks has revealed the presence of C-terminally truncated viral core proteins (e antigens). These proteins are glycosylated and therefore were not released from infected cells by lysis but rather by active secretion, indicating that the DHBV core protein can be synthesized alternatively as a cytoplasmic or a secretory protein. Transient expression of cloned wild-type DHBV DNA and of a specifically designed viral mutant in a human hepatoma cell line (Hep-G2) showed that the DHBV core gene promoter is active in differentiated human liver cells and that synthesis and secretion of the processed core proteins are dependent on the expression of the pre-C region, a small open reading frame which precedes the core gene. In addition, these experiments showed that the mechanism of core protein processing and secretion is conserved between DHBV and the human hepatitis B virus and therefore might be important for the hepatitis B virus life cycle in general. In spite of this, intrahepatic injection of the pre-C mutant into uninfected ducks resulted in viremia without concomitant e-antigen synthesis, indicating that virus formation is independent of pre-C expression.  相似文献   

2.
Five new hepadnaviruses were cloned from exotic ducks and geese, including the Chiloe wigeon, mandarin duck, puna teal, Orinoco sheldgoose, and ashy-headed sheldgoose. Sequence comparisons revealed that all but the mandarin duck viruses were closely related to existing isolates of duck hepatitis B virus (DHBV), while mandarin duck virus clones were closely related to Ross goose hepatitis B virus. Nonetheless, the S protein, core protein, and functional domains of the Pol protein were highly conserved in all of the new isolates. The Chiloe wigeon and puna teal hepatitis B viruses, the two new isolates most closely related to DHBV, also lacked an AUG start codon at the beginning of their X open reading frame (ORF). But as previously reported for the heron, Ross goose, and stork hepatitis B viruses, an AUG codon was found near the beginning of the X ORF of the mandarin duck, Orinoco, and ashy-headed sheldgoose viruses. In all of the new isolates, the X ORF ended with a stop codon at the same position. All of the cloned viruses replicated when transfected into the LMH line of chicken hepatoma cells. Significant differences between the new isolates and between these and previously reported isolates were detected in the pre-S domain of the viral envelope protein, which is believed to determine viral host range. Despite this, all of the new isolates were infectious for primary cultures of Pekin duck hepatocytes, and infectivity in young Pekin ducks was demonstrated for all but the ashy-headed sheldgoose isolate.  相似文献   

3.
Cloned duck hepatitis B virus DNA is infectious in Pekin ducks   总被引:4,自引:13,他引:4       下载免费PDF全文
Approximately 10% of German-bred Pekin ducks were found to be chronically infected with duck hepatitis B virus (DHBV). The genomes of three German DHBV isolates analyzed were closely related but showed substantial restriction site polymorphism compared with U.S. isolates. We tested the infectivity of three sequence variants of cloned DHBV DNA by injecting them into the liver of virus-free ducklings. Most of these animals injected with double-stranded closed-circular or plasmid-integrated dimer DHBV DNA developed viremia, demonstrating the infectivity of all three cloned DHBV DNA variants. The cloned viruses produced were indistinguishable from those from naturally infected animals, implying that our experimental approach can be used to perform a functional analysis of the DHBV genome.  相似文献   

4.
The major mode of natural infection of duck hepatitis B virus (DHBV) in Pekin ducks is vertical transmission, with 95 to 100% of the embryos from DHBV-infected dams eventually becoming infected. Maternally transmitted virus is present in large quantities in the yolk of unincubated eggs and is taken up by the embryo during early development. Synthesis of DHBV DNA in the embryo begins at about 6 days of incubation and coincides with the formation of the liver. DHBV DNA synthesis is incomplete, however, until 8 to 10 days of incubation, as shown by comparing the electrophoretic patterns of DHBV-specific nucleic acid species from embryonic livers at successive stages of development. From 8 days of incubation and continuing throughout embryonic development, subviral particles, which resemble viral replication intermediates isolated from infected livers of post-hatch ducklings, appear in the circulation. These particles contain a polymerase activity that utilizes an RNA template to synthesize viral DNA. Our results suggest that certain host functions, which appear during embryonic development, may be required for DHBV replication and assembly. It is possible that in mammals a similar developmental process occurs. The failure to find human hepatitis B virus in the circulation of most babies, born to hepatitis B virus carrier women, in the first few weeks after birth may reflect such a process.  相似文献   

5.
The duck hepatitis B virus (DHBV), a member of the hepadna-virus group, has become a useful animal model for exploring important aspects in this family of viruses such as viral replication, course of infection, and the response to antiviral therapy. In chronically DHBV infected ducks, repeated analyses of liver tissue are important in defining the degree of viral replication and liver injury. We describe a technique for repeated liver biopsy using a Keyes skin punch biopsy. This technique provided sufficient quantities of liver tissue for serial analyses with minimal hemorrhage in 18 Pekin ducks. This procedure offers a safe and reliable method of obtaining serial liver biopsies.  相似文献   

6.
Residual hepatitis B virus (HBV) DNA can be detected in serum and liver after apparent recovery from transient infection. However, it is not known if this residual HBV DNA represents ongoing viral replication and antigen expression. In the current study, ducks inoculated with duck hepatitis B virus (DHBV) were monitored for residual DHBV DNA following recovery from transient infection until 9 months postinoculation (p.i.). Resolution of DHBV infection occurred in 13 out of 15 ducks by 1-month p.i., defined as clearance of DHBV surface antigen-positive hepatocytes from the liver and development of anti-DHBV surface antibodies. At 9 months p.i., residual DHBV DNA was detected using nested PCR in 10/11 liver, 7/11 spleen, 2/11 kidney, 1/11 heart, and 1/11 adrenal samples. Residual DHBV DNA was not detected in serum or peripheral blood mononuclear cells. Within the liver, levels of residual DHBV DNA were 0.0024 to 0.016 copies per cell, 40 to 80% of which were identified as covalently closed circular viral DNA by quantitative PCR assay. This result, which was confirmed by Southern blot hybridization, is consistent with suppressed viral replication or inactive infection. Samples of liver and spleen cells from recovered animals did not transmit DHBV infection when inoculated into 1- to 2-day-old ducklings, and immunosuppressive treatment of ducks with cyclosporine and dexamethasone for 4 weeks did not alter levels of residual DHBV DNA in the liver. These findings further characterize a second form of hepadnavirus persistence in a suppressed or inactive state, quite distinct from the classical chronic carrier state.  相似文献   

7.
8.
Isolation and characterization of a hepatitis B virus endemic in herons.   总被引:13,自引:21,他引:13       下载免费PDF全文
R Sprengel  E F Kaleta    H Will 《Journal of virology》1988,62(10):3832-3839
A new hepadnavirus (designated heron hepatitis B virus [HHBV]) has been isolated; this virus is endemic in grey herons (Ardea cinerea) in Germany and closely related to duck hepatitis B virus (DHBV) by morphology of viral particles and size of the genome and of the major viral envelope and core proteins. Despite its striking similarities to DHBV, HHBV cannot be transmitted to ducks by infection or by transfection with cloned viral DNA. After the viral genome was cloned and sequenced, a comparative sequence analysis revealed an identical genome organization of HHBV and DHBV (pre-C/C-, pre-S/S-, and pol-ORFs). An open reading frame, designated X in mammalian hepadnaviruses, is not present in DHBV. DHBV and HHBV differ by 21.6% base exchanges, and thus they are less closely related than the two known rodent hepatitis B viruses (16.4%). The nucleocapsid protein and the 17-kilodalton envelope protein sequences of DHBV and HHBV are well conserved. In contrast, the pre-S part of the 34-kilodalton envelope protein which is believed to mediate virus attachment to the cell is highly divergent (less than 50% homology). The availability of two closely related avian hepadnaviruses will now allow us to test recombinant viruses in vivo and in vitro for host specificity-determining sequences.  相似文献   

9.
In this study we used duck hepatitis B virus (DHBV)-infected Pekin ducks and heron hepatitis B virus (HHBV)-infected heron tissue to search for epitopes responsible for virus neutralization on pre-S proteins. Monoclonal antibodies were produced by immunizing mice with purified DHBV particles. Of 10 anti-DHBV specific hybridomas obtained, 1 was selected for this study. This monoclonal antibody recognized in both DHBV-infected livers and viremic sera a major (36-kilodalton) protein and several minor pre-S proteins in all seven virus strains used. In contrast, pre-S proteins of HHBV-infected tissue or viremic sera did not react. Thus, the monoclonal antibody recognizes a highly conserved DHBV pre-S epitope. For mapping of the epitope, polypeptides from different regions of the DHBV pre-S/S gene were expressed in Escherichia coli and used as the substrate for immunoblotting. The epitope was delimited to a sequence of approximately 23 amino acids within the pre-S region, which is highly conserved in four cloned DHBV isolates and coincides with the main antigenic domain as predicted by computer algorithms. In in vitro neutralization assays performed with primary duck hepatocyte cultures, the antibody reduced DHBV infectivity by approximately 75%. These data demonstrate a conserved epitope of the DHBV pre-S protein which is located on the surface of the viral envelope and is recognized by virus-neutralizing antibodies.  相似文献   

10.
11.
To evaluate the possibility of producing transducible replication-defective hepadnaviruses, cloned mutant duck hepatitis B virus genomes were tested both for virus antigen production and viral DNA synthesis following transfection into the human hepatoma cell line HuH7. Deletion of a cis-acting 12-nucleotide sequence implicated in viral DNA synthesis, direct repeat 1 (DR1), resulted in the loss of ability to synthesize both mature viral DNA and infectious virus. The delta DR1 mutant, however, produced envelope and core antigens and was shown to provide trans-acting functions required for the assembly of infection-competent particles. Thus, mutants with mutations in viral genes could be rescued as DNA-containing viral particles after cotransfection with delta DR1. The efficiency of rescue was influenced by the site of mutation. A mutant DNA encoding truncated core and envelope proteins not only was poorly rescued but also was able to suppress the production from a wild-type DNA of infectious virus.  相似文献   

12.
A study was carried out to determine some of the factors that might distinguish transient from chronic hepadnavirus infection. First, to better characterize chronic infection, Pekin ducks, congenitally infected with the duck hepatitis B virus (DHBV), were used to assess age-dependent variations in viremia, percentage of DHBV-infected hepatocytes, and average levels of DNA replication intermediates in the cytoplasm and of covalently closed circular DNA in the nuclei of infected hepatocytes. Levels of viremia and viral DNA were found to peak at about the time of hatching but persisted at relatively constant levels in chronically infected birds up to 2 years of age. The percentage of infected hepatocytes was also constant, with DHBV replication in virtually 100% of hepatocytes in all birds. Next, we found that adolescent ducks inoculated intravenously with a large dose of DHBV also developed massive infection of hepatocytes with an early but low-level viremia, followed by rapid development of a neutralizing antibody response. No obvious quantitative or qualitative differences between transiently and chronically infected liver tissue were detected in the intracellular markers of viral replication examined. However, in the adolescent duck experiment, DHBV infection was rapidly cleared from the liver even when up to 80% of hepatocytes were initially infected. In all of these ducks, clearance of infection was accompanied by only a mild hepatitis, with no evidence that massive cell death contributed to the clearance. This finding suggested that mechanisms in addition to immune-mediated destruction of hepatocytes might make major contributions to clearance of infections, including physiological turnover of hepatocytes in the presence of a neutralizing antibody response and/or spontaneous loss of the capacity of hepatocytes to support virus replication.  相似文献   

13.
克隆鸭乙型肝炎病毒DNA双体体内转染的研究   总被引:1,自引:0,他引:1  
用一种含头尾相连DHBVDNA双体的质粒体内转染2日龄芙蓉鸭,大多数鸭(86%)产生了短暂病毒血症。血清DHBs/preSAg和DHBVDNA于转染后第9天出现,第12~14天达峰值,第28天时多数转阴;少数鸭的病毒血症可持续50天以上。转染鸭肝组织中也检测到复制中间型DHBVDNA的存在。用转染鸭病毒血症期的血清作磷钨酸负染电镜观察,找到了完整的DHBV病毒颗粒,并且用此血清腹腔注射1日龄鸭,60%的鸭被感染成功,证明体内转染后有生物活性的DHBV病毒颗粒的产生。该研究方法的建立.对于研究DHBV变异株.DHBV基因结构与功能的关系等,均有一定理论意义及应用价值。  相似文献   

14.
T Saito  K Tachibana  K Mogi  H Mizuo  Y Ito  M Imai 《Uirusu》1989,39(1):55-60
Mice were immunized against duck hepatitis B virus core (DHBc) particles isolated from the liver of asymptomatic carrier ducks of duck hepatitis B virus (DHBV) by ultracentrifugation. Their spleen cells were fused with mouse myeloma (NS-1) cells, and 12 clones of hybridoma cells secreting antibodies against DHBc (anti-DHBc) were isolated. According to the reactivity to core particles and core peptide obtained from DHBc particles treated with SDS-2ME, the 12 antibodies were classified into two groups. Two monoclonal antibodies reacted against both core particles and core peptide (B-type), the other ten monoclonal antibodies reacted against core particles but did not react against core peptide obtained from DHBc particles treated with SDS-2 ME. (A-type). Solid phase enzyme immuno assay (EIA) using these two types of antibodies could detect core antigenisity not only in the liver homogenate but also in the DHBV infected serum. Sucrose gradient analysis and gel filtration analysis revealed this DHBc antigenisity in the serum is not carried by core particles but carried by core peptide, equivalent to HBe antigen in the serum of Hepatitis B virus (HBV) carrier. This EIA may provide sensitive test monitoring both serum DHBe antigen levels and DHBc antigen levels in the liver during DHBV infection.  相似文献   

15.
16.
17.
J C Pugh  Q Di  W S Mason    H Simmons 《Journal of virology》1995,69(8):4814-4822
To test the hypothesis that susceptibility of hepatocytes to duck hepatitis B virus (DHBV) infection requires cell surface receptors that bind the virus in a specific manner, we developed an assay for the binding of DHBV particles to monolayers of intact cells, using radiolabeled immunoglobulin G specific for DHBV envelope protein. Both noninfectious DHBV surface antigen particles and infectious virions bound to a susceptible fraction (approximately 60%) of Pekin duck hepatocytes. In contrast, binding did not occur to cells that were not susceptible to DHBV infection, including Pekin duck fibroblasts and chicken hepatocytes, and binding to Muscovy duck hepatocytes, which are only weakly susceptible (approximately 1% of cells) to DHBV infection, was virtually undetectable. Within a monolayer, individual Pekin duck hepatocytes appeared to differ markedly in the capacity to bind DHBV, which may explain difficulties that have been encountered in infecting 100% of cells in culture. We have also found that the loss of susceptibility to infection with DHBV that occurs when Pekin duck hepatocytes are maintained for more than a few days in culture correlates with a decline in the number of cells that bind virus particles efficiently. All of these results support the interpretation that the binding event detected by our assay is associated with the interaction between DHBV and specific cell surface receptors that are required for initiation of infection. Our assay may facilitate isolation and identification of hepatocyte receptors for this virus.  相似文献   

18.
A duck hepatitis B virus (DHBV) genome cloned from a domestic duck from the People's Republic of China has been sequenced and exhibits no variation in sequences known to be important in viral replication or generation of gene products. Intrahepatic transfection of a dimer of this viral genome into ducklings did not result in viremia or any sign of virus infection, indicating that the genome was defective. Functional analysis of this mutant genome, performed by transfecting the DNA into a chicken hepatoma cell line capable of replicating wild-type virus, indicated that viral RNA is not encapsidated. However, virus core protein is made and can assemble into particles in the absence of encapsidation of viral nucleic acid. Using genetic approaches, it was determined that a change of cysteine to tyrosine in position 711 in the polymerase (P) gene C terminus led to this RNA-packaging defect. By site-directed mutagenesis, it was found that while substitution of Cys-711 with tryptophan also abolished packaging, substitution with methionine did not affect packaging or viral replication. Therefore, Cys-711, which is conserved in all published sequences of DHBV, may not be involved in a disulfide bridge structure essential to viral RNA packaging or replication. Our results, showing that a missense mutation in the region of the DHBV polymerase protein thought to be primarily the RNase H domain results in packaging deficiency, support the previous findings that multiple regions of the complex hepadnaviral polymerase protein may be required for viral RNA packaging.  相似文献   

19.
Persistence of hepatitis B virus (HBV) infection requires covalently closed circular (ccc)DNA formation and amplification, which can occur via intracellular recycling of the viral polymerase-linked relaxed circular (rc) DNA genomes present in virions. Here we reveal a fundamental difference between HBV and the related duck hepatitis B virus (DHBV) in the recycling mechanism. Direct comparison of HBV and DHBV cccDNA amplification in cross-species transfection experiments showed that, in the same human cell background, DHBV but not HBV rcDNA converts efficiently into cccDNA. By characterizing the distinct forms of HBV and DHBV rcDNA accumulating in the cells we find that nuclear import, complete versus partial release from the capsid and complete versus partial removal of the covalently bound polymerase contribute to limiting HBV cccDNA formation; particularly, we identify genome region-selectively opened nuclear capsids as a putative novel HBV uncoating intermediate. However, the presence in the nucleus of around 40% of completely uncoated rcDNA that lacks most if not all of the covalently bound protein strongly suggests a major block further downstream that operates in the HBV but not DHBV recycling pathway. In summary, our results uncover an unexpected contribution of the virus to cccDNA formation that might help to better understand the persistence of HBV infection. Moreover, efficient DHBV cccDNA formation in human hepatoma cells should greatly facilitate experimental identification, and possibly inhibition, of the human cell factors involved in the process.  相似文献   

20.
We have constructed a recombinant pBR322 plasmid composed of a subgenomic transforming fragment of bovine papillomavirus DNA and the hepatitis B surface antigen gene from cloned hepatitis B virus DNA and used it for transfection of NIH 3T3 mouse fibroblasts. The transformed cells retain the plasmids in extrachromosomal form with a copy number of about 50 to 100 per cell. Expression of the hepatitis B surface antigen gene linked to bovine papillomavirus DNA is independent of its orientation relative to the bovine papillomavirus vector. Cell lines continuously secreting high amounts of hepatitis B surface antigen into the medium could be established. The antigen is released into the culture medium as 22-nm particles, having the same physical properties and constituent polypeptides as those found in the serum of hepatitis B virus-infected patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号