首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plants interact with their environment by producing a diverse array of secondary metabolites. A majority of these compounds are phenylpropanoids and flavonoids which are valued for their medicinal and agricultural properties. The phenylpropanoid biosynthesis pathway proceeds with the basic C6-C3 carbon skeleton of phenylalanine, and involves a wide range of enzymes viz., phenylalanine ammonia lyase, coumarate hydroxylase, coumarate ligase, chalcone synthase, chalcone reductase and chalcone isomerase. Recently, bacteria have also been shown to contain homodimeric polyketide synthases belonging to the plant chalcone synthase superfamily linking the capabilities of plants and bacteria in the biosynthesis of flavonoids. We report here the presence of genes encoding the core enzymes of the phenylpropanoid pathway in an industrially useful fungus, Aspergillus oryzae. Although the assignment of enzyme function must be confirmed by further biochemical evidences, this work has allowed us to anticipate the phenylpropanoid metabolism profile in a filamentous fungus for the first time and paves way for research on identifying novel fungal flavonoid-like metabolites.  相似文献   

2.
Zhao G  Hou L  Yao Y  Wang C  Cao X 《Journal of Proteomics》2012,75(13):3914-3924
Aspergillus oryzae plays a central role in soybean fermentation, particularly in its contribution to the flavor of soy sauce. We present a comparative assessment of the intracellular differences between wild-type strain 3.042 and mutant strain A100-8, at the proteome level. 522 different protein spots were identified by MALDI-TOF MS, with 134 spots being confirmed by MALDI-TOF MS/MS. Of these, 451 were differentially expressed proteins (DEPs). There was at least a two-fold increase for 288 spots, and at least a two-fold decrease for 163 spots, in strain A100-8 when compared to 3.042. Further analysis showed that 63 of the more abundant proteins were involved in glycolysis and the citrate cycle; 43 more abundant proteins and 10 less abundant proteins were related to amino acid biosynthesis and metabolism; two of the more abundant proteins were involved in vitamin biosynthesis; and five of the more abundant proteins and four of the less abundant proteins were related to secondary metabolites. Moreover, quantitative real time PCR showed that the mRNA expression levels of six typical genes we selected were consistent with changes in protein expression. We postulate that there may be a relationship between DEPs and the flavor formation mechanism in A. oryzae.  相似文献   

3.
Campylobacter jejuni is one of the most intriguing human foodborne bacterial pathogen. Its survival throughout the food processing chain and its pathogenesis mechanisms in humans remain enigmatic. Living in the animal guts and particularly in avian intestine as a commensal bacterium, this microorganism is frequently isolated from meat products. Ultra high pressure (HP) is a promising alternative to thermal technology for microbial safety of foodstuffs with less organoleptic and nutritional alterations. Its application could be extended to meat products potentially contaminated by C. jejuni. To evaluate the response of Campylobacter to this technological stress and subsequent recovery at a molecular level, a dynamic 2-DE-based proteomic approach has been implemented. After cultivation, C. jejuni cells were conditioned in a high-pressure chamber and transferred to fresh medium for recovery. The protein abundance dynamics at the proteome scale were analyzed by 2-DE during the cellular process of cell injury and recovery. Monitoring protein abundance through time unraveled the basic metabolisms involved in this cellular process. The significance of the proteome evolution modulated by HP and subsequent recovery is discussed in the context of a specific cellular response to stress and recovery of C. jejuni with 69 spots showing significant changes through time.  相似文献   

4.
The effect of temperature (20-70 °C) on the gelatinization and retrogradation of potato starch-water mixtures (10-70%, w/w) treated with high hydrostatic pressure (HHP) (400-1000 MPa) was investigated. Gelatinization enthalpy change (ΔHgel) and re-gelatinization enthalpy change of retrograded crystalline part (ΔHretro) of the HHP-treated starch were evaluated using differential scanning calorimetry. The value of ΔHgel of 10-20% (w/w) mixtures decreased with increased pressure and temperature, while ΔHgel of 30-50% (w/w) mixtures decreased to certain values with increased pressure and the values depended on treatment temperature. With higher temperature and pressure conditions, ΔHgel of 10-40% (w/w) mixtures reached zero, but ΔHgel of 50-70% (w/w) mixtures did not. Retrogradation was observed with HHP-treated 20-60% (w/w) mixtures and the value of ΔHretro depended on the starch content, pressure, and temperature. The value of ΔHretro trended to increase with increase in starch content. In addition, retrogradation was promoted by HHP treatment at low temperature. Gelatinizaiton and retrogradation behaviors of HHP-treated (400-1000 MPa) potato starch-water mixtures (10-70%, w/w) at 20-70 °C were summerized in a series of state diagrams.  相似文献   

5.
Cytoplasmic dynein is a minus-end-directed, microtubule-dependent motor protein complex. DhcA, cytoplasmic dynein heavy chain in Aspergillus oryzae, contained four P-loops involved in ATP binding which were conserved as in cytoplasmic dynein heavy chains of other organisms. The amino acid sequence of A. oryzae DhcA was similar to cytoplasmic dynein heavy chains from other organisms except for the N-terminus of Saccharomyces cerevisiae Dyn1. Disruption of dhcA gene in the region encoding four P-loop motifs resulted in a defective growth and perturbed distribution of nuclei and vacuoles. The dhcA disruptant exhibited an abnormal morphology of conidial heads and conidia with an increased nuclear number. The present study implicates a novel role of cytoplasmic dynein in maintenance of the nuclear number in conidia through an organized conidiation.  相似文献   

6.
The survival curves of Listeria innocua CDW47 by high hydrostatic pressure were obtained at four pressure levels (138, 207, 276, 345 MPa) and four temperatures (25, 35, 45, 50 degrees C) in peptone solution. Tailing was observed in the survival curves. Elevated temperatures and pressures substantially promoted the inactivation of L. innocua. A linear and two non-linear (Weibull and log-logistic) models were fitted to these data and the goodness of fit of these models were compared. Regression coefficients (R2), root mean square (RMSE), accuracy factor (Af) values and residual plots suggested that linear model, although it produced good fits for some pressure-temperature combinations, was not as appropriate as non-linear models to represent the data. The residual and correlation plots strongly suggested that among the non linear models studied the log-logistic model produced better fit to the data than the Weibull model. Such pressure-temperature inactivation models form the engineering basis for design, evaluation and optimization of high hydrostatic pressure processes as a new preservation technique.  相似文献   

7.
8.
Fructooligosaccharides (FOSs) were prepared from sucrose using fungal fructosyl transferase (FTase) obtained from Aspergillus oryzae MTCC 5154. The resulting mixture consisted of glucose (28-30%), sucrose (18-20%) and fructooligosaccharides (50-54%) as indicated by HPLC analysis. Identification of oligomers present in the mixture of fructooligosaccharides was carried out using NMR spectroscopy and LC-MS. No compounds other than mono-, di-, tri-, tetra- and pentasaccharides were identified in the FOS mixture prepared using FTase. NMR and LC-MS spectra proved the absence of any toxic microbial metabolites of Aspergillus species in FOS thereby emphasizing its safe use as a food ingredient. Animal studies conducted on streptozotocin-induced diabetic rats suggested that the use of FOS as an alternative non-nutrient sweetener is without any adverse effects on various diabetes-related metabolic parameters. Despite the high free-sugar content associated with it, FOS did not further aggravate the hyperglycemia and glucosuria in diabetic animals, even at 10% levels. On the other hand, by virtue of its soluble fibre effect, it has even alleviated diabetic-related metabolic complications to a certain degree.  相似文献   

9.
The production of endo and exo-polygalacturonase (PG) by Aspergillus oryzae IPT 301 was studied in a stirred tank bioreactor (STR) and an internal circulation airlift bioreactor. Using a factorial experimental design, a soluble culture medium was defined which allowed the production of exo- and endo-PG comparable to that obtained in a medium containing suspended wheat bran. The soluble medium was used in tests to compare the production of these enzymes in the STR and airlift bioreactor. In these tests, after 96 h, maximum enzymatic activity values achieved for exo- and endo-PG were 65.2 units (U) per mL and 91.3 U mL−1, in the STR, with similar activity values of 60.6 U mL−1 and 86.2 U mL−1, respectively, being achieved in the airlift bioreactor. The airlift bioreactor also showed satisfactory results regarding the oxygen transfer rate in this process, indicating its potential to be used in an eventual larger scale production of exo- and endo-PG, with lower costs for both installation and operation.  相似文献   

10.
Vps24 (vacuolar protein sorting) is a component of ESCRT III (endosomal sorting complex required for transport), which is required for the formation of MVB (multivesicular body). We have isolated the VPS24 homologue gene, Aovps24, from the filamentous fungus Aspergillus oryzae, and analyzed the localization of AoVps24 using EGFP. AoVps24 was localized in the cytoplasm and late endosome-like structures. Furthermore, we constructed an Aovps24 disruptant, which showed impaired growth, conidiation, and hyphal morphology. In addition, normal vacuoles were not observed in the Aovps24 disruptant. In the Saccharomyces cerevisiae vps24 disruptant, the normal vacuoles are formed and it does not show the impaired growth and abnormal cell shape as the A. oryzae Aovps24 disruptant. The results suggest that AoVps24 is required for vacuolar formation and normal vacuoles could have the function to maintain the normal hyphal elongation and conidiation in A. oryzae.  相似文献   

11.
12.
The gene tanLpl, encoding a novel tannase enzyme (TanLpl), has been cloned from Lactobacillus plantarum ATCC 14917(T). This is the first report of a tannase gene cloned from a bacterial source other than from Staphylococcus lugdunensis, which has been reported elsewhere. The open reading frame of tanLpl, spanning 1410 bp, encoded a 469-amino-acid protein that showed 28.8% identity to the tannase of S. lugdunensis with several commonly conserved sequences. These sequences could not be found in putative tannases reported for other bacteria and fungi. TanLpl was expressed in Escherichia coli DH5alpha from a pGEM-T expression system and purified. SDS-PAGE analysis indicated that purified TanLpl was a monomer polypeptide of approximately 50 kDa in size. Subsequent enzymatic characterization revealed that TanLpl was most active in an alkaline pH range at 40 degrees C, which was quite different from that observed for a fungal tannase of Aspergillus oryzae. In addition, the Michaelis-Menten constant of TanLpl was markedly lower than that of A. oryzae tannase. The evidence suggests that TanLpl should be classified into a novel family of tannases.  相似文献   

13.
High intensity focused ultrasound (HIFU) is a new non-invasive technique which can cause cell death and tissue necrosis by focusing high-energy ultrasonic waves on a single location. The aim of our work is to investigate the damaging effect of HIFU on Echinococcus granulosus protoscolices, as well as its inhibitory effect on growth of hydatid cysts derived from protoscolices. The damaging effect of HIFU on protoscolices was investigated by following parasite mortality after irradiation, while the inhibitory effect was investigated by infection experiments in vivo. The results demonstrated that HIFU was able to damage protoscolices and the protoscolicidal effect was dose-dependent and showed late-onset. The growth of protoscolices that survived the exposure to HIFU was obviously suppressed in vitro, and the mean weight of hydatid cysts resulting from such protoscolices in the experimental group was less than that in controls. Evidences including the protoscolicidal effect, fragmentized protoscolices and low post exposure temperatures, suggest that cavitation may contribute to the protoscolicidal effect of HIFU. In addition, the structure of the germinal membrane in cysts developing from the irradiated protoscolices was not as normal or intact as that from non-irradiated ones, and morphological changes related to degeneration were observed, suggesting that HIFU could prevent protoscolices from developing normal germinal membrane and consequently stop the proliferation of secondary hydatid cysts. HIFU demonstrated damaging effect on protoscolices, inhibited the growth of protoscolices in vitro and in vivo, and could be a possible therapeutic option for cystic echinococcosis.  相似文献   

14.
《Process Biochemistry》2014,49(1):54-60
The application of high hydrostatic pressure (HHP) impairs electrostatic and hydrophobic intermolecular interactions, promoting the dissociation of recombinant inclusion bodies (IBs) under mild conditions that favor subsequent protein refolding. We demonstrated that IBs of a mutant version of green fluorescent protein (eGFP F64L/S65T), produced at 37 °C, present native-like secondary and tertiary structures that are progressively lost with an increase in bacterial cultivation temperature. The IBs produced at 37 °C are more efficiently dissociated at 2.4 kbar than those produced at 47 °C, yielding 25 times more soluble, functional eGFP after the lower pressure (0.69 kbar) refolding step. The association of a negative temperature (−9 °C) with HHP enhances the efficiency of solubilization of IBs and of eGFP refolding. The rate of refolding of eGFP as temperature increases from 10 °C to 50 °C is proportional to the temperature, and a higher yield was obtained at 20 °C. High level refolding yield (92%) was obtained by adjusting the temperatures of expression of IBs (37 °C), of their dissociation at HHP (−9 °C) and of eGFP refolding (20 °C). Our data highlight new prospects for the refolding of proteins, a process of fundamental interest in modern biotechnology.  相似文献   

15.
The X-ray structures of Aspergillus oryzae aspartic proteinase (AOAP) and its complex with inhibitor pepstatin have been determined at 1.9A resolution. AOAP was crystallized in an orthorhombic system with the space group P2(1)2(1)2(1) and cell dimensions of a=49.4A, b=79.4A, and c=93.6A. By the soaking of pepstatin, crystals are transformed into a monoclinic system with the space group C2 and cell dimensions of a=106.8A, b=38.6A, c=78.7A, and beta=120.3 degrees. The structures of AOAP and AOAP/pepstatin complex were refined to an R-factor of 0.177 (R(free)=0.213) and of 0.185 (0.221), respectively. AOAP has a crescent-shaped structure with two lobes (N-lobe and C-lobe) and the deep active site cleft is constructed between them. At the center of the active site cleft, two Asp residues (Asp33 and Asp214) form the active dyad with a hydrogen bonding solvent molecule between them. Pepstatin binds to the active site cleft via hydrogen bonds and hydrophobic interactions with the enzyme. The structures of AOAP and AOAP/pepstatin complex including interactions between the enzyme and pepstatin are very similar to those of other structure-solved aspartic proteinases and their complexes with pepstatin. Generally, aspartic proteinases cleave a peptide bond between hydrophobic amino acid residues, but AOAP can also recognize the Lys/Arg residue as well as hydrophobic amino acid residues, leading to the activation of trypsinogen and chymotrypsinogen. The X-ray structure of AOAP/pepstatin complex and preliminary modeling show two possible sites of recognition for the positively charged groups of Lys/Arg residues around the active site of AOAP.  相似文献   

16.
17.
Endocytosis is an important process for cellular activities. However, in filamentous fungi, the existence of endocytosis has been so far elusive. In this study, we used AoUapC-EGFP, the fusion protein of a putative uric acid-xanthine permease with enhanced green fluorescent protein (EGFP) in Aspergillus oryzae, to examine whether the endocytic process occurs or not. Upon the addition of ammonium into the medium the fusion protein was internalized from the plasma membrane. The internalization of AoUapC-EGFP was completely blocked by sodium azide, cold, and cytochalasin A treatments, suggesting that the internalization possesses the general features of endocytosis. These results demonstrate the occurrence of endocytosis in filamentous fungi. Moreover, we discovered that the endosomal compartments appeared upon the induction of endocytosis and moved in a microtubule-dependent manner.  相似文献   

18.
Identification of genes encoding type III polyketide synthase (PKS) superfamily members in the industrially useful filamentous fungus, Aspergillus oryzae, revealed that their distribution is not specific to plants or bacteria. Among other Aspergilli (Aspergillus nidulans and Aspergillus fumigatus), A. oryzae was unique in possessing four chalcone synthase (CHS)-like genes (csyA, csyB, csyC, and csyD). Expression of csyA, csyB, and csyD genes was confirmed by RT-PCR. Comparative genome analyses revealed single putative type III PKS in Neurospora crassa and Fusarium graminearum, two each in Magnaporthe grisea and Podospora anserina, and three in Phenarocheate chrysosporium, with a phylogenic distinction from bacteria and plants. Conservation of catalytic residues in the CHSs across species implicated enzymatically active nature of these newly discovered homologs.  相似文献   

19.
The impact of high pressure and freezing on survivability of Escherichia coli and human red blood cells was evaluated to determine the utility of high-pressure transitions for preserving living cells. Based on microscopy and survivability, high pressures did not directly impact physical damage to living cells. E. coli studies showed that increased cell death is due to indirect phenomena with decreasing survivability at increasingly high pressures and exposure times. Pressurization rates up to 1.4kbar/min had negligible effects relative to exposures of >5min at high pressures.Both glycine and control of pH near 7.0 were successful in reducing the adverse impacts of high pressure. Survivability increased from <1% at 5min exposure to 2.1kbar of pressure to typical values >20%. The combination of glycine and the buffer salt led to even further improvements in survivability. Pressure changes were used to traverse temperature and pressures consistent with Ice I and Ice III phase boundaries of pure water.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号