首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background and Aims

Disturbances occur in most ecological systems, and play an important role in biological invasions. We delimit five key disturbance aspects: intensity, frequency, timing, duration and extent. Few studies address more than one of these aspects, yet interactions and interdependence between aspects may lead to complex outcomes.

Methods

In a two-cohort experimental study, we examined how multiple aspects (intensity, frequency and timing) of a mowing disturbance regime affect the survival, phenology, growth and reproduction of an invasive thistle Carduus nutans (musk thistle).

Key Results

Our results show that high intensity and late timing strongly delay flowering phenology and reduce plant survival, capitulum production and plant height. A significant interaction between intensity and timing further magnifies the main effects. Unexpectedly, high frequency alone did not effectively reduce reproduction. However, a study examining only frequency and intensity, and not timing, would have erroneously attributed the importance of timing to frequency.

Conclusions

We used management of an invasive species as an example to demonstrate the importance of a multiple-aspect disturbance framework. Failure to consider possible interactions, and the inherent interdependence of certain aspects, could result in misinterpretation and inappropriate management efforts. This framework can be broadly applied to improve our understanding of disturbance effects on individual responses, population dynamics and community composition.  相似文献   

2.
Life history theory predicts that larger propagules should be produced when the offspring are expected to experience intense competition. This study tested whether female cowpea weevils responded to high larval or adult density by producing larger eggs. In a splitbrood design I measured the effect of density experienced by females at their larval stage (1 vs. 4–6 larvae/cowpea) on the size of eggs produced just after emergence. The females were then kept either at low adult density (1 female+1 male per vial), or at high adult density (10 females+10 males) for 2 days, and tested for the effect of this adult density treatment on the size of eggs laid subsequently. I measured egg length and width, as well as the diameter of the entrance tunnel made by the larva, which can be regarded as a crude measure of larval size. Females that experienced high adult density subsequently laid slightly wider eggs than those kept at low density. This difference, albeit small (about 1–4% after correction for female weight and the effect of family, depending on the statistical model used), was statistically significant and robust to alterations of the statistical model. It may be a remnant of a larger plastic response of egg size to competition that has become eroded during many generations in high-density laboratory cultures. There was no difference in egg length or the diameter of the entrance tunnel. Eggs laid just after emergence by females reared at high larval density also tended to be wider than those produced by females that had no competitors. This effect was only marginally significant, however, and sensitive to the statistical model. Both egg length and width and the diameter of the entrance tunnel increased with female weight and decreased with female age. The tunnel diameter was positively correlated with both egg length and width, but the effect of width was larger.  相似文献   

3.
Nonnative plant species commonly occur along roadsides, and populations are often assumed to invade by spread along the road axis. To distinguish between the function of roadsides as movement corridors and as habitat, nonnative plant species were surveyed along roads in deciduous forest sites in southeastern Ohio, USA. The importance of road proximity was tested by comparing nonnative species abundance in 100 m transects along roads with transects in undisturbed forest. Nonnative species were most abundant and most frequently observed in roadside sites in valleys. Three common species were chosen for closer scrutiny. In a seed sowing experiment roads and open sites proved to be better locations for the germination and growth of Microstegium vimineum than non-roadside and closed-canopy sites. Tussilago farfara and Rosa multiflora occurred in a small number of disjunct patches suggesting infrequent arrival in the sampled transects. Both species were strongly clustered at scales consistent with diffusive spread by vegetative growth and short-range seed dispersal. Comparisons of distributions parallel and perpendicular to roads showed no evidence for enhanced dispersal along the road axis. Microstegium distributions were correlated with local light availability implying site saturation. Microstegium micro-distributions suggested that spread along the road axis was facilitated by movement of dormant seeds in road maintenance. Thus, roadsides appear to function as both habitat and a conduit for population expansion, with the rate of spread dependent on the life history of the individual species. These results suggest a hierarchical process of regional invasion, with different dispersal mechanisms functioning at different spatial scales.  相似文献   

4.
Plant–pollinator interactions determine reproductive success for animal-pollinated species and, in the case of invasive plants, they are supposed to play an important role in invasive success. We compared the invasive Senecio inaequidens to its native congener S. jacobaea in terms of interactions with pollinators. Visitor guild, visitation rate, and seed set were compared over 3 years in three sites in Belgium. Floral display (capitula number and arrangement) and phenology were quantified, and visiting insects were individually censused, i.e. number of visited capitula and time per visited capitulum. As expected from capitula resemblance, visitor guilds of both species were very similar (proportional similarity = 0.94). Senecio inaequidens was visited by 33 species, versus 36 for S. jacobaea. For both species, main visitors were Diptera, especially Syrphidae, and Hymenoptera. Visitation rate averaged 0.13 visitor per capitulum per 10 min for S. inaequidens against 0.08 for S. jacobaea. However, insects visited more capitula per plant on S. jacobaea, due to high capitula density (886 m−2 versus 206 m−2 for S. inaequidens), which is likely to increase self-pollen deposition considerably. Seed set of S. jacobaea was lower than that of S. inaequidens. We suggest that floral display is the major factor explaining the differences in insect visitation and seed set between the two Senecio species.  相似文献   

5.
Many invasive alien plants occur in large populations with abundant flowers which are highly attractive to pollinators, and thus might affect pollination of co-occurring native species. This study focuses on the invasive Heracleum mantegazzianum and distance-dependent effects on pollination of Mimulus guttatus in abandoned grassland over 2 years. First, we examined pollinator abundance in yellow traps at 0, 10, 30 and 60–200 m from H. mantegazzianum. We then placed M. guttatus plants at the same distances to monitor effects of the invasive species on pollinator visitation and seed set of neighbouring plants. Finally, we conducted a garden experiment to test if deposition of H. mantegazzianum pollen reduces seed set in M. guttatus. No distance effect was found for the number of bumblebees in traps, although the invasive species attracted a diverse assemblage of insects, and visitation of M. guttatus was enhanced close to H. mantegazzianum. This positive effect was not reflected by seed set of M. guttatus, and heterospecific pollen decreased seed set in these plants. Overall there is little evidence for negative effects of the invasive species on pollination of neighbouring plants, and flower visitation even increases close to the invaded patches. The functional role of the invader and suitable control strategies need further clarification, since removal of H. mantegazzianum may actually damage local pollinator populations. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
Pollen limitation through insufficient pollen deposition on stigmas caused by too infrequent pollinator visitation may influence the reproductive outcome of plants. In this study we investigated how pollinator visitation rate, the degree of pollen limitation, and flower longevity varied spatially among three sites at different altitudes within a population of the dwarf shrub Dryas octopetala L. in alpine southern Norway. Significant pollen limitation on seed set only occurred at the mid-elevation site, while seed set at the other sites appeared to be mainly resource limited, thus indicating a spatial variation in pollen limitation. There was no association between the spatial variation in the extent of pollen limitation and pollinator visitation rate to flowers. However, pollinator visitation rates were related to flower longevity of Dryas; sites with low visitation rates had long-lived flowers and vice versa. Thus, our results suggest within-population spatial co-variation between pollinator visitation rates, pollen limitation, and a developmental response to these factors, flower longevity.  相似文献   

7.
Plants can reduce the fitness costs of granivory by satiating seed predators. The most common satiation mechanism is the production of large crops, which ensures that a proportion of the seeds survive predation. Nevertheless, satiation of small granivores at the seed level may also exist. Larger seeds would satiate more efficiently, enhancing the probability of seed survival after having been attacked. However, a larger seed size could compromise the efficiency of satiation by means of large crops if there were a negative relationship between seed size and the number of seeds produced by an individual plant. We analyze both types of satiation in the interaction between the holm oak Quercus ilex and the chestnut weevil Curculio elephas. Both crop size and acorn size differed strongly in a sample of 32 trees. Larger crop sizes satiated weevils, and higher proportions of the seeds were not attacked as crop size increased. Larger seeds also satiated weevil larvae, as a larger acorn size increased the likelihood of embryo survival. Seedling size was strongly related to acorn size and was reduced by weevil attack, but seedlings coming from large weeviled acorns were still larger. The number and the size of the acorns produced by individual trees were negatively related. Larger proportions of the crop were infested in oaks producing less numerous crops of larger acorns. However, contrary to expectations, these trees did not satiate more effectively at the seed level either. Effective satiation by larger acorns was precluded by larger multi-infestation rates associated to smaller seed crops, in such a way that the proportion of attacked seeds that survived did not vary among trees with different acorn sizes. These results highlight the need of considering satiation by means of large crops and large seeds in studies of predispersal seed predation. Long-term monitoring on individual oaks will help to assess whether there is a trade-off between the number and the size of the acorns and, if it existed, how it could condition the fitness consequences of both types of satiation.  相似文献   

8.
The accumulation of specific seed proteins is a taxonomically valuable feature and can be used to additionally characterize plant taxa. To date, mainly crop proteins have been analysed in thePoaceae. In this investigation seed proteins from 147 species were screened with emphasis on legumin-like proteins and prolamins. The groups resulting from evaluation of the protein profiles correspond with well-known subfamilies and tribes.Panicoideae are clearly separated fromPooideae. WithinPooideae, theBromeae plusTriticeae tribes revealed obvious similarities.Lolium, Festuca andVulpia, generally included in the tribeFestuceae, revealed a protein profile similar to the profile of theBromeae/Triticeae. Legumin-like proteins are accumulated abundantly inBambusoideae andPooideae exceptBromeae/Triticeae, however, only the species included in theAveninae subtribe produce soluble (globulin-type) legumins as already known fromAvena sativa. Dedicated to emer. Univ.-Prof. DrFriedrich Ehrendorfer on the occasion of his 70th birthday  相似文献   

9.
The relative importance of seed, habitat and microhabitat limitation has rarely been investigated for invasive non-native species, although this is critical for their effective management and for predicting future range expansion. Rosa rugosa is an abundant non-native shrub in coastal habitats of NW Europe; it is common along the Baltic coast but more scarce in exposed dunes of the North Sea. To investigate whether invasion of exposed dunes is limited by seed, habitat and microhabitat limitation, seedling emergence and establishment were examined in a factorial sowing, transplant and disturbance experiment. Twenty plots were randomly placed in each of five dune habitats (white dune, Empetrum dune, grey dune, outer dune heath, inner dune heath), and studied over 2 years. Seedling emergence in control subplots was zero in all habitats, whereas 96% and 98% of the undisturbed and disturbed seeded subplots produced seedlings. Disturbance had a positive effect on emergence and subsequent survival in white dune, outer and inner dune heath. Seedling survival and growth, and growth of transplanted seedlings, were markedly lower in grey dune. These findings indicate that establishment of R. rugosa is seed-limited in coastal dune habitats, and that the species is able to establish in both active and fixed dunes once seeds have arrived. Although differential seedling emergence and growth indicate that habitats differ in their degree of invasion susceptibility by R. rugosa, the positive influence of small-scale disturbance suggests microhabitat limitation in some dune habitats as well. Dune management should aim to reduce seed production and dispersal of R. rugosa in near-natural sites, and anthropogenic changes of habitat dynamics should be prevented.  相似文献   

10.
This study tested a vegetation strategy for controlling Phragmites australis invasion into brackish marshes as an alternative to the current technique of repeated herbicide sprays followed by burning. This strategy involves blocking P. australis by planting desired plants selected from wild populations and/or tissue culture regenerants at key points on the major routes of P. australis invasion. The planting of native species was conducted at three sites in a herbicide-treated P. australis marsh near Salem, NJ. Wild population selections of three upland marsh shrubs, Myrica cerifera, Baccharis halimifolia, and Iva frutescens, as well as two grass species, Spartina alterniflora and Spartina patens, and two rushes, Juncus gerardi and Juncus roemerianus, were planted according to their normal zonation positions. Tissue culture regenerated plants of the two grasses and two rushes, and the sedge species Scirpus robustus, were also planted. Plant growth at each site was monitored each year after planting for up to 3 years. Most plants of B. halimifolia, I. frutescens, J. roemerianus, and S. patens demonstrated a consistent vigorous growth at all three sites, whether or not the plants were collected from wild populations or were tissue culture regenerants. These multi-layered walls of plants demonstrated effectiveness in controlling the P. australis by restricting or inhibiting its spread. Upon screening 48 regenerated plants of S. patens at one of the three sites, we found that some regenerants showed enhanced characteristics for blocking P. australis, such as greater expansion and a high stem density. The availability of the tissue culture-regenerated plants of the native marsh species makes it possible to select lines from local genotypes that have desirable characteristics for wetland restoration projects, such as blocking P. australis reinvasion.  相似文献   

11.
In addition to effects mediated by resource competition, some invasive plants may impact surrounding vegetation by secreting compounds that are directly inhibitory to growth. Lonicera maackii, an invasive Asian shrub of forests and open areas in eastern and midwestern North America, has devastating effects on understory vegetation, some of which persist even after this shrub is removed. In this study, we explored the potential of aqueous extracts of the leaves and roots of this plant to inhibit seed germination of Impatiens capensis, Alliaria petiolata, Arabidopsis thaliana, and L. maackii in Petri dish bioassays. Both L. maackii root and leaf extracts significantly decreased germination in the three herb species. This inhibitory effect generally increased with increasing extract concentration and was more pronounced with application of leaf extract than root extract. However, when the same extracts were applied to seeds of L. maackii itself, germination was delayed in some cases, but was not significantly reduced by the end of the experiment. Germination of L. maackii seeds even reached significantly higher levels in some extract treatments than in no-extract controls. This implies that L. maackii can successfully inhibit the germination of other plants with few autotoxic effects and may even promote the germination of its own seeds.  相似文献   

12.
Populations of invasive species often exhibit a high degree of spatial and temporal variability in abundance and hence their effects on resident communities. Here, we examine behavioural, genetic and environmental factors that influence variation in populations of the yellow crazy ant, Anoplolepis gracilipes, on the remote Nukunonu Atoll of Tokelau, Pacific Ocean. Behavioural assays revealed high levels of aggression between two groups of yellow crazy ants from different islands, and genetic analysis confirmed the presence of two distinct populations with unique mitochondrial (mt)DNA haplotypes, designated A and D. The two populations likely resulted from two separate invasion events. The populations exhibited significant differences in abundance of A. gracilipes, with a mean sevenfold difference in relative abundance between the two main haplotypes. The higher density haplotype D population coexisted with 50% fewer other ant species and altered ant community composition. Vegetation composition was also significantly different on islands harbouring the two populations. The results suggest genetic differences could play a role in the spatial and temporal variation in the effect of the yellow crazy ant on a small oceanic atoll. We could not differentiate between genetic effects and effects of vegetation. However, our results indicate that spatial variability in behaviour and impacts within populations of invasive species could be in part due to genetic differences, and play a substantial role in influencing the outcome of biological invasions.  相似文献   

13.
Three methodological approaches were combined to assess the population dynamics of woody species, particularly birch, growing along the shores of the Dalälven river in eastern central Sweden. 1) Seed rain, seed bank and seedling densities were estimated to document the current recruitment potential. 2) Seed burial experiments were performed and artificial gaps in the field layer created to obtain additional information on germination and establishment processes. 3) Age distributions were used for retrospective interpretation of woody species successions.The zonation of the vegetation along transects from wet meadow into forest cannot be interpreted as a chronosequence. Storm gap formation, water level regulation and cessation of hay-making in the past were followed by episodic colonisation and regeneration of several woody species.Although birch seed rain is most abundant close to parent trees and the half-life of the birch seed bank increases with decreasing submersion, seedlings occur abundantly everywhere along the transects. Seedling mortality, however, is 100% and the current environmental conditions in the wet meadows and in the forest do not allow any establishment. Long-lasting submersion, shading by trees and interference by species from the field layer hampered or prevented birch establishment.  相似文献   

14.
Summary Artemisia tridentata seedlings were grown under carbon dioxide concentrations of 350 and 650 l l–1 and two levels of soil nutrition. In the high nutrient treatment, increasing CO2 led to a doubling of shoot mass, whereas nutrient limitation completely constrained the response to elevated CO2. Root biomass was unaffected by any treatment. Plant root/shoot ratios declined under carbon dioxide enrichment but increased under low nutrient availability, thus the ratio was apparently controlled by changes in carbon allocation to shoot mass alone. Growth under CO2 enrichment increased the starch concentrations of leaves grown under both nutrient regimes, while increased CO2 and low nutrient availability acted in concert to reduce leaf nitrogen concentration and water content. Carbon dioxide enrichment and soil nutrient limitation both acted to increase the balance of leaf storage carbohydrate versus nitrogen (C/N). The two treatment effects were significantly interactive in that nutrient limitation slightly reduced the C/N balance among the high-CO2 plants. Leaf volatile terpene concentration increased only in the nutrient limited plants and did not follow the overall increase in leaf C/N ratio. Grasshopper consumption was significantly greater on host leaves grown under CO2 enrichment but was reduced on leaves grown under low nutrient availability. An overall negative relationship of consumption versus leaf volatile concentration suggests that terpenes may have been one of several important leaf characteristics limiting consumption of the low nutrient hosts. Digestibility of host leaves grown under the high CO2 treatment was significantly increased and was related to high leaf starch content. Grasshopper growth efficiency (ECI) was significantly reduced by the nutrient limitation treatment but co-varied with leaf water content.  相似文献   

15.
Japanese knotweed s.l. comprises Fallopia japonica, F. sachalinensis, F. × bohemica and any F2s or backcrosses. The parental taxa were introduced from the East to the West as garden ornamentals in the nineteenth century, and soon spread beyond the confines of the garden to become widespread and persistent weeds. Since only female F. japonica var. japonica was introduced, its impressive spread has occurred solely by vegetative means. However, the initial lack of genetic variability has been complemented by an extensive series of hybridisations in the adventive range. We examine the history, spread, reproductive biology and ecological impact of these species in the West. The role and importance of polyploidy and hybridisation in their invasion of the West is discussed, as are the implications of these factors for the potential further evolution of the group.  相似文献   

16.
The expected outcome of weed control in natural systems is that the decline of a dominant weed will result in an increase in diversity of the plant community but this has seldom been tested. Here we evaluate the response of the plant community following the decline of diffuse knapweed (Centaurea diffusa) in six different pastures at White Lake, BC, Canada over five years. This period followed the establishment, spread and high levels of attack by the introduced European weevil, Larinus minutus, as part of a biological control program. Knapweed declined immediately before and during the study period, but, contrary to expectations, the species richness and diversity of the rangeland plant community did not increase. The absolute cover of native and introduced forbs and grasses increased following knapweed decline, but only the introduced grasses showed a consistent increase in cover relative to the other life-forms. However, unlike in other studies, the native plants dominated the study site. We conclude that the changes in plant communities following successful biological control are variable among programs and that the impact of replacement species must be evaluated in assessing the success of ecological restoration programs that use biological control to manage an undesirable weed.  相似文献   

17.
18.
French and Moroccan populations of the parasitoid Microctonus aethiopoides Loan were studied in the laboratory for their host selection, mating behavior, and reproductive success. The French strain, collected on Hypera postica (Gyllenhal), although capable of parasitizing and producing viable offspring on Sitona weevils, preferred Hypera weevils, its known target host. The Moroccan strain, collected on Sitona discoideus Gyllenhal, exhibited host specificity for Sitona. A partial reproductive isolation was observed between the two strains. Moroccan females mated more frequently with French males than did French females with Moroccan males. The pre-copulation time for mating pairs of opposite strains was significantly longer than that for mating pairs of the same strain. There was no significant difference in copulation time nor in larval and pupal duration between French and Moroccan strains. In summary, the French and Moroccan strains of M. aethiopoides are clearly separable by biological, behavioral, and morphometric traits and the preferred host for Hypera is the French strain and Sitona for the Moroccan strain. Consequently, geographic location and host source become important when considering this parasitoid as a potential biological control agent.  相似文献   

19.
In order to assess the mechanisms through which the spatial structure of the population influences female reproductive success, spatial distribution of clones, degrees of limitation of legitimate (inter-morph) pollination, type and abundance of pollen loaded on the stigmas, and seed set were measured for many clones of two natural populations of the distylous clonal plant,Persicaria japonica. Within the populations, according to the spatial relation to the nearest opposite morph clone, individual clones were assorted into two spatial types,i.e., clones that congregated with clones of the opposite morph (congregating clones), and clones that occurred singly at a considerable distance from the nearest opposite-morph clone (single clones). The pollination success,i.e., the proportion of legitimately pollinated flowers, and seed set were severely limited in the single clones compared to the congregating clones. Since artificial legitimate pollination improved the seed set in single clones, at least to some degree pollination failure was responsible for the reduced seed set in the single clones.  相似文献   

20.
Plant metabolic activity in arid and semi-arid environments is largely tied to episodic precipitation events or “pulses”. The ability of plants to take up and utilize rain pulses during the growing season in these water-limited ecosystems is determined in part by pulse timing, intensity and amount, and by hydrological properties of the soil that translate precipitation into plant-available soil moisture. We assessed the sensitivity of an invasive woody plant, velvet mesquite (Prosopis velutina Woot.), to large (35 mm) and small (10 mm) isotopically labeled irrigation pulses on two contrasting soil textures (sandy-loam vs. loamy-clay) in semi-desert grassland in southeastern Arizona, USA. Predawn leaf water potential (Ψpd), the isotopic abundance of deuterium in stem water (δD), the abundance of 13C in soluble leaf sugar (δ13C), and percent volumetric soil water content (θv) were measured prior to irrigation and repeatedly for 2 weeks following irrigation. Plant water potential and the percent of pulse water present in the stem xylem indicated that although mesquite trees on both coarse- and fine-textured soils quickly responded to the large irrigation pulse, the magnitude and duration of this response substantially differed between soil textures. After reaching a maximum 4 days after the irrigation, the fraction of pulse water in stem xylem decreased more rapidly on the loamy-clay soil than the sandy-loam soil. Similarly, on both soil textures mesquite significantly responded to the 10-mm pulse. However, the magnitude of this response was substantially greater for mesquite on the sandy-loam soil compared to loamy-clay soil. The relationship between Ψpd and δ13C of leaf-soluble carbohydrates over the pulse period did not differ between plants at the two sites, indicating that differences in photosynthetic response of mesquite trees to the moisture pulses was a function of soil water availability within the rooting zone rather than differences in plant biochemical or physiological constraints. Patterns of resource acquisition by mesquite during the dynamic wetting–drying cycle following rainfall pulses is controlled by a complex interaction between pulse size and soil hydraulic properties. A better understanding of how this interaction affects plant water availability and photosynthetic response is needed to predict how grassland structure and function will respond to climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号