共查询到20条相似文献,搜索用时 0 毫秒
1.
Ágnes Donkó Anna Orient Pál T. Szabó Gábor Németh Tibor Vántus György Kéri 《Free radical research》2013,47(5):440-445
The aim of this work was to study the dityrosine-forming activity of lactoperoxidase (LPO) and its potential application for measuring hydrogen peroxide (H2O2). It was observed that LPO was able to form dityrosine at low H2O2 concentrations. Since dityrosine concentration could be measured in a simple fluorimetric reaction, this activity of the enzyme was utilized for the measurement of H2O2 production in different systems. These experiments successfully measured the activity of NADPH oxidase 4 (Nox4) by this method. It was concluded that LPO-mediated dityrosine formation offers a simple way for H2O2 measurement. 相似文献
2.
3.
Effects of peroxidase and hydrogen peroxide on the dityrosine formation and the mixing characteristics of wheat-flour dough 总被引:1,自引:0,他引:1
Takasaki S Kato Y Murata M Homma S Kawakishi S 《Bioscience, biotechnology, and biochemistry》2005,69(9):1686-1692
The effects of adding hydrogen peroxide and peroxidase to wheat-flour dough on dityrosine formation and mixing characteristics were investigated. Dityrosine in wheat-flour dough was identified by HPLC with a fluorescence detector and by LC/MS/MS. Formation of dityrosine increased with the addition of hydrogen peroxide, and hydrogen peroxide plus peroxidase, to wheat-flour dough, while the addition of peroxidase had no effect on the amount of dityrosine formed. The mixing curve obtained by a doughgraph changed with the addition of hydrogen peroxide, and hydrogen peroxide plus peroxidase; the peak time was significantly delayed and the dough development time was extended. We found that dityrosine cross-links in wheat-flour dough increased with the addition of peroxidase plus hydrogen peroxide. It is thought that these cross-links can lead to polymerization of the proteins in wheat-flour dough. 相似文献
4.
5.
Reactive nitrogen species are formed during a variety of disease states and have been shown to modify several amino acids on proteins. To date, the majority of research in this area has focused on the nitration of tyrosine residues to form 3-nitrotyrosine. However, emerging evidence suggests that another modification, nitration of tryptophan residues, to form nitrotryptophan (NO(2)-Trp), may also play a significant role in the biology of nitrosative stress. This review takes an in-depth look at NO(2)-Trp, presenting the current research about its formation, prevalence and biological significance, as well as the methods used to identify NO(2)-Trp-modified proteins. Although more research is needed to understand the full biological role of NO(2)-Trp, the data presented herein suggest a contribution to nitrosative stress-induced cell dysregulation and perhaps even in physiological cell processes. 相似文献
6.
7.
Keiki Ogino Norio Kodama Madoka Nakajima Akihiro Yamada Hiroyuki Nakamura Hirohumi Nagase Daikai Sadamitsu Takeshi Maekawa 《Free radical research》2001,35(6):735-747
Sodium azide (NaN3) is known as an inhibitor of catalase, and a nitric oxide (NO) donor in the presence of catalase and H2O2. We showed here that catalase-catalyzed oxidation of NaN3 can generate reactive nitrogen species which contribute to tyrosine nitration in the presence of H2O2. The formation of free-tyrosine nitration and protein-bound tyrosine nitration by the NaN3/catalase/H2O2 system showed a maximum level at pH 6.0. Free-tyrosine nitration induced by peroxynitrite was inhibited by ethanol and dimethyl-sulfoxide (DMSO), and augmented by superoxide dismutase (SOD). However, free-tyrosine nitration induced by the NaN3/catalase/H2O2 system was not affected by ethanol, DMSO and SOD. NO-2 and NO donating agents did not affect free-tyrosine nitration by the NaN3/catalase/H2O2 system. The reaction of NaN3 with hydroxyl radical generating system showed free-tyrosine nitration, but no formation of nitrite and nitrate. The generation of nitrite (NO-2) and nitrate (NO-3) by the NaN3/catalase/H2O2 system was maximal at pH 5.0. These results suggested that the oxidation of NaN3 by the catalase/H2O2 system generates unknown peroxynitrite-like reactive nitrogen intermediates, which contribute to tyrosine nitration. 相似文献
8.
Keiki Ogino Norio Kodama Madoka Nakajima Akihiro Yamada Hiroyuki Nakamura Hirohumi Nagase 《Free radical research》2013,47(6):735-747
Sodium azide (NaN3) is known as an inhibitor of catalase, and a nitric oxide (NO) donor in the presence of catalase and H2O2. We showed here that catalase-catalyzed oxidation of NaN3 can generate reactive nitrogen species which contribute to tyrosine nitration in the presence of H2O2. The formation of free-tyrosine nitration and protein-bound tyrosine nitration by the NaN3/catalase/H2O2 system showed a maximum level at pH 6.0. Free-tyrosine nitration induced by peroxynitrite was inhibited by ethanol and dimethyl-sulfoxide (DMSO), and augmented by superoxide dismutase (SOD). However, free-tyrosine nitration induced by the NaN3/catalase/H2O2 system was not affected by ethanol, DMSO and SOD. NO-2 and NO donating agents did not affect free-tyrosine nitration by the NaN3/catalase/H2O2 system. The reaction of NaN3 with hydroxyl radical generating system showed free-tyrosine nitration, but no formation of nitrite and nitrate. The generation of nitrite (NO-2) and nitrate (NO-3) by the NaN3/catalase/H2O2 system was maximal at pH 5.0. These results suggested that the oxidation of NaN3 by the catalase/H2O2 system generates unknown peroxynitrite-like reactive nitrogen intermediates, which contribute to tyrosine nitration. 相似文献
9.
Dityrosine formation leads to the cross-linking of proteins intra- or intermolecularly. The formation of dityrosine in lens proteins oxidized by metal-catalyzed oxidation (MCO) systems was estimated by chemical and immunochemical methods. Among the four MCO systems examined (H(2)O(2)/Cu, H(2)O(2)/Fe-ethylenediaminetetraacetic acid (Fe-EDTA), ascorbate/Cu, ascorbate/Fe-EDTA), the treatment with H(2)O(2)/Cu preferentially caused dityrosine formation in the lens proteins. The success of oxidative protein modification with all the MCO systems was confirmed by carbonyl formation estimated using 2,4-dinitrophenylhydrazine. The loss of tyrosine by the MCO systems was partly due to the formation of protein-bound 3,4-dihydroxyphenylalanine. The formation of dityrosine specific to H(2)O(2)/Cu was confirmed by using poly-(Glu, Ala, Tyr) and N-acetyl-tyrosine as a substrate. The dissolved oxygen concentration in the H(2)O(2)/Cu system hardly affected the amount of dityrosine formation, suggesting that dityrosine generation by the H(2)O(2)/Cu system is independent of oxygen concentration. Moreover, the combination of copper ion with H(2)O(2) is the most effective system for dityrosine formation among various metal ions examined. The addition of reducing agents, glutathione or ascorbic acid, into the H(2)O(2)/Cu system suppressed the generation of the dityrosine moiety, suggesting effective quench of tyrosyl radicals by the reducing agents. 相似文献
10.
The effect of H2O2 on ferrous human haemoglobin subunits (alphash-, betash-, alphapmb- and betapmb-chains) was studied. These chains were easily transformed to haemichrome by the addition of H2O2 or H2O2-generating systems, including glucose oxidase (EC 1.1.3.4) AND XANTHINE OXIDASE (EC 1.2.3.2), and this was ascertained by e.p.r. measurements and by absorption spectra. The changes in these haemoglobin subunits were not inhibited by superoxide dismutase (EC 1.15.1.1), but were decreased by catalase (EC 1.11.1.6). The rate of oxidation of alphapmb-chains was higher than that of alphash-chains, and the rate of oxidation of betapmb-chains was higher than that of betash-chains. Haemichrome was demonstrated to be formed directly from these ferrous chains by the attack by H2O2, and this process did not involve formation of methaemoglobin. On the basis of these findings the kinetics of the reaction between the haemoglobin subunits and H2O2 was studied, and the pathological significance of H2O2 in disorders of erythrocytes such as thalassaemia was discussed. 相似文献
11.
Oxidation of oxymyoglobin to metmyoglobin with hydrogen peroxide: involvement of ferryl intermediate 总被引:1,自引:0,他引:1
Hydrogen peroxide, one of the potent oxidants in muscle tissues, can induce very rapid oxidation of oxymyoglobin (MbO2) to metmyoglobin (metMb) with an apparent rate constant of 7.5 X 10(4) h-1 M-1 (i.e., 20.8 s-1 M-1) over the wide pH range of 5.5-10.2 in 0.1 M buffer at 25 degrees C. Its molecular mechanism, however, is quite different from that of the autoxidation of MbO2 to metMb. Kinetic analysis has revealed that the hydrogen peroxide oxidation proceeds through the formation of ferryl-Mb(IV) from deoxy-Mb(II), which is in equilibrium with MbO2, by a two-equivalent oxidation with H2O2. Once the ferryl species is formed, it reacts rapidly with another deoxy-Mb(II) in a bimolecular fashion so as to yield 2 mol of metMb(III). Under physiological conditions, the rate-determining step was the oxidation of the deoxy species by H2O2, its rate constant being estimated to be on the order of 3.6 X 10(3) s-1 M-1 at 25 degrees C. These findings leads us to the view that a good supply of dioxygen provides rather an important defense against the oxidation of myoglobin with hydrogen peroxide in cardiac and skeletal muscle tissues. 相似文献
12.
The mechanism of oxyperoxidase formation from ferryl peroxidase and hydrogen peroxide 总被引:1,自引:0,他引:1
Formation of oxyperoxidase from the reaction of ferryl horseradish peroxidase with H2O2 is inhibited by a small amount of tetranitromethane (TNM), a powerful scavenger of superoxide anion radical. The inhibition by TNM, however, does not exceed 35% as the TNM concentration is increased above 5 microM. The stoichiometry of the reaction in the presence of TNM suggests the following equation for TNM-sensitive formation of oxyperoxidase. Ferryl peroxidase + H2O2----(ferric peroxidase + O2- + H+)----oxyperoxidase The kinetic study on the TNM-resistant formation of oxyperoxidase suggests that the displacement of the oxygen with H2O2 takes place at the sixth coordination position at maximal rates of 0.048 and 0.054 s-1 for peroxidases A and C, respectively, at 5 degrees C. The TNM-sensitive and -resistant reactions are concluded to occur in parallel, and both yield oxyperoxidase. In either mechanism, the protonated form of ferryl peroxidase is active and the pK alpha value is 7.1 for peroxidase A and 8.6 for peroxidase C. Oxyperoxidase decomposes spontaneously with a large activation energy (23.0 kcal/mol), and the reaction of ferryl peroxidase with H2O2 reaches a steady level of oxyperoxidase, which depends on pH and the concentration of H2O2. 相似文献
13.
14.
A convenient and simple electrophoretic procedure was used to study the NAD(P)H-dependent generation of the hydrogen peroxide needed for the polymerization of coniferyl alcohol by peroxidases from the wood of Ailanthus glandulosa. The results showed that an NAD(P)H-dependent generation of hydrogen peroxide could be brought about by either: a FMN or riboflavin-dependent system; or a Mn2+ -dependent system. The most active system was the one incorporating Mn2+, followed closely by that incorporating riboflavin. In nature it appears that the method of hydrogen peroxide formation is determined by the amounts of cofactors present in the lignifying tissue. Because no quantitative data are available in the literature, further studies of the concentrations of these cofactors in the plant cell-wall are needed. 相似文献
15.
16.
On transition from nitrogen starvation to ammonia or ammonia/glutamine sufficiency Phormidium uncinatum produces high amounts of H2O2, which is consumed by several oxidative reactions catalyzed by thylakoid membrane bound enzymes. These include: oxidation of glutamine to free hydroxylamine, of ammonia to nitrite, of bound hydroxylamine to nitrite, and dismutation of free hydroxylamine to ammonia and nitrite. A possible role of these transformations for detoxification is discussed.Non-standard abbreviations FCCP p-trifluormethoxy carbonylcyanide phenylhydrazone - DCMU dichloromethyl urea 相似文献
17.
18.
19.
Uppu RM 《Analytical biochemistry》2006,354(2):165-168
A method for the synthesis of peroxynitrite is described. It involves nitrosation of H2O2 at pH> or = 12.5 by isoamyl or butyl nitrite in mixed solvents of isopropyl alcohol (IPA) and water at 25+/-1 degrees C. Maximum yields of peroxynitrite are obtained after 15 min of incubation at IPA concentrations of 30-70% (v/v). The solutions of peroxynitrite are processed for removal of IPA and isoamyl alcohol by solvent extraction. Unreacted H2O2 is removed by catalytic decomposition on granular MnO(2). The post processed solutions of peroxynitrite are useful in several chemical and biochemical investigations where bolus additions are required. The method as reported is amenable for large scale synthesis as it involves sequential mixing of solvents (water and IPA) to alkali followed by the addition of H2O2 and alkyl nitrite. 相似文献
20.
A copper-hydrogen peroxide redox system induces dityrosine cross-links and chemokine oligomerisation
The activity of the chemoattractant cytokines, the chemokines, in vivo is enhanced by oligomerisation and aggregation on glycosaminoglycan (GAG), particularly heparan sulphate, side chains of proteoglycans. The chemokine RANTES (CCL5) is a T-lymphocyte and monocyte chemoattractant, which has a minimum tetrameric structure for in vivo activity and a propensity to form higher order oligomers. RANTES is unusual among the chemokines in having five tyrosine residues, an amino acid susceptible to oxidative cross-linking. Using fluorescence emission spectroscopy, Western blot analysis and LCMS-MS, we show that a copper/H2O2 redox system induces the formation of covalent dityrosine cross-links and RANTES oligomerisation with the formation of tetramers, as well as higher order oligomers. Amongst the transition metals tested, namely copper, nickel, mercury, iron and zinc, copper appeared unique in this respect. At high (400 μM) concentrations of H2O2, RANTES monomers, dimers and oligomers are destroyed, but heparan sulphate protects the chemokine from oxidative damage, promoting dityrosine cross-links and multimer formation under oxidative conditions. Low levels of dityrosine cross-links were detected in copper/H2O2-treated IL-8 (CXCL8), which has one tyrosine residue, and none were detected in ENA-78 (CXCL5), which has none. Redox-treated RANTES was fully functional in Boyden chamber assays of T-cell migration and receptor usage on activated T-cells following RANTES oligomerisation was not altered. Our results point to a protective, anti-oxidant, role for heparan sulphate and a previously unrecognised role for copper in chemokine oligomerisation that may offer an explanation for the known anti-inflammatory effect of copper-chelators such as penicillamine and tobramycin. 相似文献