首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Dis1/XMAP215 family of microtubule-associated proteins conserved from yeast to mammals is essential for cell division. XMAP215, the Xenopus member of this family, has been shown to stabilize microtubules in vitro, but other members of this family have not been biochemically characterized. Here we investigate the properties of the Saccharomyces cerevisiae homologue Stu2p in vitro. Surprisingly, Stu2p is a microtubule destabilizer that binds preferentially to microtubule plus ends. Quantitative analysis of microtubule dynamics suggests that Stu2p induces microtubule catastrophes by sterically interfering with tubulin addition to microtubule ends. These results reveal both a new biochemical activity for a Dis1/XMAP215 family member and a novel mechanism for microtubule destabilization.  相似文献   

2.
Microtubule dynamics vary during the cell cycle, and microtubules appear to be more dynamic in vivo than in vitro. Proteins that promote dynamic instability are therefore central to microtubule behavior in living cells. Here, we report that a yeast protein of the highly conserved EB1 family, Bim1p, promotes cytoplasmic microtubule dynamics specifically during G1. During G1, microtubules in cells lacking BIM1 showed reduced dynamicity due to a slower shrinkage rate, fewer rescues and catastrophes, and more time spent in an attenuated/paused state. Human EB1 was identified as an interacting partner for the adenomatous polyposis coli (APC) tumor suppressor protein. Like human EB1, Bim1p localizes to dots at the distal ends of cytoplasmic microtubules. This localization, together with data from electron microscopy and a synthetic interaction with the gene encoding the kinesin Kar3p, suggests that Bim1p acts at the microtubule plus end. Our in vivo data provide evidence of a cell cycle–specific microtubule-binding protein that promotes microtubule dynamicity.  相似文献   

3.
Microtubule plus-end tracking proteins (+TIPs) are a diverse group of molecules that regulate microtubule dynamics and interactions of microtubules with other cellular structures. Many +TIPs have affinity for each other but the functional significance of these associations is unclear. Here we investigate the physical and functional interactions among three +TIPs in S. cerevisiae, Stu2, Bik1, and Bim1. Two-hybrid, coimmunoprecipitation, and in vitro binding assays demonstrate that they associate in all pairwise combinations, although the interaction between Stu2 and Bim1 may be indirect. Three-hybrid assays indicate that these proteins compete for binding to each other. Thus, Stu2, Bik1, and Bim1 interact physically but do not appear to be arranged in a single unique complex. We examined the functional interactions among pairs of proteins by comparing cytoplasmic and spindle microtubule dynamics in cells lacking either one or both proteins. On cytoplasmic microtubules, Stu2 and Bim1 act cooperatively to regulate dynamics in G1 but not in preanaphase, whereas Bik1 acts independently from Stu2 and Bim1. On kinetochore microtubules, Bik1 and Bim1 are redundant for regulating dynamics, whereas Stu2 acts independently from Bik1 and Bim1. These results indicate that interactions among +TIPS can play important roles in the regulation of microtubule dynamics.  相似文献   

4.
The interaction of kinetochores with dynamic microtubules during mitosis is essential for proper centromere motility, congression to the metaphase plate, and subsequent anaphase chromosome segregation. Budding yeast has been critical in the discovery of proteins necessary for this interaction. However, the molecular mechanism for microtubule-kinetochore interactions remains poorly understood. Using live cell imaging and mutations affecting microtubule binding proteins and kinetochore function, we identify a regulatory mechanism for spindle microtubule dynamics involving Stu2p and the core kinetochore component, Ndc10p. Depleting cells of the microtubule binding protein Stu2p reduces kinetochore microtubule dynamics. Centromeres remain under tension but lack motility. Thus, normal microtubule dynamics are not required to maintain tension at the centromere. Loss of the kinetochore (ndc10-1, ndc10-2, and ctf13-30) does not drastically affect spindle microtubule turnover, indicating that Stu2p, not the kinetochore, is the foremost governor of microtubule dynamics. Disruption of kinetochore function with ndc10-1 does not affect the decrease in microtubule turnover in stu2 mutants, suggesting that the kinetochore is not required for microtubule stabilization. Remarkably, a partial kinetochore defect (ndc10-2) suppresses the decreased spindle microtubule turnover in the absence of Stu2p. These results indicate that Stu2p and Ndc10p differentially function in controlling kinetochore microtubule dynamics necessary for centromere movements.  相似文献   

5.
Stu2p from budding yeast belongs to the conserved Dis1/XMAP215 family of microtubule-associated proteins (MAPs). The common feature of proteins in this family is the presence of HEAT repeat-containing TOG domains near the NH2 terminus. We have investigated the functions of the two TOG domains of Stu2p in vivo and in vitro. Our data suggest that Stu2p regulates microtubule dynamics through two separate activities. First, Stu2p binds to a single free tubulin heterodimer through its first TOG domain. A large conformational transition in homodimeric Stu2p from an open structure to a closed one accompanies the capture of a single free tubulin heterodimer. Second, Stu2p has the capacity to associate directly with microtubule ends, at least in part, through its second TOG domain. These two properties lead to the stabilization of microtubules in vivo, perhaps by the loading of tubulin dimers at microtubule ends. We suggest that this mechanism of microtubule regulation is a conserved feature of the Dis1/XMAP215 family of MAPs.  相似文献   

6.
We have previously shown that Stu2p is a microtubule-binding protein and a component of the Saccharomyces cerevisiae spindle pole body (SPB). Here we report the identification of Spc72p, a protein that interacts with Stu2p. Stu2p and Spc72p associate in the two-hybrid system and can be coimmunoprecipitated from yeast extracts. Stu2p and Spc72p also interact with themselves, suggesting the possibility of a multimeric Stu2p-Spc72p complex. Spc72p is an essential component of the SPB and is able to associate with a preexisting SPB, indicating that there is a dynamic exchange between soluble and SPB forms of Spc72p. Unlike Stu2p, Spc72p does not bind microtubules in vitro, and was not observed to localize along microtubules in vivo. A temperature-sensitive spc72 mutation causes defects in SPB morphology. In addition, most spc72 mutant cells lack cytoplasmic microtubules; the few cytoplasmic microtubules that are observed are excessively long, and some of these are unattached to the SPB. spc72 cells are able to duplicate and separate their SPBs to form a bipolar spindle, but spindle elongation and chromosome segregation rarely occur. The chromosome segregation block does not arrest the cell cycle; instead, spc72 cells undergo cytokinesis, producing aploid cells and polyploid cells that contain multiple SPBs.  相似文献   

7.
Cytoplasmic dynein is a multisubunit, minus end-directed microtubule motor that uses dynactin as an accessory complex to perform various in vivo functions including vesicle transport, spindle assembly, and nuclear distribution [1]. We previously showed that in the filamentous fungus Aspergillus nidulans, a GFP-tagged cytoplasmic dynein heavy chain (NUDA) forms comet-like structures that exhibited microtubule-dependent movement toward and back from the hyphal tip [2]. Here we demonstrate that another protein in the NUDA pathway, NUDF, which is homologous to the human LIS1 protein involved in brain development [3, 4], also exhibits such dynamic behavior. Both NUDA and NUDF are located at the ends of microtubules, and this observation suggests that the observed dynamic behavior is due to their association with the dynamic microtubule ends. To address whether NUDA and NUDF play a role in regulating microtubule dynamics in vivo, we constructed a GFP-labeled alpha-tubulin strain and used it to compare microtubule dynamics in vivo in wild-type A. nidulans versus temperature-sensitive loss-of-function mutants of nudA and nudF. The mutants showed a lower frequency of microtubule catastrophe, a lower rate of shrinkage during catastrophe, and a lower frequency of rescue. The microtubules in the mutant cells also paused longer at the hyphal tip than wild-type microtubules. These results indicate that cytoplasmic dynein and the LIS1 homolog NUDF affect microtubule dynamics in vivo.  相似文献   

8.
The yeast protein Stu2 belongs to the XMAP215 family of conserved microtubule-binding proteins which regulate microtubule plus end dynamics. XMAP215-related proteins also bind to centrosomes and spindle pole bodies (SPBs) through proteins like the mammalian transforming acidic coiled coil protein TACC or the yeast Spc72. We show that yeast Spc72 has two distinct domains involved in microtubule organization. The essential 100 N-terminal amino acids of Spc72 interact directly with the gamma-tubulin complex, and an adjacent non-essential domain of Spc72 mediates binding to Stu2. Through these domains, Spc72 brings Stu2 and the gamma-tubulin complex together into a single complex. Manipulation of Spc72-Stu2 interaction at SPBs compromises the anchorage of astral microtubules at the SPB and surprisingly also influences the dynamics of microtubule plus ends. Permanently tethering Stu2 to SPBs by fusing it to a version of Spc72 that lacks the Stu2-binding site in part complements these defects in a manner which is dependent upon the microtubule-binding domain of Stu2. Thus, the SPB-associated Spc72-Stu2 complex plays a key role in regulating microtubule properties.  相似文献   

9.
Previously we isolated tub2-423, a cold-sensitive allele of the Saccharomyces cerevisiae gene encoding β-tubulin that confers a defect in mitotic spindle function. In an attempt to identify additional proteins that are important for spindle function, we screened for suppressors of the cold sensitivity of tub2-423 and obtained two alleles of a novel gene, STU2. STU2 is an essential gene and encodes a protein whose sequence is similar to proteins identified in a variety of organisms. Stu2p localizes primarily to the spindle pole body (SPB) and to a lesser extent along spindle microtubules. Localization to the SPB is not dependent on the presence of microtubules, indicating that Stu2p is an integral component of the SPB. Stu2p also binds microtubules in vitro. We have localized the microtubule-binding domain of Stu2p to a highly basic 100-amino acid region. This region contains two imperfect repeats; both repeats appear to contribute to microtubule binding to similar extents. These results suggest that Stu2p may play a role in the attachment, organization, and/or dynamics of microtubule ends at the SPB.  相似文献   

10.
Self-organization of cellular structures is an emerging principle underlying cellular architecture. Properties of dynamic microtubules and microtubule-binding proteins contribute to the self-assembly of structures such as microtubule asters. In the fission yeast Schizosaccharomyces pombe, longitudinal arrays of cytoplasmic microtubule bundles regulate cell polarity and nuclear positioning. These bundles are thought to be organized from the nucleus at multiple interphase microtubule organizing centres (iMTOCs). Here, we find that microtubule bundles assemble even in cells that lack a nucleus. These bundles have normal organization, dynamics and orientation, and exhibit anti-parallel overlaps in the middle of the cell. The mechanisms that are responsible for formation of these microtubule bundles include cytoplasmic microtubule nucleation, microtubule release from the equatorial MTOC (eMTOC), and the dynamic fusion and splitting of microtubule bundles. Bundle formation and organization are dependent on mto1p (gamma-TUC associated protein), ase1p (PRC1), klp2p (kinesin-14) and tip1p (CLIP-170). Positioning of nuclear fragments and polarity factors by these microtubules illustrates how self-organization of these bundles contributes to establishing global spatial order.  相似文献   

11.
Proper orientation of the mitotic spindle is critical for successful cell division in budding yeast. To investigate the mechanism of spindle orientation, we used a green fluorescent protein (GFP)–tubulin fusion protein to observe microtubules in living yeast cells. GFP–tubulin is incorporated into microtubules, allowing visualization of both cytoplasmic and spindle microtubules, and does not interfere with normal microtubule function. Microtubules in yeast cells exhibit dynamic instability, although they grow and shrink more slowly than microtubules in animal cells. The dynamic properties of yeast microtubules are modulated during the cell cycle. The behavior of cytoplasmic microtubules revealed distinct interactions with the cell cortex that result in associated spindle movement and orientation. Dynein-mutant cells had defects in these cortical interactions, resulting in misoriented spindles. In addition, microtubule dynamics were altered in the absence of dynein. These results indicate that microtubules and dynein interact to produce dynamic cortical interactions, and that these interactions result in the force driving spindle orientation.  相似文献   

12.
Highly conserved EB1 family proteins bind to the growing ends of microtubules, recruit multiple cargo proteins, and are critical for making dynamic microtubules in vivo. However, it is unclear how these master regulators of microtubule plus ends promote microtubule dynamics. In this paper, we identify a novel EB1 cargo protein, Sentin. Sentin depletion in Drosophila melanogaster S2 cells, similar to EB1 depletion, resulted in an increase in microtubule pausing and led to the formation of shorter spindles, without displacing EB1 from growing microtubules. We demonstrate that Sentin's association with EB1 was critical for its plus end localization and function. Furthermore, the EB1 phenotype was rescued by expressing an EBN-Sentin fusion protein in which the C-terminal cargo-binding region of EB1 is replaced with Sentin. Knockdown of Sentin attenuated plus end accumulation of Msps (mini spindles), the orthologue of XMAP215 microtubule polymerase. These results indicate that EB1 promotes dynamic microtubule behavior by recruiting the cargo protein Sentin and possibly also a microtubule polymerase to the microtubule tip.  相似文献   

13.
BACKGROUND: Modulation of microtubule dynamics is crucial for proper cell division. While a large body of work has made important contributions to our understanding of the mechanisms governing microtubule dynamics in vitro, much remains to be learned about how these mechanisms operate in vivo. RESULTS: We identified TAC-1 as the sole TACC (Transforming Acidic Coiled Coil) protein in C. elegans. TAC-1 consists essentially of a TACC domain, in contrast to the much larger members of this protein family in other species. We find that tac-1 is essential for pronuclear migration and spindle elongation in one-cell-stage C. elegans embryos. Using an in vivo FRAP-based assay, we establish that inactivation of tac-1 results in defective microtubule assembly. TAC-1 is present in the cytoplasm and is enriched at centrosomes in a cell cycle-dependent manner. Centrosomal localization is independent of microtubules but requires the activity of gamma-tubulin and the Aurora-A kinase AIR-1. By conducting FRAP analysis in embryos expressing GFP-TAC-1, we find that centrosomal TAC-1 exchanges rapidly with the cytoplasmic pool. Importantly, we establish that TAC-1 physically interacts with ZYG-9, a microtubule-associated protein (MAP) of the XMAP215 family, both in vitro and in vivo. Furthermore, we also uncover that TAC-1 and ZYG-9 stabilize each other in C. elegans embryos. CONCLUSIONS: Our findings identify TAC-1 as a core structural and functional member of the evolutionarily conserved TACC family of proteins and suggest that mutual stabilization between TACC and XMAP215 proteins is a key feature ensuring microtubule assembly in vivo.  相似文献   

14.
The budding yeast protein Kip3p is a member of the conserved kinesin-8 family of microtubule motors, which are required for microtubule-cortical interactions, normal spindle assembly and kinetochore dynamics. Here, we demonstrate that Kip3p is both a plus end-directed motor and a plus end-specific depolymerase--a unique combination of activities not found in other kinesins. The ATPase activity of Kip3p was activated by both microtubules and unpolymerized tubulin. Furthermore, Kip3p in the ATP-bound state formed a complex with unpolymerized tubulin. Thus, motile kinesin-8s may depolymerize microtubules by a mechanism that is similar to that used by non-motile kinesin-13 proteins. Fluorescent speckle analysis established that, in vivo, Kip3p moved toward and accumulated on the plus ends of growing microtubules, suggesting that motor activity brings Kip3p to its site of action. Globally, and more dramatically on cortical contact, Kip3p promoted catastrophes and pausing, and inhibited microtubule growth. These findings explain the role of Kip3p in positioning the mitotic spindle in budding yeast and potentially other processes controlled by kinesin-8 family members.  相似文献   

15.
The positioning and dynamics of organelles in eukaryotic cells critically depend on membrane-cytoskeleton interactions. Motor proteins play an important role in the directed movement of organelle membranes along microtubules, but the basic mechanism by which membranes stably interact with the microtubule cytoskeleton is largely unknown. Here we report that p63, an integral membrane protein of the reticular subdomain of the rough endoplasmic reticulum (ER), binds microtubules in vivo and in vitro. Overexpression of p63 in cell culture led to a striking rearrangement of the ER and to concomitant bundling of microtubules along the altered ER. Mutational analysis of the cytoplasmic domain of p63 revealed two determinants responsible for these changes: an ER rearrangement determinant near the N-terminus and a central microtubule-binding region. The two determinants function independently of one another as indicated by deletion experiments. A peptide corresponding to the cytoplasmic tail of p63 promoted microtubule polymerization in vitro. p63 is the first identified integral membrane protein that can link a membrane organelle directly to microtubules. By doing so, it may contribute to the positioning of the ER along microtubules.  相似文献   

16.
Dynamic properties of microtubules contribute to the establishment of spatial order within cells. In the fission yeast Schizosaccharomyces pombe, interphase cytoplasmic microtubules are organized into antiparallel bundles that attach to the nuclear envelope and are needed to position the nucleus at the geometric center of the cell. Here, we show that after the nucleus is displaced by cell centrifugation, these microtubule bundles efficiently push the nucleus back to the center. Asymmetry in microtubule number, length, and dynamics contributes to the generation of force responsible for this unidirectional movement. Notably, microtubules facing the distal cell tip are destabilized when the microtubules in the same bundle are pushing from the proximal cell tip. The CLIP-170-like protein tip1p and the microtubule-bundling protein ase1p are required for this asymmetric regulation of microtubule dynamics, indicating contributions of factors both at microtubule plus ends and within the microtubule bundle. Mutants in these factors are defective in nuclear movement. Thus, cells possess an efficient microtubule-based engine that produces and senses forces for centering the nucleus. These studies may provide insights into mechanisms of asymmetric microtubule behaviors and force sensing in other processes such as chromosome segregation and cell polarization.  相似文献   

17.
Microtubule dynamics are influenced by interactions of microtubules with cellular factors and by changes in the primary sequence of the tubulin molecule. Mutations of yeast beta-tubulin C354, which is located near the binding site of some antimitotic compounds, reduce microtubule dynamicity greater than 90% in vivo and in vitro. The resulting intrinsically stable microtubules allowed us to determine which, if any, cellular processes are dependent on dynamic microtubules. The average number of cytoplasmic microtubules decreased from 3 in wild-type to 1 in mutant cells. The single microtubule effectively located the bud site before bud emergence. Although spindles were positioned near the bud neck at the onset of anaphase, the mutant cells were deficient in preanaphase spindle alignment along the mother-bud axis. Spindle microtubule dynamics and spindle elongation rates were also severely depressed in the mutants. The pattern and extent of cytoplasmic microtubule dynamics modulation through the cell cycle may reveal the minimum dynamic properties required to support growth. The ability to alter intrinsic microtubule dynamics and determine the in vivo phenotype of cells expressing the mutant tubulin provides a critical advance in assessing the dynamic requirements of an essential gene function.  相似文献   

18.
Several components of the nuclear transport machinery play a role in mitotic spindle assembly in higher eukaryotes. To further investigate the role of this family of proteins in microtubule function, we screened for mutations in Saccharomyces cerevisiae that confer sensitivity to microtubule-destabilizing drugs. One mutant exhibiting this phenotype lacked the gene encoding the karyopherin Kap123p. Analysis of kap123 Δ cells revealed that the drug sensitivity was caused by a defect in microtubule stability and/or assembly. In support of this idea, we demonstrated genetic interactions between the kap123 Δ mutation and mutated alleles of genes encoding α-tubulins and factors controlling microtubule dynamics. Moreover, kap123 Δ cells exhibit defects in spindle structure and dynamics as well as nuclear positioning defects during mitosis. Cultures of kap123 Δ strains are enriched for mononucleated large-budded cells often containing short spindles and nuclei positioned away from the budneck, phenotypes indicative of defects in both cytoplasmic and nuclear microtubules. Finally, we identified a gene, CAJ1 , which when deleted in combination with KAP123 exacerbated the microtubule-related defects of the kap123 Δ mutants. We propose that Kap123p and Caj1p, a member of the Hsp40 family of proteins, together play an essential role in normal microtubule function.  相似文献   

19.
The XMAP215/TOG family of proteins is a closely related set of MAPs (microtubule-associated proteins) found in animals, yeast, and plants . In yeast and animal cells, the XMAP215/TOG proteins are required for both mitosis and meiosis. Although effects of XMAP215/TOG proteins on cytoplasmic microtubules have not previously been shown in animal cells, in plants the Arabidopsis family member MOR1 is required for the organization of cortical microtubule arrays . The Drosophila family member, encoded by the mini spindles (msps) gene, is maternally expressed and loaded into the egg, where it is an essential component of meiotic and mitotic spindles . Here we show that msps is also required during oogenesis for the structure and function of cytoplasmic microtubules. Localization of bicoid (bcd) mRNA in the oocyte is a microtubule-mediated event . We show that bcd RNA localization is defective in msps mutants. We also identify defects in cytoplasmic microtubules in both the germ and follicle cells of mutant ovaries and determine the expression pattern of msps mRNA and protein in developing egg chambers. Our findings reveal a new role for msps in cell patterning and raise the possibility that other family members may perform similar functions.  相似文献   

20.
Regulation of microtubule polymerization and depolymerization is required for proper cell development. Here, we report that two proteins of the Drosophila melanogaster kinesin-13 family, KLP10A and KLP59C, cooperate to drive microtubule depolymerization in interphase cells. Analyses of microtubule dynamics in S2 cells depleted of these proteins indicate that both proteins stimulate depolymerization, but alter distinct parameters of dynamic instability; KLP10A stimulates catastrophe (a switch from growth to shrinkage) whereas KLP59C suppresses rescue (a switch from shrinkage to growth). Moreover, immunofluorescence and live analyses of cells expressing tagged kinesins reveal that KLP10A and KLP59C target to polymerizing and depolymerizing microtubule plus ends, respectively. Our data also suggest that KLP10A is deposited on microtubules by the plus-end tracking protein, EB1. Our findings support a model in which these two members of the kinesin-13 family divide the labour of microtubule depolymerization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号