首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An isolate of Tobacco rattle virus (TRV) obtained from a site in the Netherlands induced symptoms of spraing disease in tubers of the potato variety Bintje, which is generally considered to be resistant to infection by TRV. The isolate contained two phenotypically distinguishable RNA‐1 variants, one of which was shown to carry the determinant for the ability to cause spraing in cv. Bintje. The nucleotide sequence of the coding region of this RNA‐1 was determined and found to differ at 5.2–5.4% of positions from other TRV RNA‐1 sequences in the database. The amino acid sequences of the predicted translation products were between 92 and 99% identical to those of a TRV RNA‐1 that did not cause spraing in cv. Bintje, with P1b being the most divergent and the replicase read‐through domain the least.  相似文献   

2.
Crops and weeds were tested for their ability to host Clavibacter michiganensis ssp. sepedonicus (Cms), the causal agent of bacterial ring rot in potato. Ten crops grown in rotation with potato in Europe, namely maize, wheat, barley, oat, bush bean, broad bean, rape, pea and onion and five cultivars of sugar beet were tested by stem and root inoculation. About 6–8 weeks after inoculation, Cms could be detected in most crops except onion and sugar beet, in larger numbers in stems (105–106 cells/g of tissue) than in roots (≤103 cells/g of tissue) in immunofluorescence cell‐staining (IF). Cms was successfully re‐isolated only from IF‐positive stem samples of maize, bush bean, broad bean, rape and pea, but not from roots. Twelve solanaceous weeds and 13 other weeds, most commonly found in potato fields in Europe, were tested in IF as hosts of Cms by stem and root inoculations. Only in Solanum rostratum, a weed present in northern America, Cms persisted in high numbers (108 cells/g tissue) in stems and leaves, where it caused symptoms. In the other solanaceous weeds, Cms persisted at low numbers (approximately 105 cells/g of tissue) in stems but less so in roots. The bacteria could be frequently re‐isolated from stem but not from root tissues. In 2 consecutive years, plants from 14 different weed species were collected from Cms‐contaminated potato field plots and tested for the presence of Cms by dilution plating or immunofluorescence colony‐staining (IFC), and by AmpliDet RNA, a nucleic acid‐based amplification method. Cms was detected in roots but not in stems of Elymus repens plants growing through rotten potato tubers, and in some Viola arvensis and Stellaria media plants, where they were detected both in stems and roots, but more frequently by AmpliDet RNA than by IFC.  相似文献   

3.
Insunza  V.  Alström  S.  Eriksson  K. B. 《Plant and Soil》2002,241(2):271-278
Trichodorid nematodes (Nematoda: Trichodoridae) are vectors of tobacco rattle virus (TRV), one of the causal agents of spraing disease in potato. Root bacteria from nematicidal plants and their control potential against Trichodoridae were the focus of this study. Bacteria isolated from the roots of 12 nematicidal plants and potato were characterized for their production of hydrolytic enzymes, hydrogen cyanide, phenol oxidation ability and antifungal activity towards the potato pathogen Rhizoctonia solani. Based on these functional traits, bacteria isolates were selected and tested in greenhouse conditions on potato (cv. Saturna) for their effect on plant growth, and screened for nematicidal activity against Paratrichodorus pachydermus and Trichodorus primitivus in naturally infested soil. Sixteen bacteria isolates out of 44 reduced nematode densities by 50–100%. Nine selected isolated were further tested by bacterizing potato tubers (cv. King Edward) which were planted in a trichodorid and TRV-infested soil. Four bacterial isolates consistently reduced nematode densities (by 56.7–74.4%) with no visual negative effect on plant growth. These isolates were tentatively identified, partly by fatty acid methyl ester (FAME) analysis as: Stenotrophomonas maltophilia, Bacillus mycoides, Pseudomonas sp., and one unidentified bacterium. The isolates originated from potato, Plantago major, Thymus vulgaris and Asparagus officinalis, respectively. Two Pseudomonas isolates obtained from Zinnia elegans and selected for their strong nematicidal activity in soil screening tests, did not reduce the nematode population when tested on potato. It is concluded that plants releasing nematicidal compounds may harbour nematode-antagonistic bacteria as well.  相似文献   

4.
Virus transmission bait tests with single trichodorid nematodes from England, the Netherlands, Scotland or Sweden showed that a substantial degree of specificity occurs between trichodorid vector species and tobravirus serotypes. This specificity was more apparent with associations between Paratrichodorus vector species and tobravirus serotypes than with those between Trichodorus species and tobravirus serotypes. P. pachydermus transmitted PRN-serotype tobacco rattle virus (TRV) isolates, P. teres ORE-serotype isolates and P. anemones TRV isolates which did not react with any of the antisera used, but which could be distinguished from all other isolates by their symptomatology in Chenopodium test plants. T. viruliferus, T. primitivus and T. cylindricus transmitted RQ-serotype isolates and the latter species also transmitted TRV isolates reacting with TCB2 and pea early-browning SP5-antisera. Several TRV isolates transmitted by T. cylindricus failed to react with any of the antisera used.  相似文献   

5.
The diamondback moth Plutella xylostella (L.) (Lepidoptera: Plutellidae) is an important pest of cultivated brassicaceous crops worldwide. The host plant preferences, developmental biology and survival and longevity of P. xylostella are relatively well understood on commercial crop species; however, its relationship with brassicaceous weeds is poorly known. Sinapis arvensis L., Erysimum cheiranthoides L. and Capsella bursa‐pastoris (L.) Medicus are among the most common brassicaceous weeds worldwide and can serve as important bridge hosts of P. xylostella. In this study, preference and performance of P. xylostella were compared on these weed species. In free‐choice situations, females deposited 5.5 and 18.8 times more eggs on S. arvensis than on E. cheiranthoides and C. bursa‐pastoris, respectively. Survival from neonate to pupa and from pupa to adult was highest on S. arvensis and E. cheiranthoides and lowest on C. bursa‐pastoris. Development was fastest, foliage consumption was greatest, pupae and silk cocoons were heaviest, adult body masses and longevities were highest and forewings were largest for both females and males when reared as larvae on S. arvensis. Realized fecundity of new generation adults was highest for individuals reared on S. arvensis compared to those reared on E. cheiranthoides or C. bursa‐pastoris. Relative growth rates of pupae and adults were highest on S. arvensis, suggesting that this plant species is a high‐quality host for P. xylostella compared with other species tested. Potential impacts of these wild brassicaceous species on P. xylostella populations are discussed.  相似文献   

6.
A virus (isolate SYM) obtained from spinach plants in England with a severe yellow mottle disease induced symptoms resembling those of tobacco rattle virus (TRV) in several indicator species but caused systemic necrosis in Chenopodium amaranticolor and C. quinoa. It was transmitted to bait plants grown in soil containing the nematode Trichodorus primitivus. Purified virus preparations contained rod-shaped particles that were predominantly of four modal lengths: 188 nm (L particles), 101 nm (S particles), 57 nm and 48 nm (together called VS particles), containing RNA with mol. wts of 2.4, 1.5, 0.7 and 0.6 million, respectively. L particles (s°20= 300 S) and S particles (230 S) greatly outnumbered VS particles (c. 150 S). All particles contained a single polypeptide species with estimated mol wt of 24 700, slightly larger than those previously reported for tobraviruses. Purified L particles were infective but both L and S particles were needed to induce the production of virus nucleoprotein particles. VS particles were not infective and apparently had no qualitative or quantitative effect on infection by L or by L plus S particles. S particles carried determinants for serological specificity and ability to invade C. amaranticolor systemically. Isolate SYM produced pseudo-recombinants with isolate PRN of TRV. Also, isolates CAM, OR and PRN of TRV, and isolate SYM, were found to be distantly related by three kinds of serological test. No relationship was detected between these isolates and pea early-browning virus in gel-diffusion precipitin tests or electron microscope serological tests, but a distant relationship between isolate SYM and pea early-browning virus was found by micro-precipitin tests. Isolate SYM therefore has closer affinities with TRV than with pea early-browning virus and is considered to be a distinctive strain of TRV.  相似文献   

7.
Seedbanks and seedling emergence, resulting from seeds shed in wheat crops and ploughed in, were monitored in two experiments for 3–4 years in successive autumn sown crops, in which herbicides were used to prevent re-seeding. Populations of Galium aparine, Papaver rhoeas, Lamium purpureum, Myosotis arvensis, Veronica persica, Viola arvensis and Veronica hederifolia were studied in separate plots. The numbers of viable seeds in the soil declined exponentially; G. aparine and V. hederifolia declined most, and P. rhoeas and V. arvensis least rapidly. Total weeds (all species) over the 3–4 years, (obtained by adding successive numbers of seedlings recorded in each autumn or winter), represented 3–4% of the first year seedbank for the combined species. Few seedlings emerged in the first year after seeding due to effective burial by the initial ploughing. The species showing the greatest emergence in the first year, relative to seedbank size, were G. aparine and V. hederifolia. Other, smaller seeded, species produced their main seedling flushes in the second and third years after seeding. It is concluded that poor weed control in one year is likely to result in large weed infestations for up to four years and probably longer for some species.  相似文献   

8.
All isolates of tobacco rattle virus (TRV) found in naturally infected narcissus leaves produced nucleoprotein particles, mostly in large concentrations but, because of antigenic diversity, less than half of the isolates were identified by immunosorbent electron microscopy (ISEM) and still fewer by enzyme-linked immunosorbent assay. All were identified by a nucleic acid hybridisation test in which DNA complementary to RNA-1 of strain PRN of TRV was allowed to react with nucleic acid extracted from leaf tissue. Spraing-affected tubers in some potato stocks yielded only NM isolates of TRV. These isolates do not produce virus particles and they were therefore not detected by ISEM. The infectivity of nucleic acid extracts from recently harvested tubers with spraing symptoms was much greater than that of extracts prepared from tubers after 8 months' storage. In other potato stocks, some spraing-affected tubers contained NM isolates and the rest contained particle-producing isolates (M isolates) of TRV. The infectivity of sap and of nucleic acid, extracted 7 months after harvest from tubers infected with M isolates, was much greater than that of nucleic acid extracted from comparable tubers infected with NM isolates. TRV was detected by nucleic acid hybridisation in extracts of almost all tubers containing either M or NM isolates, even when the tubers were not tested until 7–8 months after harvest. The probable sequence of events occurring after tubers are infected with TRV is outlined, and it is suggested that the virus will rarely become established in fields as a result of planting infected tubers.  相似文献   

9.
Soil tillage and nitrogen (N) management effects on weed species composition were evaluated in 2013 and 2014 on a clayey soil after 5‐years of organic management at the Royal Agricultural University's Harnhill Manor Farm, UK. Three tillage systems – Conventional Tillage (CT), and High and Low Intensity Non‐inversion Tillage (HINiT & LINiT) – were compared at four N fertiliser rates of 0, 70, 140 and 210 kg N ha?1. Broad‐spectrum herbicide was applied before soil operations across the site in both years. Previous organic management legacy of high weed biomass promoted greater weed prevalence in 2013 while 2‐years of herbicide inclusion reduced weed biomass. Contrasting weather conditions across the seasons affected weed incidence. In the 2014 wet season, early weed dry weight (DM) was higher under HINiT than CT and LINiT, while no differences were observed in the 2013 dry year. At midseason, weed DM was higher under HINiT than CT and LINiT in both years, which was related to higher DM of the dominant weeds Stellaria media (L.) Vill. and Sinapis arvensis L. Grass weed DM was higher under non‐inversion tillage than CT. N fertilisation increased midseason total weed DM and weed prevalence at harvest. Spring wheat yield was the highest under CT while LINiT produced 17% higher yields than HINiT. Despite higher but still tolerable weed prevalence under both non‐inversion tillage systems and with the application of N, weeds alone was not the only yield‐limiting factor. However, results show that CT is the most reliable option for weed control in changing weather, while N fertilisation rates needs to be considered.  相似文献   

10.
The effect of temperature on viability of imbibed weed seeds   总被引:1,自引:0,他引:1  
Imbibed seed of 10 common arable weeds were placed in trays in initially moist soil and, after imbibing for 2h, heated in ovens/incubators set to 31oC, 42oC, 56oC, 75oC or 100oC for 0.5, 1, 2, 4, 8 or 16 days or at 102oC, 155oC, 204oC or 262oC for 0.5, 1, 2, 5, 7.5 or 10 min. After heating, seeds were incubated for 28 days at 10/20oC or 20/30oC on a 12 h dark/light regime, depending on species, and germination recorded. At the lower temperatures, germination of all species was prevented by temperatures of 75oC or higher for periods of 0.5 days or more. Germination was lower after treatment at 56oC than at 31oC or 42oC for all species except Rumex obtusifolius. The maximum temperature required to prevent germination varied among species and was of greater importance than the duration of heating. Germination was variable with duration of heating. At the higher temperatures, there was very little germination of any species after heating at 204oC for 7.5 min or 262oC for 5 min or more. Seeds were greatly buffered from the air temperature by 3 mm of soil, throughout the shorter duration of heating. The average temperature of the soil, over the 10 min heating required to prevent over 90% germination, varied among species and ranged from 48oC for Avena fatua to 65oC for R. obtusifolius. This work implies that composting systems maintained at 65oC are unlikely to provide an efficient method of weed control. Recommendations for improvement of the laboratory technique are suggested.  相似文献   

11.
Unequivocal evidence of the viral nature of virus-like particles observed at the specific site of retention of tobacco rattle virus (TRV) in Paratrichodorus and Trichodorus nematodes has not previously been available. A new staining technique using safranin-O, which does not affect viral antigenicity, was used with an antiserum raised against the coat protein of TRV and prepared for use with immunogold labelling. Application of this method enabled the occurrence and localization of particles of TRV to be confirmed in the pharynx of the natural vector of the virus, Paratrichodorus anemones, and provided unequivocal evidence that the particles observed were TRV particles. The TRV particles were observed attached only to the cuticle lining the posterior tract of the pharyngeal lumen of the vector. Therefore, the specific site of retention of TRV particles in P. anemones is apparently more localized than reported to occur in other vector trichodorid species.  相似文献   

12.
Potato mop-top virus (PMTV) was best detected in field soils by air-drying them for more than a week before remoistening and growing seedlings of Nicotiana tabacum or N. debneyi for a 6–10 week period. Infection of N. tabacum was assessed by inoculating sap from roots and shoots to Chenopodium amaranticolor. Similar inoculations from N. debneyi were far less convenient for detecting PMTV than recording leaf symptoms, but slightly more efficient. Air-dry soil retained PMTV infectivity for 9 months, when passed through a 50 μ sieve or when diluted with 103 but not 104 parts of steamed soil. Tobacco seedlings were not infected when their roots were steeped in PMTV-containing tobacco sap. Infective soils contained Spongospora subterranea, spore balls of which resisted air-drying for more than a year and passed a 50 μ sieve. Roots of susceptible seedlings were infected with PMTV when exposed to spore balls of S. subterranea taken from powdery scabs on PMTV-infected potato tubers, or to suspensions obtained by steeping, in nutrient solution, roots infected with virus-carrying cultures of S. subterranea. Plants in several families were hosts of S. subterranea, but probabilities of infection when exposed to spore balls differed greatly between families and only species of Solanaceae were good hosts. The ten species infected with PMTV when grown in infective soil or when exposed to spore balls of S. subterranea taken from PMTV-infected potato tubers are all members of this family. PMTV seems to be carried internally in S. subterranea spore balls and survived in them for at least a year. PMTV was transmitted by S. subterranea to Arran Pilot potato, causing yellow blotches in some leaves and spraing in many tubers. However, when newly infected with PMTV in the field, not all Arran Pilot tubers developed spraing. Also, although many spraing-affected or symptomless but PMTV-infected tubers carried PMTV-containing spore balls of S. subterranea, powdery scabs were rarely found near the centres of the rings of primary spraing. PMTV became established in virus-free soil when PMTV-infected tubers carrying S. subterranea were planted as ‘seed’ but not when virus-free tubers bearing powdery scabs were used. 5. subterranea seems the main, and possibly the only, vector of PMTV in the soils examined. S. subterranea did not transmit potato aucuba mosaic virus from potato to N. debneyi or Capsicum annuum.  相似文献   

13.
Resistance to potato leafroll virus (PLRV), potato virus Y (PVYo) and potato virus X (PVX) was studied in symmetric and asymmetric somatic hybrids produced by electrofusion between Solanum brevidens (2n=2×=24) and dihaploid S. tuberosum (2n=2×=24), and also in regenerants (B-hybrids) derived through protoplast culture from a single somatic hybrid (chromosome number 48). All of the somatic hybrids between 5. brevidens and the two dihaploid lines of potato cv. Pito were extremely resistant to PLRV and PVYoand moderately resistant to PVX, irrespective of their chromosome number and ploidy level (tetraploid or hexaploid). Most (56%) of the asymmetric hybrids of irradiated S. brevidens and the dihaploid line of potato cv. Pentland Crown (PDH40) had high titres of PVYosimilar to those of PDH40, whereas the rest of the hybrids had PVYotitres less than a tenth of those in PDH40. Three B-hybrids had a highly reduced chromosome number (27, 30 and 34), but were however as resistant to PLRV, PVYoand PVX as 5. brevidens. Two asymmetric hybrids and one B-hybrid were extremely resistant to PLRV but susceptible to both PVY and PVX. The results suggested that resistance to PLRV in 5. brevidens is controlled by a gene or genes different from those controlling resistance to PVY and PVX, and the gene(s) for resistance to PVY and PVX are linked in S. brevidens.  相似文献   

14.
The titres obtained in microprecipitin tests with purified preparations of pepino latent virus (PepLV) and the Andean strain of potato virus S (PVSA) using PepLV antiserum and two antisera to the ordinary strain of PVS (PVS°) indicated a close serological relationship between PepLV and PVSA. Using antiserum to PVS°, both viruses were detected by ELISA when infective Chenopodium quinoa sap was diluted to 10-5but not to 10-6. Particles of both viruses were decorated equally well by antibodies to PVSo, PVSAand PepLV in all virus-antiserum combinations. When PepLV was inoculated to C. quinoa, C. amaranticolor and potato plants, the symptoms induced closely resembled those of PVSAin these hosts. It is concluded that PepLV is an isolate of PVSAfrom pepino.  相似文献   

15.
A virus obtained from soil in which potato plants had shown severe spraing symptoms induced symptoms on indicator plants typical of tobacco rattle virus (TRY). Purified virus preparations of a local-lesion isolate contained particles of two modal lengths, 192 nm and 94 nm containing RNA molecules of mol. wt 2.4 × 106 and 1.23 × 106. Virus coat protein had a mol. wt of c. 21 500. The virus was serologically distantly related to TRY (SYM) and pea early browning virus (PEBV) SP5, but did not react with TRY (CAM) or TRY (PRN) antisera. However, cDNA hybridisation indicated that the virus was more closely related to TRY (PRN) than either TRY (SYM) or PEBV (SP5). The virus isolate has been designated TRY (NI).  相似文献   

16.
Longidorus attenuatus produces galls at the tips of roots of field crops, including sugar beet, growing in alkaline, sandy soils in eastern England. L. elongatus produces similar, but often larger, galls on the roots of sugar beet and other crops in sandy soils in the W. Midlands and in Fen peats. Trichodorus spp. cause ‘stubby root’ of sugar beet and can feed on many field crops. Seven species of Trichodorus were found in sandy soils in eastern England. L. attenuatus, L. elongatus and Trichodorus spp. aggregate around roots and stunt sugar beet and other crop plants. L. attenuatus is commoner below plough depth than in the topsoil, whereas T. cylindricus, T. pachy-dermus and T. anemones are more abundant in the topsoil. These nematodes cause some forms of ‘Docking disorder’.  相似文献   

17.
Pepper veinal mottle virus (PVMV), a previously undescribed virus widespread in Capsicum annuum and C. frutescens in the Eastern Region of Ghana, is acquired and inoculated in 2 min feeding periods by aphids (Myzus persicae and Aphis gossypii); it is transmissible by inoculation of sap to eleven of fifteen Solanaceae and to five of forty-six other species within three of seventeen other families. The virus was propagated in Nicotiana clevelandii and Petunia hybrida, and assayed in Chenopodium quinoa, C. amaranticolor and C. murale. Sap from Capsicum annuum was infective after dilution to 10-3 but not 10-4, after 10 min at 55 but not 60oC, and after 7 but not 8 days at 25oC. Lyophilized sap from P. hybrida was infective after 6 years in vacuo. Yields of 10–25 mg of virus per kg of leaf tissue were consistently obtained from P. hybrida or N. clevelandii by extracting systemically infected leaves in 0.5 M borate (pH 7.8) containing 0.2% mercaptoethanol and chloroform, followed by repeated precipitation with 50 g polyethylene glycol (M.W. 6000) per l, several cycles of differential centrifugation and centrifugation in sucrose density-gradient columns. Virus preparations had ultraviolet absorption spectra typical of a nucleoprotein containing c. 6% nuclei acid (A 260/280 = 1.25; A 260/246 = 1.27) and contained numerous unaggregated and unbroken filamentous particles c. 770 times 12 nm which sedimented as a single component with a sedimentation coefficient (so20,w) of 155 S. PVMV contained RNA (moles %: G = 24, A = 23, C = 27, U = 26), and a single protein species with a molecular weight of 32000–33000 daltons. PVMV was not serologically related to potato virus Y (three strains), or to twelve other morphologically similar viruses, and seems to be a distinct member of the potato virus Y group. The cryptogram of PVMV is R/(I):*/(6):E/E:S/Ap.  相似文献   

18.
The chemical composition of essential oils isolated by hydrodistillation from needles and cones of Thuja orientalis L. was analysed by gas chromatography-flame ionisation detection and gas chromatography–mass spectrometry. Twenty-one compounds were identified; quantitative differences, mainly, between cone and needle oils were observed. Both oils were rich in monoterpene hydrocarbons and the major constituents were α-pinene (64.2 and 49.3%, respectively, in cones and needles), β-phellandrene (6.7–9.6%) and α-cedrol (3.9 and 8.2%). Herbicidal properties of Thuja essential oils were assessed against three invasive weed species in crops: Sinapis arvensis L., Phalaris paradoxa L. and Lolium rigidum Gaud. The study of herbicidal activity was carried out on the weed germination, seed vigour and seedling growth. Our results showed a strong inhibitory effect on all tested weeds following a dose-dependent manner, property that could be valourised in managing biocontrol of weeds.  相似文献   

19.
When 12 potato cultivars were inoculated with isolates (one each) of potato virus Y (PVY) ordinary (Yo), C (Yc) and tobacco veinal necrosis (Yn) strain groups, potato virus A (PVA) and potato virus V (PVV), none of them responded hypersensitively to Yn. However, with Yo, Yc, PVA and PW specific hypersensitive reactions developed depending on isolate-cultivar combination which were all independent of each other. When field isolates of PVY thought to be Yoor Ycwere inoculated to the same 12 cultivars, two did not fit into either strain group giving hypersensitive reactions in only two cultivars instead of seven with Yoor eight with Yc. These two isolates may represent a previously unreported PVY strain group (Yz). When Yowas graft-inoculated to seedlings of the cross Desiree × Maris Piper (hypersensitive × non-hypersensitive for Yo), the segregation ratio obtained for non-hypersensitive:hypersensitive reactions was close to 1:1 suggesting that a single dominant gene (Nytbr) determining Yospecific hypersensitivity may be present in cv. Desiree (simplex condition). In tests using PVV and Desiree × Maris Piper (non-hypersensitive × hypersensitive for PVV) seedlings, the segregation ratio obtained was close to 1:5 indicating that a single dominant gene (Nv) determining PVV specific hypersensitivity may be present in cv. Maris Piper (duplex condition). Cultivars Corine, Pirola and clone G5457(4) which each carry one of the extreme resistance genes (Ry) from Solanum stoloniferum were graft-inoculated with Yn, Yo, Yc, PVV and PVA. G5457(4) gave a strong localised hypersensitive reaction in all instances, while cv. Pirola did so with all except PVA to which it was immune. In cv. Corine a severe localised hypersensitive reaction developed with PVA, generalised hypersensitivity with PVV but an immune response with the three PVY strain groups. Large-scale grafting of Ynto plants of cvs Corine and Pirola gave no evidence of selection of a strain which overcomes Ry genes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号