首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanisms that define the body pattern during development and regeneration are the object of major concern in developmental biology. To understand the process and sequence of antero-posterior pattern formation of planarian body regions during regeneration, regenerating organisms were treated with exogenous retinoic acid, which affects development and regeneration in other systems, and the sequence of regional determination has been monitored by a specific molecular marker for the central region, which includes the pharynx. The sequence of gross regional specification have never been analysed in planarians using molecular regional markers or by direct disruption of the regeneration process. Exogenous retinoic acid administration on regenerating planarians disrupts anterior, but not posterior regeneration. The period of maximum sensitivity to exogenous retinoic acid is one day after amputation, during which time the determination of the head has been reported to occur. The data obtained allow us to suggest that gross regional specification during planarian regeneration is disto-proximal, from the regenerative blastema to the old stump, and thus takes place by intercalation of the central region between the anterior and posterior ones.  相似文献   

2.
K K Boguta 《Ontogenez》1976,7(2):207-210
The normal structure of the nervous system in Dugesia tigrina Girard and the total morphodynamics of the nervous system during regeneration have been studied by means of choline esterase assay. The nervous system reacts to local damages of the planarian body; accumulations of nervous elements form in the wound region. Following the transverse cut of a planarian, the regeneration of the nervous system is not reduced to the completion of lacking parts. In this case (as well as in that of asexual reproduction) the nervous system manifests a considerable morphological lability and undergoes morphological rearrangements accompanied by the appearance of additional, frequently unpaired, nerve trunks. The data obtained are to be taken into account in neurobiological studies on planarians.  相似文献   

3.
In order to clarify the function of the Djbmp (Dugesia japonica bone morphogenetic protein) gene in planarian body patterning, we carried out knockdown of this gene by RNA interference. When the planarians were treated with double-stranded RNA of Djbmp, a bulge formed on the dorsal side, with a dent in the middle of the bulge, and the body surface inside the dent was smoothened and less pigmented. In situ hybridization of the DjIFb gene, which is expressed in the body margin, revealed that the additional body margin was formed ectopically at the region surrounding the dent. The Djbmp-knockdown planarians often had a pair of incomplete nerve cords in the dorsal side, in addition to the original pair of ventral nerve cords. Taken together, we concluded that the Djbmp-knockdown induced formation of an ectopic ventral side, suggesting that Djbmp is required for the dorso-ventral body patterning in the planarian.  相似文献   

4.
The planarian central nervous system (CNS) can be used as a model for studying neural regeneration in higher organisms. Despite its simple structure, recent studies have shown that the planarian CNS can be divided into several molecular and functional domains defined by the expression of different neural genes. Remarkably, a whole animal, including the molecularly complex CNS, can regenerate from a small piece of the planarian body. In this study, a collection of neural markers has been used to characterize at the molecular level how the planarian CNS is rebuilt. Planarian CNS is composed of an anterior brain and a pair of ventral nerve cords that are distinct and overlapping structures in the head region. During regeneration, 12 neural markers have been classified as early, mid-regeneration and late expression genes depending on when they are upregulated in the regenerative blastema. Interestingly, the results from this study show that the comparison of the expression patterns of different neural genes supports the view that at day one of regeneration, the new brain appears within the blastema, whereas the pre-existing ventral nerve cords remain in the old tissues. Three stages in planarian CNS regeneration are suggested.  相似文献   

5.
6.
Myohara M 《PloS one》2012,7(5):e37319
The term 'neoblast' was originally coined for a particular type of cell that had been observed during annelid regeneration, but is now used to describe the pluripotent/totipotent stem cells that are indispensable for planarian regeneration. Despite having the same name, however, planarian and annelid neoblasts are morphologically and functionally distinct, and many annelid species that lack neoblasts can nonetheless substantially regenerate. To further elucidate the functions of the annelid neoblasts, a comparison was made between the regeneration patterns of two enchytraeid oligochaetes, Enchytraeus japonensis and Enchytraeus buchholzi, which possess and lack neoblasts, respectively. In E. japonensis, which can reproduce asexually by fragmentation and subsequent regeneration, neoblasts are present in all segments except for the eight anterior-most segments including the seven head-specific segments, and all body fragments containing neoblasts can regenerate a complete head and a complete tail, irrespective of the region of the body from which they were originally derived. In E. japonensis, therefore, no antero-posterior gradient of regeneration ability exists in the trunk region. However, when amputation was carried out within the head region, where neoblasts are absent, the number of regenerated segments was found to be dependent on the level of amputation along the body axis. In E. buchholzi, which reproduces only sexually and lacks neoblasts in all segments, complete heads were never regenerated and incomplete (hypomeric) heads could be regenerated only from the anterior region of the body. Such an antero-posterior gradient of regeneration ability was observed for both the anterior and posterior regeneration in the whole body of E. buchholzi. These results indicate that the presence of neoblasts correlates with the absence of an antero-posterior gradient of regeneration ability along the body axis, and suggest that the annelid neoblasts are more essential for efficient asexual reproduction than for the regeneration of missing body parts.  相似文献   

7.
Homologs of nanos are required for the formation and maintenance of germline stem cell (GSC) systems and for gametogenesis in many metazoans. Planarians can change their reproductive mode seasonally, alternating between asexual and sexual reproduction; they develop and maintain their somatic stem cells (SSCs) and GCSs from pluripotent stem cells known as neoblasts. We isolated a nanos homolog, Dr-nanos, from the expressed sequence tags (ESTs) of the sexualized form of Dugesia ryukyuensis. We examined the expression of Dr-nanos in asexual and sexualized planarians by in situ hybridization and analyzed its function using RNA interference (RNAi) together with a planarian sexualization assay. A nanos homolog, Dr-nanos, was identified in the planarian D. ryukyuensis. Dr-nanos expression was observed in the ovarian primordial cells of the asexual worms. This expression increased in proportion to sexualization and was localized in the early germline cells of the ovaries and testes. In X-ray-irradiated worms, the expression of Dr-nanos decreased to a large extent, indicating that Dr-nanos is expressed in some subpopulations of stem cells, especially in GSCs. During the sexualization process, worms in which Dr-nanos was knocked down by RNAi exhibited decreased numbers of oogonia in the ovaries and failed to develop testes, whereas the somatic sexual organs were not affected. We conclude that Dr-nanos is essential for the development of germ cells in the ovaries and testes and may have a function in the early stages of germ cell specification, but not in the development of somatic sexual organs.  相似文献   

8.
Wnt proteins are a family of highly conserved secreted glycoproteins that regulate cell-to-cell interactions during embryogenesis. They act as signaling molecules and take part in many crucial decisions throughout the development of organisms ranging from Hydra to human. We have isolated and characterized the expression of a member of the Wnt family, Gtwnt-5 gene in the planarian Girardia tigrina. Planarians are free-living members (Class Turbellaria) of the Phylum Platyhelminthes. They are best known for their high regenerative capabilities. These organisms have an apparently simple central nervous system (CNS) from a morphological perspective, with cephalic ganglia in the dorsal anterior region and two ventral main nerve cords along the body. However, a large number of planarian neural genes have recently been identified and therefore it is possible to define different molecular and functional domains in the planarian brain. The present study shows expression of Gtwnt-5 in a subpopulation of the whole CNS of intact organisms, being activated during regeneration. Gtwnt-5 reveals a differential spatial pattern: the expression is preferentially found in the most external region of the CNS. In addition, a kind of iterative pattern has been observed at the ganglia level, suggesting that the planarian brain might not be a continuous structure but compartmented or regionalized. Gtwnt-5 signal is also detected at the sensors of the worm: at the auricle level and all around the cephalic periphery. All these data provide us with a new neural marker for the planarian brain, and can be used to follow regeneration of the CNS.  相似文献   

9.
A simple method was developed for RNA interference (RNAi) in the planarian Dugesia japonica. The DjIFb ( Dugesia japonica intermediate filament b) gene was used to evaluate the effect of RNAi because both the cDNA and an antiserum against the gene product were available. After transverse cutting at the pre- and post-pharyngeal regions, the middle part of the body fragment was soaked in water containing double-stranded RNA (dsRNA) for about 5 h and then allowed to regenerate in water. On the 5th day of regeneration, little DjIFb protein was detected in the new tissues. When the worms were cut after soaking in dsRNA water, no RNAi effect was observed, suggesting that the dsRNA was introduced through the cut surface. A high concentration of dsRNA or repeated "cutting and soaking" resulted in more effective RNAi. This simple soaking method in combination with expressed sequence tag analysis should be very useful for high-throughput analyses of gene functions in planarian regeneration.  相似文献   

10.
The planarian's remarkable regenerative ability is thought to be supported by the stem cells (neoblasts) found throughout its body. Here we report the identification of a subpopulation of neoblasts, which was revealed by the expression of the nanos-related gene of the planarian Dugesia japonica, termed Djnos. Djnos-expressing cells in the asexual planarian were distributed to the prospective ovary or testes forming region in the sexual planarian. During sexualization, Djnos-expressing cells produce germ cells, suggesting that in the asexual state these cells were kept as germline stem cells for the oogonia and spermatogonia. Interestingly, the germline stem cells were indistinguishable from the neoblasts by morphology and X-ray sensitivity and did not seem to contribute to the regeneration at all. Germline stem cells initially appear in the growing infant planarian, suggesting that germline stem cells are separated from somatic stem cells in the planarian. Thus, planarian neoblasts can be classified into two groups; somatic stem cells for regeneration and tissue renewal, and germline stem cells for production of germ cells during sexualization. However, Djnos-positive cells appeared in the newly formed trunk region from the head piece, suggesting that somatic stem cells can convert to germline stem cells.  相似文献   

11.
12.
Asexual worms of an exclusively fissiparous strain (the OH strain) of the planarian Dugesia ryukyuensis keep developing hermaphroditic reproductive organs and eventually undergo sexual reproduction instead of asexual reproduction, namely fission, if they are fed with sexually mature worms of an exclusively oviparous planarian, Bdellocephala brunnea, suggesting that the sexually mature worms has a sexualizing substance(s). The fully sexualized worms no longer need the feeding on sexual worms to maintain the sexuality. Here, we demonstrate that the sexualized worms produce enough of their own sexualizing substance similar to that contained in B. brunnea. In case of surgical ablation of the sexualized worms, the fragments with sexual organs regenerate to become sexual, while those without sexual organs, namely head fragments, regenerate to return to the asexual state. The asexual regenerants from the sexualized worms are also fully sexualized by being fed with B. brunnea. Additionally, it was reported that head region in sexually mature worms lacks the putative sexualizing substance necessary for complete sexualization (Sakurai, 1981). These results suggest that the fragments without sexual organ lack enough of an amount of the putative sexualizing substance and the sexuality is maintained by the sexualizing substance contained in the sexualized worms.  相似文献   

13.
Regenerating the central nervous system: how easy for planarians!   总被引:4,自引:0,他引:4  
  相似文献   

14.
In certain planarian species that are able to switch between asexual and sexual reproduction, determining whether a sexual has the ability to switch to the asexual state is problematic, which renders the definition of sexuals controversial. We experimentally show the existence of two sexual races, acquired and innate, in the planarian Dugesia ryukyuensis. Acquired sexuals used in this study were experimentally switched from asexuals. Inbreeding of acquired sexuals produced both innate sexuals and asexuals, but inbreeding of innate sexuals produced innate sexuals only and no asexuals. Acquired sexuals, but not innate sexuals, were forced to become asexuals by ablation and regeneration (asexual induction). This suggests that acquired sexuals somehow retain asexual potential, while innate sexuals do not. We also found that acquired sexuals have the potential to develop hyperplastic and supernumerary ovaries, while innate sexuals do not. In this regard, acquired sexuals were more prolific than innate sexuals. The differences between acquired and innate sexuals will provide a structure for examining the mechanism underlying asexual and sexual reproduction in planarians.  相似文献   

15.
A game theoretical model is developed to illustrate that multilevel selection by density-dependent competitive interactions in mobile organisms might have played a major role in the evolutionary transitions from asexual over sexual to eusocial reproduction. The model has four equilibria with selection occurring among interacting units of respectively one, two, three, and up to infinitely many individuals. The different equilibria are characterised by different levels of competitive interactions among interacting units, and these levels select for different levels of sexual and co-operative reproduction among the individuals of the units. The model predicts: (i) that low-energy organisms with negligible body masses have asexual reproduction; (ii) that high-energy organisms with non-negligible body masses in evolutionary equilibria have sexual reproduction between a female and a male; (iii) that high-energy organisms with non-negligible body masses that increase exponentially at an evolutionary steady state have co-operative reproduction between a sexual pair and a single sexually produced offspring; and (iv) that high-energy organisms with upward constrained body masses have eusocial reproduction between a sexual pair and up to an infinite number of sexually produced offspring workers.  相似文献   

16.
The planarian flatworm is an ideal system for the study of regeneration in vivo. In this study, we focus on TINP1, which is one of the most conserved proteins in eukaryotic organisms. We found that TINP1 was expressed in parenchymal region through whole body as well as central nervous system (CNS) during the course of regeneration. RNA interference targeting DjTINP1 caused lysis defects in regenerating tissues and a decreased in cell division and expression levels of DjpiwiA and Djpcna. Furthermore, the expression levels of DjTINP1 were decreased when we inhibited the TGF-β signal by knockdown of smad4, which is the sole co-smad and has been proved to control the blastema patterning and central nervous system (CNS) regeneration in planarians. These findings suggest that DjTINP1 participate in the maintenance of neoblasts and be required for proper cell proliferation in planarians as a downstream gene of the TGF-β signal pathway.  相似文献   

17.
The planarian Dugesia ryukyuensis reproduces both asexually and sexually, and can switch from one mode of reproduction to the other. We recently developed a method for experimentally switching reproduction of the planarian from the asexual to the sexual mode. We constructed a cDNA library from sexualized D. ryukyuensis and sequenced and analyzed 8,988 expressed sequence tags (ESTs). The ESTs were analyzed and grouped into 3,077 non-redundant sequences, leaving 1,929 singletons that formed the basis of unigene sets. Fifty-six percent of the cDNAs analyzed shared similarity (E-value<1E -20) with sequences deposited in NCBI. Highly redundant sequences encoded granulin and actin, which are expressed in the whole body, and other redundant sequences encoded a Vasa-like protein, which is known to be a component of germ-line cells and is expressed in the ovary, and Y-protein, which is expressed in the testis. The sexualized planarian expressed sequence tag database (http://planaria.bio.keio.ac.jp/planaria/) is an open-access, online resource providing access to sequence, classification, clustering, and annotation data. This database should constitute a powerful tool for analyzing sexualization in planarians.  相似文献   

18.
The planarian Dugesia japonica has a relatively well-organized central nervous system (CNS) consisting of a brain and ventral nerve cords (VNCs), and can completely regenerate it CNS utilizing pluripotent stem cells present in the mesenchymal space. This remarkable capacity has begun to be exploited for research on neural regeneration. Recently, several kinds of molecular markers for labeling of neural subtypes have been reported in planarians. These molecular markers are useful for visualizing the distinct neural populations in planarians. In this study, we isolated a cDNA encoding tyramine beta-hydroxylase (TBH), an octopamine (OA) biosynthetic enzyme, by degenerate PCR in the planarian D. japonica, and named it DjTBH (D. japonica tyramine beta-hydroxylase). In order to examine whether DjTBH contributes to OA biosynthesis, we measured the OA content in DjTBH-knockdown planarians created by RNA interference. In addition, to examine the specificity of DjTBH for OA biosynthesis, we measured not only OA content but also noradrenaline (NA) content, because NA is synthesized by a pathway similar to that for OA. According to high-performance liquid chromatography analysis, the amount of OA, but not NA, was significantly decreased in DjTBH-knockdown planarians. In addition, we produced anti-DjTBH antibody to visualize the octopaminergic neural network. As shown by immunofluorescence analysis using anti-DjTBH antibody, DjTBH-immunopositive neurons were mainly distributed in the head region, and elongated their dendrites and/or axons along the VNCs. In order to visualize octopaminergic and dopaminergic nervous systems (phenolamine/catecholamine nervous system) in the planarian CNS, double-immunofluorescence analysis was carried out using both anti-DjTBH antibody and anti-DjTH (a planarian tyrosine hydroxylase) antibody. DjTBH-immunopositive neurons and DjTH-immunopositive neurons mainly formed distinct neural networks in the head region. Here, we demonstrated that DjTBH clearly contributes to OA biosynthesis, and DjTBH antibody is a useful tool for detecting octopaminergic neurons in planarians.  相似文献   

19.
Hox genes are pivotal molecules in the control of morphogenesis along the anterior-posterior (AP) axis in various bilaterians. Planarians are key animals for understanding the evolution of the bilaterian body plan. Furthermore, they are also known for their strong regeneration ability and are thought to use the Hox genes in the process of reconstruction of the AP axis. In the present paper, the identification and analysis of expression of two posterior (Abdominal-B-like) genes, DjAbd-Ba and DjAbd-Bb, is reported in the planarian Dugesia japonica. DjAbd-Ba is expressed in the entire tail region and its anterior boundary is the posterior pharyngeal region. In contrast, DjAbd-Bb is expressed in several types of cells throughout the body. During regeneration, the expression of DjAbd-Ba rapidly recovers a pattern similar to that in the normal worm. These findings suggest the possibility that DjAbd-Ba is involved in the specification of the tail region. The anterior boundary of the expression domain of the posterior gene DjAbd-Ba is anterior to the domains of the central genes Plox4-Dj and Plox5-Dj. These expression patterns of planarian Hox genes seem out of the rule of spatial colinearity and may reflect an ancestral feature of bilaterian Hox genes.  相似文献   

20.
A combination of suppression subtractive hybridization and a new technique of mirror orientation selection was used to compare the total DNA for two, sexual and asexual, races of freshwater planarian Girardia tigrina. Several race-specific DNA fragments were found. A new element termed planarian extrachromosomal virus-like element (PEVE) was revealed in the asexual race. The PEVE genome contains two unique regions, Ul and Us, which are flanked by inverted repeats. Two variants observed for the PEVE genome differ in combination of single- and double-stranded regions corresponding to Ul and Us. The PEVE genome codes for two helicases, one homologous to the circovirus replication initiation protein (Rep) and one corresponding to the helicase domain of papillomavirus E1. PEVE is nonuniformly distributed through the planarian body and is possibly replicated only in certain parenchymal cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号