首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Three protein products of the Duchenne muscular dystrophy (DMD) gene were identified so far. These include the two very similar muscle and brain type dystrophins, which are encoded by 14-kilobase (kb) mRNAs, and Dp71, which is much smaller. Dp71 is encoded by a 6.5-kb mRNA, which is transcribed from approximately 6% of the giant dystrophin gene. The present investigation shows that Dp71 is the first product of the DMD gene detectable during development. It is already expressed in the pluripotent embryonic stem cells. The two 14-kb mRNAs encoding the dystrophins are detectable only after differentiation of specialized cell types. The possible implication of these findings with regard to the ontogenetic activation and the evolution of the DMD gene are discussed.  相似文献   

3.
4.
Production of semi-functional dystrophin mRNA from the dystrophin gene encoding a premature stop codon has been shown to modify the severe phenotype of Duchenne muscular dystrophy (DMD). In this study, we report the tissue-specific production of semi-functional dystrophin mRNA via activation of a nonsense mutation-created intraexonic splice acceptor site. In a DMD patient a novel nonsense mutation was identified in exon 42. In his lymphocytes semi-functional dystrophin mRNA with a 63-nucleotide deletion in exon 42 (dys-63) was found to be produced. In vitro splicing assay using hybrid minigenes disclosed that the mutation-created intraexonic splice acceptor site was activated. In his skeletal muscle cells, however, only the authentically spliced dystrophin mRNA was found. This finding identifies the modulation of the splicing of muscle dystrophin mRNA in cases of DMD as a potential target for therapeutic strategies to generate a milder phenotype for this disease.  相似文献   

5.
Neuman S  Kaban A  Volk T  Yaffe D  Nudel U 《Gene》2001,263(1-2):17-29
The gene which is defective in Duchenne muscular dystrophy (DMD) is the largest known gene containing at least 79 introns, some of which are extremely large. The product of the gene in muscle, dystrophin, is a 427 kDa protein. The same gene encodes at least two additional non-muscle full length dystrophin isoforms transcribed from different promoters located in the 5'-end region of the gene, and four smaller proteins transcribed from internal promoters located further downstream, and lack important domains of dystrophin. Several other genes, encoding evolutionarily related proteins, have been identified. To study the evolution of the DMD gene and the significance of its various products, we have searched for genes encoding dystrophin-like proteins in sea urchin and in Drosophila. We previously reported on the characterization of a sea urchin gene encoding a protein which is an evolutionary homologue of Dp116, one of the small products of the mammalian DMD gene, and on the partial sequencing of a large product of the same gene. Here we describe the full-length product which shows strong structural similarity and sequence identity to human dystrophin and utrophin. We also describe a Drosophila gene closely related to the human dystrophin gene. Like the human gene, the Drosophila gene encodes at least three isoforms of full length dystrophin-like proteins (dmDLP1, dmDLP2 and dmDLP3,), regulated by different promoters located at the 5' end of the gene, and a smaller product regulated by an internal promoter (dmDp186). As in mammals, dmDp186 and the dmDLPs share the same C-terminal and cysteine-rich domains which are very similar to the corresponding domains in human dystrophin and utrophin. In addition, dmDp186 contains four of the spectrin-like repeats of the dmDLPs and a unique N-terminal region of 512 amino acids encoded by a single exon. The full length products and the small product have distinct patterns of expression. Thus, the complex structure of the dystrophin gene, encoding several large dystrophin-like isoforms and smaller truncated products with different patterns of expression, existed before the divergence between the protostomes and deuterostomes. The conservation of this gene structure in such distantly related organisms, points to important distinct functions of the multiple products.  相似文献   

6.
7.

Duchenne muscular dystrophy (DMD) patients, having mutations of the DMD gene, present with a range of neuropsychiatric disorders, in addition to the quintessential muscle pathology. The neurobiological basis remains poorly understood because the contributions of different DMD gene products (dystrophins) to the different neural networks underlying such symptoms are yet to be fully characterised. While full-length dystrophin clusters in inhibitory synapses, with inhibitory neurotransmitter receptors, the precise subcellular expression of truncated DMD gene products with excitatory synapses remains unresolved. Furthermore, inflammation, involving P2X purinoceptor 7 (P2RX7) accompanies DMD muscle pathology, yet any association with brain dystrophins is yet to be established. The aim of this study was to investigate the comparative expression of different dystrophins, alongside ionotropic glutamate receptors and P2RX7s, within the cerebellar circuitry known to express different dystrophin isoforms. Immunoreactivity for truncated DMD gene products was targeted to Purkinje cell (PC) distal dendrites adjacent to, or overlapping with, signal for GluA1, GluA4, GluN2A, and GluD2 receptor subunits. P2X7R immunoreactivity was located in Bergmann glia profiles adjacent to PC-dystrophin immunoreactivity. Ablation of all DMD gene products coincided with decreased mRNA expression for Gria2, Gria3, and Grin2a and increased GluD2 immunoreactivity. Finally, dystrophin-null mice showed decreased brain mRNA expression of P2rx7 and several inflammatory mediators. The data suggest that PCs target different dystrophin isoforms to molecularly and functionally distinct populations of synapses. In contrast to muscle, dystrophinopathy in brain leads to the dampening of the local immune system.

  相似文献   

8.
9.
10.
11.
12.
Utrophin gene is transcribed in a large mRNA of 13 kb that codes for a protein of 395 kDa. It shows amino acid identity with dystrophin of up to 73% and is widely expressed in muscle and non-muscle tissues. Up71 is a short utrophin product of the utrophin gene with the same cysteine-rich and C-terminal domains as full-length utrophin (Up395). Using RT-PCR, Western blots analysis, we demonstrated that Up71 is overexpressed in the mdx diaphragm, the most pathological muscle in dystrophin-deficient mdx mice, compared to wild-type C57BL/10 or other mdx skeletal muscles. Subsequently, we demonstrated that this isoform displayed an increased expression level up to 12 months, whereas full-length utrophin (Up395) decreased. In addition, beta-dystroglycan, the transmembrane glycoprotein that anchors the cytoplasmic C-terminal domain of utrophin, showed similar increase expression in mdx diaphragm, as opposed to other components of the dystrophin-associated protein complex (DAPC) such as alpha-dystrobrevin1 and alpha-sarcoglycan. We demonstrated that Up71 and beta-dystroglycan were progressively accumulated along the extrasynaptic region of regenerating clusters in mdx diaphragm. Our data provide novel functional insights into the pathological role of the Up71 isoform in dystrophinopathies.  相似文献   

13.
Nonsense mutations in the dystrophin gene are the cause of Duchenne muscular dystrophy (DMD) in 10-15% of patients. In such an event, one approach to gene therapy for DMD is the use of suppressor tRNAs to overcome the premature termination of translation of the mutant mRNA. We have carried out cotransfection of the HeLa cell culture with constructs containing a suptRNA gene (pcDNA3suptRNA) and a marker LacZ gene (pNTLacZhis) using their polymer VSST-525 complexes. It was found that the number of cells producing beta-galactosidase depends inversely on the dose of the suptRNA gene. A single in vivo injection of the construct providing for expression of the suptRNAochre gene into mdx mouse muscle resulted in the production of dystrophin in 2.5% of fibers. This suggests that suppressor tRNAs are applicable in gene therapy for hereditary diseases caused by nonsense mutations.  相似文献   

14.
15.
16.
17.
One of female MZ twins presented with muscular dystrophy. Physical examination, creatine phosphokinase levels, and muscle biopsy were consistent with Duchenne muscular dystrophy (DMD). However, because of her sex she was diagnosed as having limb-girdle muscular dystrophy. With cDNA probes to the DMD gene, a gene deletion was detected in the twins and their mother. The de novo mutation which arose in the mother was shown by novel junction fragments generated by HindIII, PstI, or TaqI when probed with cDNA8. Additional evidence of a large gene deletion was given by novel SfiI junction fragments detected by probes p20, J-Bir, and J-66 on pulsed-field gel electrophoresis (PFGE). Immunoblot analysis of muscle from the affected twin showed dystrophin of normal size but of reduced amount. Immunofluorescent visualization of dystrophin revealed foci of dystrophin-positive fibers adjacent to foci of dystrophin-negative fibers. These data indicate that the affected twin is a manifesting carrier of an abnormal DMD gene, her myopathy being a direct result of underexpression of dystrophin. Cytogenetic analysis revealed normal karyotypes, eliminating the possibility of a translocation affecting DMD gene function. Both linkage analysis and DNA fingerprint analysis revealed that each twin has two different X chromosomes, eliminating the possibility of uniparental disomy as a mechanism for DMD expression. On the basis of methylation differences of the paternal and maternal X chromosomes in these MZ twins, we propose uneven lyonization (X chromosome inactivation) as the underlying mechanism for disease expression in the affected female.  相似文献   

18.
Duchenne muscular dystrophy (DMD) is a genetic neuromuscular disorder caused by the absence of dystrophin. We developed a novel gene therapy approach based on the use of the piggyBac (PB) transposon system to deliver the coding DNA sequence (CDS) of either full-length human dystrophin (DYS: 11.1 kb) or truncated microdystrophins (MD1: 3.6 kb; MD2: 4 kb). PB transposons encoding microdystrophins were transfected in C2C12 myoblasts, yielding 65±2% MD1 and 66±2% MD2 expression in differentiated multinucleated myotubes. A hyperactive PB (hyPB) transposase was then deployed to enable transposition of the large-size PB transposon (17 kb) encoding the full-length DYS and green fluorescence protein (GFP). Stable GFP expression attaining 78±3% could be achieved in the C2C12 myoblasts that had undergone transposition. Western blot analysis demonstrated expression of the full-length human DYS protein in myotubes. Subsequently, dystrophic mesoangioblasts from a Golden Retriever muscular dystrophy dog were transfected with the large-size PB transposon resulting in 50±5% GFP-expressing cells after stable transposition. This was consistent with correction of the differentiated dystrophic mesoangioblasts following expression of full-length human DYS. These results pave the way toward a novel non-viral gene therapy approach for DMD using PB transposons underscoring their potential to deliver large therapeutic genes.  相似文献   

19.

Background

The dystrophin gene, which is mutated in Duchenne muscular dystrophy (DMD), encodes a large cytoskeletal protein present in muscle fibers. While dystrophin in skeletal muscle has been extensively studied, the function of dystrophin in vascular smooth muscle is less clear. Here, we have analyzed the role of dystrophin in injury-induced arterial neointima formation.

Methodology/Principal Findings

We detected a down-regulation of dystrophin, dystroglycan and β-sarcoglycan mRNA expression when vascular smooth muscle cells de-differentiate in vitro. To further mimic development of intimal lesions, we performed a collar-induced injury of the carotid artery in the mdx mouse, a model for DMD. As compared with control mice, mdx mice develop larger lesions with increased numbers of proliferating cells. In vitro experiments demonstrate increased migration of vascular smooth muscle cells from mdx mice whereas the rate of proliferation was similar in cells isolated from wild-type and mdx mice.

Conclusions/Significance

These results show that dystrophin deficiency stimulates neointima formation and suggest that expression of dystrophin in vascular smooth muscle cells may protect the artery wall against injury-induced intimal thickening.  相似文献   

20.
Duchenne muscular dystrophy (DMD) is a hereditary disease caused by mutations that disrupt the dystrophin mRNA reading frame. In some cases, forced exclusion (skipping) of a single exon can restore the reading frame, giving rise to a shorter, but still functional, protein. In this study, we constructed lentiviral vectors expressing antisense oligonucleotides in order to induce an efficient exon skipping and to correct the initial frameshift caused by the DMD deletion of CD133+ stem cells. The intramuscular and intra-arterial delivery of genetically corrected CD133 expressing myogenic progenitors isolated from the blood and muscle of DMD patients results in a significant recovery of muscle morphology, function, and dystrophin expression in scid/mdx mice. These data demonstrate that autologous engrafting of blood or muscle-derived CD133+ cells, previously genetically modified to reexpress a functional dystrophin, represents a promising approach for DMD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号