首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The elastimeter method was applied to the single muscle fiber of the frog semitendinosus to obtain the elastic moduli of the sarcolemma and myoplasm, as well as their relative contributions to resting fiber tension at different extensions. A bleb which was sucked into a flat-mouthed pipette at the fiber surface separated into an external sarcolemmal membrane and a thick inner myoplasmic region. Measurements showed that the sarcolemma does not contribute to intact fiber tension at sarcomere lengths below 3 µ. It was estimated that the sarcolemma contributed on the order of 10% to intact fiber tension at sarcomere lengths between 3 and 3.75 µ, and more so with further extension. Between these sarcomere lengths, the sarcolemma can be linearly extended and has a longitudinal elastic modulus of 5 x 106 dyne/cm2 (assuming a thickness of 0.1 µ). Resistance to deformation of the inner bleb region is due to myoplasmic elasticity. The myoplasmic elastic modulus was estimated by use of a model and was used to predict a fiber length-tension curve which agreed approximately with observations.  相似文献   

2.
The sarcoplasmic reticulum of the frog's sartorius muscle was examined by electron microscopy following sequential fixation in glutaraldehyde and osmium tetroxide and embedding in Epon. The earlier results of Porter and Palade on Ambystoma muscle were confirmed in the sartorius. In addition, the transverse tubules were observed to be continuous across the width of the fiber, a set of flat intermediate cisternae was seen to connect the terminal cisternae to the longitudinal tubules in the A band, and the continuous reticulum collar at the center of the A band was found to be perforated by circular and elongated pores (the fenestrated collar). The transverse tubules have a volume about 0.3 per cent of the fiber volume, and a surface area about 7 times the outer cylindrical surface area for a fiber 100 µ in diameter. The terminal cisternae, the intermediate cisternae, and the longitudinal tubules together with the fenestrated collar each have a volume of 4 to 5 per cent of the fiber volume and a surface area 40 to 50 times the outer surface area of a fiber 100 µ in diameter. Some evidence for continuity of the transverse tubules with the fiber surface is presented, but this is thought to be not so convincing as evidence presented by others. The results are discussed in terms of a possible mechanism for a role of the transverse tubules and sarcoplasmic reticulum in excitation-contraction coupling, as suggested by their morphology and a variety of physiological studies. In this scheme, the transverse tubules are thought to be electrically coupled to the terminal cisternae, so that depolarization of the fiber surface spreads inward along the transverse tubules and to the terminal cisternae, initiating the release of a contraction-activating substance.  相似文献   

3.
Two membrane fractions, one enriched in sarcoplasmic reticulum and the other enriched in sarcolemma, were isolated from the myocardium of young (3–4-months-old) and aged (24–25-months old) rats. ATP-supported Ca2+ binding and accumulating activities as well as (Mg2+ + Ca2+)-ATPase activities of these membrane fractions were studied in an effort to determine the influence of age on the Ca2+ pump function of the two myocardial membrane systems. Sarcoplasmic reticulum from aged hearts showed significantly reduced (approx. 50%) rates of ATP-supported (oxalate-facilitated) Ca2+ accumulation compared to sarcoplasmic reticulum from young hearts; the amount of Ca2+ accumulated by this membrane of aged heart at steady state was also lower. On the other hand, sarcolemma from aged hearts displayed 2-fold higher rates of ATP-supported Ca2+ accumulation compared to sarcolemma from young hearts; at steady state, sarcolemma from aged hearts accumulated significantly higher amounts of Ca2+ than did sarcolemma from young hearts. Similar age-related differences were also observed in the ATP-dependent Ca2+ binding activities of the two membranes, determined in the absence of oxalate. The divergent age-associated changes in Ca2+ binding and accumulating activities of sarcoplasmic reticulum and sarcolemma were seen at varying Ca2+ concentrations (0.24–39.1 μM).With either membrane, kinetic analysis showed 2-fold age-related differences in the V values for ATP-supported Ca2+ accumulation (V (nmol Ca2+/mg protein per min): sarcoplasmic reticulum — young, 119 ± 8; aged, 59 ± 5; sarcolemma — young, 11 ± 2; aged, 21 ± 3); the concentrations of Ca2+ required for half-maximal velocities did not differ significantly with age (K0.5 for Ca2+ (μM): sarcoplasmic reticulum — young, 2.5 ± 0.20; aged, 2.9 ± 0.25; sarcolemma — yount, 2.7 ± 0.25; aged, 3.2 ± 0.30). Kinetic parameters of ATP-dependent Ca2+ binding also indicated that the velocity of Ca2+ binding but not the concentration of Ca2+ required for half-maximal binding was altered due to aging. At identical Ca2+ concentrations, the combined Ca2+ accumulating activity of sarcoplasmic reticulum and sarcolemma from aged hearts was significantly lower (38–47%) than the combined Ca2+ accumulating activity of the two membranes from young hearts. No significant age-related differences were observed in the ATP-independent (passive) Ca2+ binding (or accumulation) by sarcoplasmic reticulum and sarcolemma, the (Mg2+ + Ca2+)-ATPase activities of these membranes, their polypeptide composition or relative purity. These results indicate that differential alterations occur in the ATP-supported Ca2+ pump activities of sarcoplasmic reticulum and sarcolemma in aging myocardium and such alterations may be due to age-associated changes in the efficacy of coupling ATP hydrolysis to Ca2+ transport. Further, the age-related increment in the Ca2+ pump activity of sarcolemma is inadequate to fully compensate for the diminished Ca2+ pump activity of sarcoplasmic reticulum. It is, therefore, suggested that deterioration of the Ca2+ pump function of sarcoplasmic reticulum may contribute to the increased relaxation time observed in aging heart.  相似文献   

4.
Zebrafish (Danio rerio) have become a popular model in cardiovascular research mainly due to identification of a large number of mutants with structural defects. In recent years, cardiomyopathies and other diseases influencing contractility of the heart have been studied in zebrafish mutants. However, little is known about the regulation of contractility of the zebrafish heart on a tissue level. The aim of the present study was to elucidate the role of trans-sarcolemmal Ca2+-flux and sarcoplasmic reticulum Ca2+-release in zebrafish myocardium. Using isometric force measurements of fresh heart slices, we characterised the effects of changes of the extracellular Ca2+-concentration, trans-sarcolemmal Ca2+-flux via L-type Ca2+-channels and Na+-Ca2+-exchanger, and Ca2+-release from the sarcoplasmic reticulum as well as beating frequency and β-adrenergic stimulation on contractility of adult zebrafish myocardium. We found an overall negative force-frequency relationship (FFR). Inhibition of L-type Ca2+-channels by verapamil (1 μM) decreased force of contraction to 22±7% compared to baseline (n=4, p<0.05). Ni2+ was the only substance to prolong relaxation (5 mM, time after peak to 50% relaxation: 73±3 ms vs. 101±8 ms, n=5, p<0.05). Surprisingly though, inhibition of the sarcoplasmic Ca2+-release decreased force development to 54±3% in ventricular (n=13, p<0.05) and to 52±8% in atrial myocardium (n=5, p<0.05) suggesting a substantial role of SR Ca2+-release in force generation. In line with this finding, we observed significant post pause potentiation after pauses of 5 s (169±7% force compared to baseline, n=8, p<0.05) and 10 s (198±9% force compared to baseline, n=5, p<0.05) and mildly positive lusitropy after β-adrenergic stimulation. In conclusion, force development in adult zebrafish ventricular myocardium requires not only trans-sarcolemmal Ca2+-flux, but also intact sarcoplasmic reticulum Ca2+-cycling. In contrast to mammals, FFR is strongly negative in the zebrafish heart. These aspects need to be considered when using zebrafish to model human diseases of myocardial contractility.  相似文献   

5.
A quantitative study has been made of the ultrastructure and vascularization of slow fibres in the lateral muscles of the European anchovy (Engraulis encrasicolus). Mitochondria and myofibrils occupy 45.5 and 44.3% of total fibre volume respectively. More than 95% of all myofibrils are adjacent to mitchondria. A total of 51 % of the sarcolemma is in direct contact with capillaries with a mean of 12.9 capillaries per fibre. In transverse sections anchovy slow fibr es are considerably flattened (long to short axis 12:1) such that the surface to volume ratio is more than twice that of a cylindrical fibre of the same area (1115 μm2). The capillary surface required to supply l μm3 of mitochondria is 0.18 μm2 and the maximum distance between any capillary and mitochondrion 8 μm. T-system and sarcoplasmic reticulum occupy 0.43 and 2.7% of fibre volume respectively. Adaptations for increasing the capacity of skeletal muscle for aerobic work are discussed.  相似文献   

6.
The number of extrajunctional acetylcholine receptors (125I-labeled α-bungarotoxin binding sites) per unit length of muscle fiber and the average fiber circumference were determined for rat diaphragm muscle fibers denervated 0, 2, 4, 7, 10, and 14 days. From these data receptor densities (sites per square micrometer of surface) were calculated. Values thus obtained were considerably lower than those estimated previously by autoradiography. Receptor density increased from < 6 sites/µm2 in innervated muscle to 635 ± 29 sites/µm2 14 days after denervation. The form of the relationship between receptor density and acetylcholine sensitivity and the time-course of change in receptor density after denervation are as previously reported.  相似文献   

7.
Glaciers'' runoff in the Qilian Mountains serves as a critical water resource in the northern sections of the Gansu province, the northeastern sections of the Qinghai province, and the northeastern fringe of the Tibetan Plateau. Changes in the glacial area and volume around the highest peak of the Qilian Mountains, i.e., Tuanjiefeng Peak, were estimated using multi-temporal remote-sensing images and digital elevation models, and all possible sources of uncertainty were considered in detail. The total glacier area decreased by 16.1±6.34 km2 (9.9±3.9%) during 1966 to 2010. The average annual glacier shrinkage was −0.15% a−1 from 1966 to 1995, −0.61% a−1 from 1995 to 2000, −0.20% a−1 from 2000 to 2006, and −0.45% a−1 from 2006 to 2010. A comparison of glacier surface elevations using digital elevation models derived from topographic maps in 1966 and from the Shuttle Radar Topography Mission in 1999 suggests that 65% of the grid cells has decreased, thereby indicating that the glacier thickness has declined. The average change in glacier thickness was −7.3±1.5 m (−0.21±0.04 m·a−1) from 1966 to 1999. Glaciers with northeastern aspects thinned by 8.3±1.4 m from 1966 to 1999, i.e., almost twice as much as those with southwestern aspects (4.3±1.3 m). The ice volume decreased by 11.72±2.38×108 m3 from 1966 to 1999, which was about 17.4% more than the value calculated from the statistical relationship between glacier area and volume. The relationship between glacier area change and elevation zone indicates that glacier change is not only dominated by climate change but also affected by glacier dynamics, which are related to local topography. The varied response of a single glacier to climate change indicates that the glacier area change scheme used in some models must be improved.  相似文献   

8.
Unilateral strength training can cause cross-transfer strength effects to the homologous contralateral muscles. However, the impact of the cross-over effects on the muscle tissue is unclear. To test the hypothesis that unilateral muscle overuse causes bilateral alterations in muscle fiber composition and vascular supply, we have used an experimental rabbit model with unilateral unloaded overstrain exercise via electrical muscle stimulation (E/EMS). The soleus (SOL) and gastrocnemius (GA) muscles of both exercised (E) and contralateral non-exercised (NE) legs (n = 24) were morphologically analyzed after 1w, 3w and 6w of EMS. Non-exercised rabbits served as controls (n = 6). After unilateral intervention the muscles of both E and NE legs showed myositis and structural and molecular tissue changes that to various degrees mirrored each other. The fiber area was bilaterally smaller than in controls after 3w of E/EMS in both SOL (E 4420 and NE 4333 µm2 vs. 5183 µm2, p<0.05) and GA (E 3572 and NE 2983 µm2 vs. 4697 µm2, p<0.02) muscles. After 6w of E/EMS, the percentage of slow MyHCI fibers was lower than in controls in the NE legs of SOL (88.1% vs. 98.1%, p<0.009), while the percentage of fast MyHCIIa fibers was higher in the NE legs of GA (25.7% vs. 15.8%, p = 0.02). The number of capillaries around fibers in the E and NE legs was lower (SOL 13% and 15%, respectively, GA 25% and 23%, respectively, p<0.05) than in controls. The overall alterations were more marked in the fast GA muscle than in the slow SOL muscle, which on the other hand showed more histopathological muscle changes. We conclude that unilateral repetitive unloaded overuse exercise via EMS causes myositis and muscle changes in fiber type proportions, fiber area and fiber capillarization not only in the exercised leg, but also in the homologous muscles in the non-exercised leg.  相似文献   

9.
Tension and curvature of the sarcolemmal tube of the frog muscle fiber were measured at different extensions and were used to calculate the anisotropic elastic properties of the sarcolemma. A model was derived to obtain the four parameters of the elasticity matrix of the sarcolemma. Sarcolemmal thickness was taken as 0.1 μm. Over the range of reversible sarcolemmal tube extension, the longitudinal elastic modulus EL = 6.3 × 107 dyn/cm2, the circumferential modulus Ec = 0.88 × 107 dyn/cm2, the longitudinal Poisson's ratio σL = 1.2, and the circumferential Poisson's ratio σc = 0.18. At tubular rest length EL = 1.2 × 107 dyn/cm2. The sarcolemma is less extensible in the longitudinal direction along the fiber axis than in the circumferential direction. It can be extended reversibly to 48% of its rest length, equivalent to extending the intact fiber from a sarcomere length of 3 μm to about 4.5 μm. The sarcolemma does not contribute to intact fiber tension at fiber sarcomere lengths <3 μm, and between 3 and 4 μm its contribution is about 20%. It also exerts a pressure on the myoplasm, which can be calculated by means of the model. The longitudinal elastic modulus of the whole fiber is 1 × 105 dyn/cm2 at a sarcomere length of 2.33 μm.  相似文献   

10.
Soil and water conservation measures can impact hydrological cycle, but quantitative analysis of this impact is still difficult in a watershed scale. To assess the effect quantitatively, a three-dimensional finite-difference groundwater flow model (MODFLOW) with a surface runoff model–the Soil Conservation Service (SCS) were calibrated and applied based on the artificial rainfall experiments. Then, three soil and water conservation scenarios were simulated on the sand-box model to assess the effect of bare slope changing to grass land and straw mulching on water volume, hydraulic head, runoff process of groundwater and surface water. Under the 120 mm rainfall, 60 mm/h rainfall intensity, 5 m2 area, 3° slope conditions, the comparative results indicated that the trend was decrease in surface runoff and increase in subsurface runoff coincided with the land-use converted from bare slope to grass land and straw mulching. The simulated mean surface runoff modulus was 3.64×10−2 m3/m2/h in the bare slope scenario, while the observed values were 1.54×10−2 m3/m2/h and 0.12×10−2 m3/m2/h in the lawn and straw mulching scenarios respectively. Compared to the bare slope, the benefits of surface water reduction were 57.8% and 92.4% correspondingly. At the end of simulation period (T = 396 min), the simulated mean groundwater runoff modulus was 2.82×10−2 m3/m2/h in the bare slope scenario, while the observed volumes were 3.46×10−2 m3/m2/h and 4.91×10−2 m3/m2/h in the lawn and straw mulching scenarios respectively. So the benefits of groundwater increase were 22.7% and 60.4% correspondingly. It was concluded that the soil and water conservation played an important role in weakening the surface runoff and strengthening the underground runoff. Meanwhile the quantitative analysis using a modeling approach could provide a thought for the study in a watershed scale to help decision-makers manage water resources.  相似文献   

11.
It has been reported that protamine (>10 µg/ml) blocks single skeletal RyR1 channels and inhibits RyR1-mediated Ca2+ release from sarcoplasmic reticulum microsomes. We extended these studies to cardiac RyR2 reconstituted into planar lipid bilayers. We found that protamine (0.02–20 µg/ml) added to the cytosolic surface of fully activated RyR2 affected channel activity in a voltage-dependent manner. At membrane voltage (Vm; SR lumen - cytosol) = 0 mV, protamine induced conductance transitions to several intermediate states (substates) as well as full block of RyR2. At Vm>10 mV, the substate with the highest level of conductance was predominant. Increasing Vm from 0 to +80 mV, decreased the number of transitions and residence of the channel in this substate. The drop in current amplitude (full opening to substate) had the same magnitude at 0 and +80 mV despite the ∼3-fold increase in amplitude of the full opening. This is more similar to rectification of channel conductance induced by other polycations than to the action of selective conductance modifiers (ryanoids, imperatoxin). A distinctive effect of protamine (which might be shared with polylysines and histones but not with non-peptidic polycations) is the activation of RyR2 in the presence of nanomolar cytosolic Ca2+ and millimolar Mg2+ levels. Our results suggest that RyRs would be subject to dual modulation (activation and block) by polycationic domains of neighboring proteins via electrostatic interactions. Understanding these interactions could be important as such anomalies may be associated with the increased RyR2-mediated Ca2+ leak observed in cardiac diseases.  相似文献   

12.

Background and Aims

Patients with repaired tetralogy of Fallot may develop chronic right ventricular dysfunction and hepatic congestion over time. We hypothesized that bile acid metabolism is altered in repaired tetralogy of Fallot patients and therefore sought to correlate right ventricular indices with serum bile acid levels.

Methods

Indexed right ventricular end diastolic volume, as assessed by cardiac magnetic-resonance imaging, was classified as <100ml/m2 (Group 1, n = 5), 100–150ml/m2 (Group 2, n = 18), and >150ml/m2 (Group 3, n = 6) in 29 patients with repaired tetralogy of Fallot. Pulmonary regurgitation fraction and right ventricular ejection fraction were calculated. The serum bile acid profile, including 15 species, in these patients was determined by liquid chromatography coupled with mass spectrometry.

Results

Serum bile acid levels increased from Group 1 to Group 3 (2.5 ± 0.7; 4.1 ± 2.5; 6.0 ± 2.8 μmol/l, respectively) with significantly increased bile acid values in Group 3 compared to Group 1 (p≤0.05). In Group 3, but not in Group 1 and 2, a significant increase in glycine-conjugated bile acids was observed. Pulmonary regurgitation fraction increased (12 ± 1; 28 ± 16; 43 ± 3%, Groups 1–3, respectively) and right ventricular ejection fraction decreased (48.4 ± 6.4; 48.5 ± 6.5; 42.1 ± 5.3%, Groups 1–3, respectively) with rising indexed right ventricular end diastolic volume.

Conclusions

These preliminary results suggest that serum bile acid levels are positively correlated with indexed right ventricular end-diastolic volume in patients with repaired tetralogy of Fallot; however, this needs to be confirmed in a larger patient cohort.  相似文献   

13.
The extrinsic eye muscles of the killifish (F. heteroclitus) were fixed in OSO4 (pH 7.6) and subsequently dehydrated, embedded, and sectioned for electron microscopy. The fine structures of neuromuscular junctions and of sarcoplasmic reticulum were then observed. The neuromuscular junction consists of the apposition of axolemma (60 to 70 Å) and sarcolemma (90 to 100 Å), with an intervening cleft space of 200 to 300 Å, forming a synaptolemma 400 to 500 Å thick. The terminal axons contain synaptic vesicles, mitochondria, and agranular reticulum. The subsynaptic sarcolemma lacks the infolding arrangement characteristic of neuromuscular junctions from other vertebrate skeletal muscle, making them more nearly like that of insect neuromuscular junctions. A comparison between the folded and non-folded subsynaptic membrane types is made and discussed in terms of comparative rates of acetylcholine diffusion from the synaptic cleft and resistances of the clefts and subsynaptic membranes. The sarcoplasmic reticulum consists of segmentally arranged, membrane-limited vesicles and tubular and cisternal elements which surround individual myofibrils in a sleeve-like arrangement. Triadic differentiation occurs at or near the A-I junction. Unit sleeves span the A and I bands alternately and consist of closed terminal cisternae interconnected across the A and I bands by tubular cisternae. The thickness of the sarcoplasmic membranes increases from 30 to 40 Å in intertriadic regions to 50 to 70 Å at the triads. The location of the triads is compared with previously described striated muscle from Ambystoma larval myotomes, cardiac and sartorius muscles of the albino rat, mouse limb muscle, chameleon lizard muscle, and insect muscle, with reference to their possible role in intracellular impulse conduction.  相似文献   

14.
Light and heavy sarcoplasmic reticulum vesicles were isolated from rabbit leg muscle using a combination of differential centrifugation and isophycnic zonal ultracentrifugation. Light sarcoplasmic reticulum vesicles obtained from the 30–32.5% and heavy sarcoplasmic reticulum vesicles obtained from the 38.5–42% sucrose regions of the linear sucrose gradient were determined to be free of surface and mitochondrial membrane contamination by marker enzyme analysis and electron microscopy. Thin sections of the light vesicles revealed empty vesicles of various sizes and shapes. Freeze-fracture replicas of the light vesicles showed an asymmetric distribution of intramembranous particles with the same orientation and distribution as the longitudinal sarcoplasmic reticulum in vivo. Heavy vesicles appeared as rounded vesicles of uniform size filled with electron dense material, similar to that seen in the terminal cisternae of the sarcoplasmic reticulum. The cytoplasmic surface of the membrane was decorated by membrane projections, closely resembling the ‘feet’ which join the sarcoplasmic reticulum to the transverse tubules in the intact muscle fiber. Freeze-fracture replicas of the heavy vesicles revealed an asymmetric distribution of particles which in some areas of the vesicle's surface are larger and less densely aggregated than those of the light vesicles. In the best quality replicas, some regions of the luminal leaflet were not smooth but showed evidence of pits. These structural details are characteristic of the area of sarcoplasmic reticulum membrane which is covered by the ‘feet’ in the intact muscle.Heavy vesicles contained greater than six times the calcium content of light vesicles, 54 vs. 9 nmol Ca2+/μl of water space. After KCl washing both contained less than 4 nmol Ca2+/μl of water space. Although they transported at the same rate and the same total amount of calcium, the rate of passive Ca2+ efflux from the heavy vesicles was double that of light vesicles. The higher rate of calcium efflux from the heavy vesicles was inhibited by dantrolene, an inhibitor of Ca2+ release. High resolution sodium dodecyl sulfate gel electrophoresis showed that the light vesicles contained predominantly Ca2+-ATPase along with several approx. 55 000-dalton proteins and a 5000-dalton proteolipid, while the heavy vesicles contained Ca2+-ATPase and calsequestrin along with several approx. 55 000-dalton proteins, extrinsic 34 000- and 38 000-dalton proteins, intrinsic 30 000- and 33 000-dalton proteins and two proteolipids of 5000 and 9000 daltons. KCl washing of the heavy vesicles removed both the approx. 34 000- and 38 000-dalton proteins, and the ‘sarcoplasmic reticulum feet’ were no longer seen on the heavy vesicles. The KCl supernatant was enriched in the 34 000- and 38 000-dalton proteins, indicating that these proteins are possible components of the sarcoplasmic reticulum feet. The biochemical and morphological data strongly support the view that the light vesicles are derived from the longitudinal sarcoplasmic reticulum and that the heavy vesicles are derived from the terminal cisternae containing junctional sarcoplasmic reticulum membrane with the intact ‘sarcoplasmic reticulum feet’.  相似文献   

15.
We investigated the cardiovascular effects of lead exposure, emphasising its direct action on myocardial contractility. Male Wistar rats were sorted randomly into two groups: control (Ct) and treatment with 100 ppm of lead (Pb) in the drinking water. Blood pressure (BP) was measured weekly. At the end of the treatment period, the animals were anaesthetised and haemodynamic parameters and contractility of the left ventricular papillary muscles were recorded. Blood and tissue samples were properly stored for further biochemical investigations. Statistical analyses were considered to be significant at p<0.05. The lead concentrations in the blood reached approximately 13 µg/dL, while the bone was the site of the highest deposition of this metal. BP in the Pb-treated group was higher from the first week of lead exposure and remained at the same level over the next four weeks. Haemodynamic evaluations revealed increases in systolic (Ct: 96±3.79 vs. Pb: 116±1.37 mmHg) and diastolic blood pressure (Ct: 60±2.93 vs. Pb: 70±3.38 mmHg), left ventricular systolic pressure (Ct: 104±5.85 vs. Pb: 120±2.51 mmHg) and heart rate (Ct: 307±10 vs. Pb: 348±16 bpm). Lead treatment did not alter the force and time derivatives of the force of left ventricular papillary muscles that were contracting isometrically. However, our results are suggestive of changes in the kinetics of calcium (Ca++) in cardiomyocytes increased transarcolemmal Ca++ influx, low Ca++ uptake by the sarcoplasmic reticulum and high extrusion by the sarcolemma. Altogether, these results show that despite the increased Ca++ influx that was induced by lead exposure, the myocytes had regulatory mechanisms that prevented increases in force, as evidenced in vivo by the increased systolic ventricular pressure.  相似文献   

16.
The sarcoplasmic/endoplasmic reticulum Ca2+ATPases (SERCAs) are the main Ca2+ pumps which decrease the intracellular Ca2+ level by reaccumulating Ca2+ into the sarcoplasmic reticulum. The neonatal SERCA1b is the major Ca2+ pump in myotubes and young muscle fibers. To understand its role during skeletal muscle differentiation its synthesis has been interfered with specific shRNA sequence. Stably transfected clones showing significantly decreased SERCA1b expression (cloneC1) were selected for experiments. The expression of the regulatory proteins of skeletal muscle differentiation was examined either by Western-blot at the protein level for MyoD, STIM1, calsequestrin (CSQ), and calcineurin (CaN) or by RT-PCR for myostatin and MCIP1.4. Quantitative analysis revealed significant alterations in CSQ, STIM1, and CaN expression in cloneC1 as compared to control cells. To examine the functional consequences of the decreased expression of SERCA1b, repeated Ca2+-transients were evoked by applications of 120 mM KCl. The significantly higher [Ca2+]i measured at the 20th and 40th seconds after the beginning of KCl application (112±3 and 110±3 nM vs. 150±7 and 135±5 nM, in control and in cloneC1 cells, respectively) indicated a decreased Ca2+-uptake capability which was quantified by extracting the maximal pump rate (454±41 μM/s vs. 144±24 μM/s, in control and in cloneC1 cells). Furthermore, the rate of calcium release from the SR (610±60 vs. 377±64 μM/s) and the amount of calcium released (843±75 μM vs. 576±80 μM) were also significantly suppressed. These changes were also accompanied by a reduced activity of CaN in cells with decreased SERCA1b. In parallel, cloneC1 cells showed inhibited cell proliferation and decreased myotube nuclear numbers. Moreover, while cyclosporineA treatment suppressed the proliferation of parental cultures it had no effect on cloneC1 cells. SERCA1b is thus considered to play an essential role in the regulation of [Ca2+]i and its ab ovo gene silencing results in decreased skeletal muscle differentiation.  相似文献   

17.
A MORPHOMETRIC STUDY ON THE NEXUS OF RAT CARDIAC MUSCLE   总被引:4,自引:2,他引:2       下载免费PDF全文
A morphometric study of the nexus of rat cardiac muscle was carried out. The nexus surface of one intercalated disk of one 15 µm thick fiber is found to range between 47 µm2 and 94 µm2, the latter value taking into account the maximal underestimation caused by tangential sectioning. Dividing the lower, minimal value by the surface of the observed subunits (90 Å periodicity), one obtains for one intercalated disk 6.7 x 105 subunits, each of them assumed to be permeated by a central pore. These pores are thought to be equivalent to intercellular channels in a recently proposed model. Taking our morphometric and recently reported physiological values, this model is examined for its consistency with a low resistance pathway between cardiac muscle cells.  相似文献   

18.
Arterial smooth muscle (SM) cells respond autonomously to changes in intravascular pressure, adjusting tension to maintain vessel diameter. The values of membrane potential (Vm) and sarcoplasmic Ca2+ concentration (Cain) within minutes of a change in pressure are the results of two opposing pathways, both of which use Ca2+ as a signal. This works because the two Ca2+-signaling pathways are confined to distinct microdomains in which the Ca2+ concentrations needed to activate key channels are transiently higher than Cain. A mathematical model of an isolated arterial SM cell is presented that incorporates the two types of microdomains. The first type consists of junctions between cisternae of the peripheral sarcoplasmic reticulum (SR), containing ryanodine receptors (RyRs), and the sarcolemma, containing voltage- and Ca2+-activated K+ (BK) channels. These junctional microdomains promote hyperpolarization, reduced Cain, and relaxation. The second type is postulated to form around stretch-activated nonspecific cation channels and neighboring Ca2+-activated Cl channels, and promotes the opposite (depolarization, increased Cain, and contraction). The model includes three additional compartments: the sarcoplasm, the central SR lumen, and the peripheral SR lumen. It incorporates 37 protein components. In addition to pressure, the model accommodates inputs of α- and β-adrenergic agonists, ATP, 11,12-epoxyeicosatrienoic acid, and nitric oxide (NO). The parameters of the equations were adjusted to obtain a close fit to reported Vm and Cain as functions of pressure, which have been determined in cerebral arteries. The simulations were insensitive to ±10% changes in most of the parameters. The model also simulated the effects of inhibiting RyR, BK, or voltage-activated Ca2+ channels on Vm and Cain. Deletion of BK β1 subunits is known to increase arterial–SM tension. In the model, deletion of β1 raised Cain at all pressures, and these increases were reversed by NO.  相似文献   

19.
Resting tension and short-range elastic properties of isolated twitch muscle fibers of the frog have been studied while bathed by solutions of different tonicities. Resting tension in isotonic solution at 2.3-µm sarcomere spacing averaged 0.46 mN·mm-2 and was proportional to the fiber cross-section area. Hypertonic solutions, containing 0.1–0.5 mM tetracaine to block contracture tension, caused a small sustained tension increase, which was proportional to the fiber cross-section area and which reached 0.9 mN·mm-2 at two times normal tonicity (2T). Further increases in tonicity caused little increase in tension. Hypotonic solutions decreased tension. Thus, tension at 2.3 µm is a continuous, direct function of tonicity. The dependence of tension on tonicity lessened at greater sarcomere lengths. At 3.2 µm either a very small rise or, in some fibers, a fall in tension resulted from an increase in tonicity. Hypertonic solutions also decreased the tension of extended sarcolemma preparations. In constant-speed stretch experiments the elastic modulus, calculated from the initial part of the stretch response, rose steeply with tonicity over the whole range investigated (1–2.5T). The results show that tension and stiffness of the short-range elastic component do not increase in parallel in hypertonic solutions.  相似文献   

20.
The thyroid uptake at 20 minutes of intravenously administered Technetium-99m (99mTc) was measured in 117 patients with a standard scintillation counter. Patients were divided into three groups on the basis of clinical assessment, four-hour 131I uptake, triiodothyronine (T-3) resin uptake, and protein-bound iodine measurements.In 31 patients with no evidence of thyroid disease the mean 99m Tc uptake was 1·8% ±S.D. 1·1%. In 32 patients with thyroid enlargement who were euthyroid the mean uptake was 2·5% ±S.D. 2·2%. In 54 thyrotoxic patients the mean uptake was 17·7% with a range of 4·1 to 44%, all cases having an uptake above the upper limit of normal (4·0%). These results agree closely with reported uptake studies using scanning techniques. In seven patients the extrathyroidal neck activity was measured by using a scanner, and the mean was 6·3% of the extrathyroidal total body radioactivity comparing favourably with an assumed 6% used in our calculations.We have shown that the measurement of the thyroid uptake of 99mTc with a scintillation counter is of value, and that it is not necessary to use scanning techniques in the diagnosis of thyrotoxicosis. Advantages of 99m Tc are minimal radiation, reduction in patient and laboratory time, and low cost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号