首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Patterns of distance decay in similarity among communities of the fish Pinguipes brasilianus (Teleostei: Pinguipedidae) from five areas in the southwestern Atlantic were investigated to determine whether the rate of decay varied depending on the community level or the parasite guild analyzed (ectoparasites, adult endoparasites and larval endoparasites). Similarities in species composition were computed at both the component community and infracommunity levels. Similarity indices were calculated between all possible pairs of assemblages from different zones. Infracommunity similarity values between and within host populations were averaged. Significance of linear regressions for similarity values against distance was assessed using randomization tests. Different patterns were observed for each guild, and similarity among infracommunities within host populations varied accordingly. Decay in similarity over distance was recorded for most communities. The slopes differed significantly between infracommunities and component communities in all cases, and stronger decay was always observed for infracommunities. Different geographical patterns in parasite communities were a consequence of variability in parasite availability in the different regions, modulated by oceanographic conditions, as well as variation among species in terms of host specificity and life-cycles strategies. Infracommunities showed a stronger effect of distance than component communities, probably due to the influence of short term and local variability of oceanographic conditions.  相似文献   

2.
The long-term variability of marine turtle populations remains poorly understood, limiting science and management. Here we use basin-scale climate indices and regional surface temperatures to estimate loggerhead sea turtle (Caretta caretta) nesting at a variety of spatial and temporal scales. Borrowing from fisheries research, our models investigate how oceanographic processes influence juvenile recruitment and regulate population dynamics. This novel approach finds local populations in the North Pacific and Northwest Atlantic are regionally synchronized and strongly correlated to ocean conditions--such that climate models alone explain up to 88% of the observed changes over the past several decades. In addition to its performance, climate-based modeling also provides mechanistic forecasts of historical and future population changes. Hindcasts in both regions indicate climatic conditions may have been a factor in recent declines, but future forecasts are mixed. Available climatic data suggests the Pacific population will be significantly reduced by 2040, but indicates the Atlantic population may increase substantially. These results do not exonerate anthropogenic impacts, but highlight the significance of bottom-up oceanographic processes to marine organisms. Future studies should consider environmental baselines in assessments of marine turtle population variability and persistence.  相似文献   

3.
The use of parasites as biological tags allowed the identification of two stocks of Brazilian sandperch Pinguipes brasilianus , in the Bonaerense region of the Argentine Sea. A total of 156 adult specimens of P. brasilianus were examined for parasites. Temporal variability in parasite burdens was assessed from fish caught seasonally in coastal waters of two zones, south Bonaerense (during autumn and winter) and north Bonaerense (during summer). Additional data from a previous study, comprising P. brasilianus caught during spring in these two zones, as well as in two populations from north Patagonian gulfs were used for comparative analyses of spatial variability. A total of 14 193 metazoan parasites belonging to 19 species were found. Comparisons of seasonal variability in pooled samples and within each locality showed that locality effects exceeded seasonal ones, suggesting the possible existence of two discrete stocks in the Bonaerense region. These findings were strongly supported by discriminant analyses and comparisons of prevalence and abundance between zones, after pooling seasonal samples within each zone. Further evidence of the discreteness of both stocks was assessed by inclusion of samples from Patagonian gulfs in the discriminant analysis, confirming that their differences were at a inter-population level. The parasite species that contributed most to the separation of the samples were generally those identified as biological markers in previous studies. Differing oceanographic conditions are discussed as potential causes of inter-population variation of parasite burdens.  相似文献   

4.
The supply of larvae to the shore is important for population replenishment and intertidal community dynamics but its variability at most scales is not well understood. We tested the relationship between nearshore mussel larval abundance and intertidal settlement rates over several years at multiple spatiotemporal scales in Oregon and New Zealand. Abundance of competent larvae nearshore and intertidal recruitment rates were simultaneously quantified using collectors mounted at different depths on moorings 50-1100 m from shore, and at adjacent rocky intertidal sites. Total mussel larval abundance and oceanographic conditions were also measured in some locations. At all scales, abundance of nearshore mussel larvae was unrelated to intertidal recruitment rates. In the intertidal, patterns of mussel recruitment were persistent in space, with sites of consistently high or low recruitment. In contrast, nearshore competent larval abundance showed generally similar abundances among sites except for a high, and spatially-inconsistent, variability in Oregon during 1998 only. On moorings, recruitment tended to be greater on midwater collectors than shallower or deeper. Finally, on moorings larval abundance in traps and recruitment on collectors was unrelated. These results suggest that (1) among sites, the size of the nearshore larval pool is relatively uniform while onshore recruitment varies and is unrelated to larval abundance, (2) temporal variability in nearshore larval availability is not strongly expressed onshore, (3) vertical stratification of competent larvae nearshore is strong and may influence transport and recruitment, and (4) within-coast variability in onshore recruitment is strongly driven by processes occurring locally within the surf zone that need to be studied to understand coastal recruitment dynamics.  相似文献   

5.
Sardine, pilchard and anchovy stocks form the basis of commercially important purse seine fisheries in eastern boundary upwelling regions. High levels of environmentally driven recruitment variability have, however, made them especially difficult to manage. Reliable forecasts of recruitment success would greatly help with the setting of catch quotas prior to each fishing season. Theories of how environmental conditions influence recruitment success, according to survival/mortality of the early life-history stages, can be divided into mechanistic and sythesis theories. Mechanistic theories are concerned with specific physical processes, whereas synthesis theories attempt to unite the various mechanistic processes within a single conceptual framework. Despite the successful testing of some theories, there has been little success in reliably predicting recruitment success from a knowledge of environmental conditions. Possible reasons include the following: non-linearity in the relationship between environmental parameters and recruitment; the poor spatial and temporal resolution of much oceanographic data; the wide range of different factors involved in determining recruitment success; and the choice of environmental index. The recent compilation of time series of satellite images for these regions offers a solution to some of these problems, and in doing so reopens the possibility of finding sufficiently good relationships between environmental conditions and recruitment success for management purposes. In particular, the high resolution of these time series allows for the construction of environmental indices across many different spatial and temporal scales. These time series also open up the possibility of quantifying the behaviour of upwelling systems according to the evolution of their spatial structure through time, using pattern analysis techniques.  相似文献   

6.
To investigate whether phytoplankton is the main factor determining mesozooplankton distribution in a continental shelf affected by upwelling, oceanographic surveys were conducted off NW Portugal in 2002 and 2003. During four different seasons, we investigated how the mesoscale relationship between these two communities was forced by environmental conditions across the shelf. The horizontal and vertical distribution of phytoplankton was shaped by wind stress over the water. Diatoms dominated mixed and upwelled waters, whereas dinoflagellates prevailed with thermal stratification. Mesozooplankton was less influenced by wind forcing and concentrated mostly at mid-shelf, on the outer margin of main phytoplankton patches. We found that this pattern, under strong thermal stratification conditions, can be associated with localized grazing “hot spots”. Copepods were dominant, contributing to the mesozooplankton community variability between cruises whereas phytoplankton presented a clearer seasonal pattern. Nevertheless, the distribution and abundance of mesozooplankton were directly correlated with all phytoplankton groups at the inner-mid-shelf, while no correlation was observed offshore the outer-shelf. The relative composition of mesozooplankton did not vary between depth strata, whereas a cross-shelf separation occurred between nearshore and widespread clusters of species. This reflected a dependence on phytoplankton and reflected the high variability of oceanographic conditions of the study area.  相似文献   

7.
Drivers of large-scale variability in parasite prevalence are not well understood. For logistical reasons, explorations of spatial patterns in parasites are often performed as observational studies. However, to understand the mechanisms that underlie these spatial patterns, standardized and controlled comparisons are needed. Here, we examined spatial variability in infection of an important fishery species and ecosystem engineer, the oyster (Crassostrea virginica) by its pea crab parasite (Zaops ostreus) across 700 km of the southeastern USA coastline. To minimize the influence of host genetics on infection patterns, we obtained juvenile oysters from a homogeneous source stock and raised them in situ for 3 months at multiple sites with similar environmental characteristics. We found that prevalence of pea crab infection varied between 24 and 73 % across sites, but not systematically across latitude. Of all measured environmental variables, oyster recruitment correlated most strongly (and positively) with pea crab infection, explaining 92 % of the variability in infection across sites. Our data ostensibly suggest that regional processes driving variation in oyster recruitment similarly affect the recruitment of one of its common parasites.  相似文献   

8.
Genes that play key roles in host immunity such as the major histocompatibility complex (MHC) in vertebrates are expected to be major targets of selection. It is well known that environmental conditions can have an effect on host–parasite interactions and may thus influence the selection on MHC. We analyzed MHC class IIß variability over 35 years in a population of perch (Perca fluviatilis) from the Baltic Sea that was split into two populations separated from each other. One population was subjected to heating from cooling water of a nuclear power plant and was isolated from the surrounding environment in an artificial lake, while the other population was not subjected to any change in water temperature (control). The isolated population experienced a change of the allelic composition and a decrease in allelic richness of MHC genes compared to the control population. The two most common MHC alleles showed cyclic patterns indicating ongoing parasite–host coevolution in both populations, but the alleles that showed a cyclic behavior differed between the two populations. No such patterns were observed at alleles from nine microsatellite loci, and no genetic differentiation was found between populations. We found no indications for a genetic bottleneck in the isolated population during the 35 years. Additionally, differences in parasitism of the current perch populations suggest that a change of the parasite communities has occurred over the isolation period, although the evidence in form of in‐depth knowledge of the change of the parasite community over time is lacking. Our results are consistent with the hypothesis of a selective sweep imposed by a change in the parasite community.  相似文献   

9.
J. Rolff 《Ecography》2000,23(3):273-282
The infections of emerging damselfly cohorts by ectoparasitic water mites Arrenurus cuspidator were followed closely over two years in two populations. In one pond Coenagrion puella was the single host species, whereas in the second pond C. hastulatum co-occurred. The prevalences found were close to 100%. The mean daily abundance of mites ranged from I to 45 mites per host with a peak after roughly one third of the emergence period.
The water mites displayed a clumped distribution on their hosts measured by the variance/mean ratio. No differences in parasite abundance due to host sex, head width, or host species could be detected. The abundance of mites was synchronised with host's emergence patterns. This was stronger in the system with two host species. Shaw and Dobson recently showed a generalised relationship of variance/mean of parasite abundance combining data from 269 host parasite systems. The data presented here and some other water mite associations show a significant deviation from this general rule.  相似文献   

10.
Phillip S. Levin 《Oecologia》1993,94(2):176-185
Pronounced spatial variation in recruitment occurs in many marine invertebrate and fish populations and is thought to be critical to the demography of these species. In this study I examined the importance of habitat structure and the presence of conspecific residents to spatial variation in larval settlement and recruitment in a temperate fish Tautogolabrus adspersus. I define settlement as the movement of individuals from the water column to the benthic habitat, while I refer to recruitment as numbers of individuals surviving some arbitrary period of time after settlement. Experiments in which standard habitats were stocked with conspecifics showed that resident conspecifics were not an important factor contributing to small-scale variability in recruitment. Further correlative analyses demonstrated that large-scale variation in recruitment could not be explained by variability in older age classes. By contrast, manipulations of macroalgal structure within a kelp bed demonstrated that recruitment was significantly higher in habitats with a dense understory of foliose and filamentous algae than in habitats with only crustose algae. Understory algae varied in their pattern of disperison among sites, and the dispersion of fish matched that of the plants. In order to determine the effects of differences in patterns of algal dispersion on the demography of associated T. adspersus populations, I used experimental habitat units to manipulate patterns of dispersion. Settlement was significantly greater to randomly placed versus clumped habitats; however, no differences in recruitment between random and clumped habitats were detected. Because recruitment is a function of the numbers of settlers minus the subsequent loss of settlers, rates of mortality or migration must have been higher in the randomly placed habitats. These results are counter to the current paradigm for reef fishes which suggests that larval settlement is the crucial demographic process producing variability in population abundance. In this experiment patterns of settlement were modified by varying the patch structure of the habitat.Contribution number 278 from the Center for Marine Biology, University of New Hampshire  相似文献   

11.
A central goal of metapopulation ecology is to determine which subpopulations have the greatest value to the larger metapopulation. That is, where are the ‘sources’ that are most essential to persistence? This question is especially relevant to benthic marine systems, where dispersal and recruitment are greatly affected by oceanographic processes. In a single‐species context, theoretical models typically identify ‘hotspots’ with high recruitment, especially high self‐recruitment, as having the highest value. However, the oceanographic forces affecting larval delivery of a given species may also influence the recruitment of that species’ predators, prey, and competitors.We present evidence from the Virgin Islands and Bahamas that oceanographic forces produce spatial coupling between the recruitment of planktivorous fishes, the recruitment of their predators, and the productivity of their zooplankton prey. We examined the consequences of this type of multi‐trophic coupling using a simple analytical population model and a multispecies numerical simulation model with parameter values based on the Virgin Islands system. In both analyses, strong coupling caused planktivores at the highest recruitment sites to experience higher mortality (a consequence of higher predator densities) but faster growth and higher fecundity (a consequence of higher zooplankton densities) than planktivores at low recruitment sites. As such, the relative strength of oceanographic coupling between the three trophic levels strongly determined whether a particular reef acted as a source or sink. In the simulation model, density‐dependent competition for zooplankton limited overall metapopulation biomass more severely than predation, so oceanographic coupling between planktivore larval supply and zooplankton productivity had a stronger effect on the metapopulation value of a patch. We argue that the potential for such tri‐trophic coupling should be incorporated into future metacommunity models and has considerable implications for the design and evaluation of marine reserves.  相似文献   

12.
Empirical studies for different life histories have shown an inverse relationship between elasticity (i.e. the proportional contribution to population growth rate) and temporal variation in vital rates. It is accepted that this relationship indicates the effect of selective pressures in reducing variation in those life‐history traits with a major impact on fitness. In this paper, we sought to determine whether changes in environmental conditions affect the relationship between elasticity of vital rates and their temporal variation, and whether vital rates with simultaneously large elasticity and temporal variation might represent a characteristic life‐history strategy. We used demographic data on 13 populations of the short‐lived Hypericum cumulicola over 5–6 years, in three time‐since‐fire classes. For each population of each time‐since‐fire, we computed the mean matrix over years and its respective elasticity matrix, and the coefficients of variation in matrix entries over study years as an estimate of temporal variability. We found that mean elasticity negatively significantly correlated with temporal variation in vital rates in populations (overall eight out of 13) included in each time‐since‐fire. However, seedling recruitment exhibited both high elasticity and high temporal variation in almost all study populations. These results indicated that (1) the general relationship between elasticity and temporal variation in vital rates was not modified by environmental changes due to time‐since‐fire, and (2) high elasticity and high temporal variation in seedling recruitment in H. cumulicola is a particular trait of the species' life history. After seed survival in the soil seed bank, seedling recruitment represents the most important life‐history trait influencing H. cumulicola population growth rate (and fitness). The high temporal variability in seedling recruitment suggests that this trait is determined by environmental cues, leading to an increase in population size and subsequent replenishment of the seed bank in favorable years.  相似文献   

13.
Understanding mechanisms behind variability in early life survival of marine fishes through modeling efforts can improve predictive capabilities for recruitment success under changing climate conditions. Walleye pollock (Theragra chalcogramma) support the largest single-species commercial fishery in the United States and represent an ecologically important component of the Bering Sea ecosystem. Variability in walleye pollock growth and survival is structured in part by climate-driven bottom-up control of zooplankton composition. We used two modeling approaches, informed by observations, to understand the roles of prey quality, prey composition, and water temperature on juvenile walleye pollock growth: (1) a bioenergetics model that included local predator and prey energy densities, and (2) an individual-based model that included a mechanistic feeding component dependent on larval development and behavior, local prey densities and size, and physical oceanographic conditions. Prey composition in late-summer shifted from predominantly smaller copepod species in the warmer 2005 season to larger species in the cooler 2010 season, reflecting differences in zooplankton composition between years. In 2010, the main prey of juvenile walleye pollock were more abundant, had greater biomass, and higher mean energy density, resulting in better growth conditions. Moreover, spatial patterns in prey composition and water temperature lead to areas of enhanced growth, or growth ‘hot spots’, for juvenile walleye pollock and survival may be enhanced when fish overlap with these areas. This study provides evidence that a spatial mismatch between juvenile walleye pollock and growth ‘hot spots’ in 2005 contributed to poor recruitment while a higher degree of overlap in 2010 resulted in improved recruitment. Our results indicate that climate-driven changes in prey quality and composition can impact growth of juvenile walleye pollock, potentially severely affecting recruitment variability.  相似文献   

14.
Biomphalaria glabrata are simultaneous hermaphroditic freshwatersnails that act as intermediate hosts for the macroparasitictrematode Schistosoma mansoni, a causative agent of schistosomiasis.Heritability and strain-specificity of both snail resistanceand susceptibility to schistosome infection have been demonstrated,genetic variability for which is maintained, in part, throughtrade-offs between high fitness costs associated with infectionand those associated with resistance. However, despite sucha high cost of resistance and a low prevalence of infectionin natural snail populations, genes for resistance are maintainedwithin snail populations over successive generations, includingin the complete absence of parasite pressure in laboratory populations.This may be indicative of alternative benefits of resistancegenes, in addition to parasite defense, such as differentialmating success between genotypes. Here we examined the mateand gender choice of snails across a multi-factorial range ofpotential partner combinations. These included host-resistanceor susceptibility genotype, host genotype frequency within thepopulation, current parasite infection status, and parasitegenotype. We demonstrate recognition and discrimination by hostsnails depending on host and/or parasite genotype for each ofthese factors. In particular, our results suggest that a raremating advantage to resistant genotypes may be a potential explanationfor the maintenance of highly costly resistance genes withinintermediate host populations under conditions of low or zeroparasite pressure.  相似文献   

15.
Genetic connectivity and geographic fragmentation are two opposing mechanisms determining the population structure of species. While the first homogenizes the genetic background across populations the second one allows their differentiation. Therefore, knowledge of processes affecting dispersal of marine organisms is crucial to understand their genetic distribution patterns and for the effective management of their populations. In this study, we use genetic analyses of eleven microsatellites in combination with oceanographic satellite and dispersal simulation data to determine distribution patterns for Serranus cabrilla, a ubiquitous demersal broadcast spawner, in the Mediterranean Sea. Pairwise population FST values ranged between ?0.003 and 0.135. Two genetically distinct clusters were identified, with a clear division located between the oceanographic discontinuities at the Ibiza Channel (IC) and the Almeria‐Oran Front (AOF), revealing an admixed population in between. The Balearic Front (BF) also appeared to dictate population structure. Directional gene flow on the Spanish coast was observed as S. cabrilla dispersed from west to east over the AOF, from north to south on the IC and from south of the IC towards the Balearic Islands. Correlations between genetic and oceanographic data were highly significant. Seasonal changes in current patterns and the relationship between ocean circulation patterns and spawning season may also play an important role in population structure around oceanographic fronts.  相似文献   

16.
Despite the fact that most host populations are infected by a community of different parasite species, the majority of empirical studies have focused on the interaction between the host and a single parasite species. Here, we explore the hypothesis that host population dynamics are affected both by single parasite species and by the whole parasite community. We monitored population density and breeding productivity of two populations of willow ptarmigan ( Lagopus lagopus ) in northern Norway for 8 and 11 years, respectively, and sampled eukaryotic endoparasites. We found that increasing abundances of the cestode Hymenolepis microps was associated with increased breeding mortality and reduced annual growth rate of the host population in both areas, and reduced host body mass and body condition in the area where such data were available. In one of the areas, the abundance of the nematode Trichostrongylus tenuis was associated with reductions in host body mass, body condition and breeding mortality and the filaroid nematode Splendidofilaria papillocerca was negatively related to host population growth rates. The parasite community was also negatively related to host fitness parameters, suggesting an additional community effect on host body mass and breeding mortality, although none of the parasites had a significant impact on their own. The prevalence of parasites with very different taxonomical origins tended to covary within years, suggesting that variability in the parasite community was not random, but governed by changes in host susceptibility or environmental conditions that affected exposure to parasites in general. Other variables including climate, plant production and rodent densities were not associated with the recorded demographic changes in the host population.  相似文献   

17.
Reproduction and recruitment are key processes that replenish marine populations. Here we use the Palau archipelago, in the western Pacific Ocean, as a case study to examine scales of connectivity and to determine whether an oceanographic model, incorporating the complex reef architecture, is a useful predictor of coral recruitment. We tested the hypothesis that the reefs with the highest retention also had the highest densities of juvenile coral density from 80 field sites. Field comparisons showed a significant correlation between the densities of juvenile Acropora colonies and total larval recruitment derived from the model (i.e., calculated as the sum of the densities of larvae that self-seeded and recruited from the other reefs in the archipelago). Long-distance larval imports may be too infrequent to sustain coral populations, but are critical for recovery in times of extreme local stress.  相似文献   

18.
Inbreeding causes reduction of genetic variability that may have severe fitness consequences. In spite of its potentially huge impact on viability and evolutionary processes especially in small populations, quantitative demonstrations of genetic and demographic effects of inbreeding in natural populations are few. Here, we examine the relationship between individual inbreeding coefficients (F) and individual standardized multilocus heterozygosity (H) in an insular metapopulation of house sparrows (Passer domesticus) in northern Norway in order to evaluate whether H is a good predictor for F. We then relate variation in fitness (i.e. the probability of surviving from fledging to recruitment) to F and H, which enables us to examine whether inbreeding depression is associated with a reduction in genetic variability. The average level of inbreeding in the house sparrow metapopulation was high, and there was large inter-individual variation in F. As expected, standardized multilocus heterozygosity decreased with the level of inbreeding. The probability of recruitment was significantly negatively related to F, and, accordingly, increased with H. However, H explained no significant additional variation in recruitment rate than was explained by F. This suggests that H is a good predictor for F in this metapopulation, and that an increase in F is likely to be associated with a general increase in the level of homozygosity on loci across the genome, which has severe fitness consequences.  相似文献   

19.
For long‐lived animals, maternal age and breeding experience can vary widely and affect offspring survival and recruitment probabilities. In addition, these vital rates may be influenced by annual variation in environmental conditions. We evaluated various hypotheses regarding how offspring survival and recruitment probabilities vary as functions of maternal characteristics and oceanographic conditions, using 25 years of data from a study of individually‐marked Weddell seals in Erebus Bay, Antarctica. We predicted that survival and recruitment would be positively related to maternal age and experience up to some threshold value and considered three hypothesized shapes for the relationship beyond the threshold age (steadily increasing, pseudo‐threshold, or decreasing). We predicted an inverse relationship between maternal age at first reproduction and offspring survival and recruitment probabilities. We predicted that sea‐ice extent, which positively influences primary productivity, would be positively related to annual recruitment probabilities. Results revealed contrasting influences of maternal age on probabilities of survival and recruitment of young. Survival rate was best modeled by a pseudo‐threshold relationship with maternal age, e.g. in 1999, survival rate was estimated as 0.61, 0.69 and 0.72, respectively, for seals born to 6‐, 14‐ and 22‐yr‐old mothers. In contrast, estimated recruitment probability was highest for seals born to young mothers, e.g. recruitment probability for a 7‐yr‐old who had not yet had a pup was estimated as 0.51 vs 0.30, respectively, if she was born to a 6‐ versus a 14‐yr‐old mother. The combined results for offspring survival and recruitment suggest countervailing selection where genotypes favored for reproductive success are generally selected against as juveniles, resulting in high recruitment probabilities for individuals that had low juvenile survival rates. Finally, we found support for our prediction that oceanographic conditions affected annual recruitment rates, but not survival rates. Specifically, annual recruitment probability was positively related to the sea‐ice extent in September of the previous year.  相似文献   

20.
Rilov G  Schiel DR 《PloS one》2011,6(8):e23958
Predicting the strength and context-dependency of species interactions across multiple scales is a core area in ecology. This is especially challenging in the marine environment, where populations of most predators and prey are generally open, because of their pelagic larval phase, and recruitment of both is highly variable. In this study we use a comparative-experimental approach on small and large spatial scales to test the relationship between predation intensity and prey recruitment and their relative importance in shaping populations of a dominant rocky intertidal space occupier, mussels, in the context of seascape (availability of nearby subtidal reef habitat). Predation intensity on transplanted mussels was tested inside and outside cages and recruitment was measured with standard larval settlement collectors. We found that on intertidal rocky benches with contiguous subtidal reefs in New Zealand, mussel larval recruitment is usually low but predation on recruits by subtidal consumers (fish, crabs) is intense during high tide. On nearby intertidal rocky benches with adjacent sandy subtidal habitats, larval recruitment is usually greater but subtidal predators are typically rare and predation is weaker. Multiple regression analysis showed that predation intensity accounts for most of the variability in the abundance of adult mussels compared to recruitment. This seascape-dependent, predation-recruitment relationship could scale up to explain regional community variability. We argue that community ecology models should include seascape context-dependency and its effects on recruitment and species interactions for better predictions of coastal community dynamics and structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号