首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ATIC, the product of the purH gene, is a 64 kDa bifunctional enzyme that possesses the final two activities in de novo purine biosynthesis, AICAR transformylase and IMP cyclohydrolase. The crystal structure of avian ATIC has been determined to 1.75 A resolution by the MAD method using a Se-methionine modified enzyme. ATIC forms an intertwined dimer with an extensive interface of approximately 5,000 A(2) per monomer. Each monomer is composed of two novel, separate functional domains. The N-terminal domain (up to residue 199) is responsible for the IMPCH activity, whereas the AICAR Tfase activity resides in the C-terminal domain (200-593). The active sites of the IMPCH and AICAR Tfase domains are approximately 50 A apart, with no structural evidence of a tunnel connecting the two active sites. The crystal structure of ATIC provides a framework to probe both catalytic mechanisms and to design specific inhibitors for use in cancer chemotherapy and inflammation.  相似文献   

2.
ATIC encompasses both AICAR transformylase and IMP cyclohydrolase activities that are responsible for the catalysis of the penultimate and final steps of the purine de novo synthesis pathway. The formyl transfer reaction catalyzed by the AICAR Tfase domain is substantially more demanding than that catalyzed by the other folate-dependent enzyme of the purine biosynthesis pathway, GAR transformylase. Identification of the AICAR Tfase active site and key catalytic residues is essential to elucidate how the non-nucleophilic AICAR amino group is activated for formyl transfer. Hence, the crystal structure of dimeric avian ATIC was determined as a complex with the AICAR Tfase substrate AICAR, as well as with an IMP cyclohydrolase inhibitor, XMP, to 1.93 A resolution. AICAR is bound at the dimer interface of the transformylase domains and forms an extensive hydrogen bonding network with a multitude of active site residues. The crystal structure suggests that the conformation of the 4-carboxamide of AICAR is poised to increase the nucleophilicity of the C5 amine, while proton abstraction occurs via His(268) concomitant with formyl transfer. Lys(267) is likely to be involved in the stabilization of the anionic formyl transfer transition state and in subsequent protonation of the THF leaving group.  相似文献   

3.
Vergis JM  Beardsley GP 《Biochemistry》2004,43(5):1184-1192
The bifunctional enzyme aminoimidazole carboxamide ribonucleotide transformylase/inosine monophosphate cyclohydrolase (ATIC) is responsible for catalysis of the last two steps in the de novo purine pathway. Using recently determined crystal structures of ATIC as a guide, four candidate residues, Lys66, Tyr104, Asp125, and Lys137, were identified for site-directed mutagenesis to study the cyclohydrolase activity of this bifunctional enzyme. Steady-state kinetic experiments on these mutants have shown that none of these residues are absolutely required for catalytic activity; however, they strongly influence the efficiency of the reaction. Since the FAICAR binding site is made up mostly of backbone interactions with highly conserved residues, we postulate that these conserved interactions orient FAICAR in the active site to favor the intramolecular ring closure reaction and that this reaction may be catalyzed by an orbital steering mechanism. Furthermore, it was shown that Lys137 is responsible for the increase in cyclohydrolase activity for dimeric ATIC, which was reported previously by our laboratory. From the experiments presented here, a catalytic mechanism for the cyclohydrolase activity is postulated.  相似文献   

4.
Aminoimidazole-4-carboxamide ribonucleotide (AICAR) transformylase/IMP cyclohydrolase (ATIC) is a bifunctional enzyme with folate-dependent AICAR transformylase and IMP cyclohydrolase activities that catalyzes the last two steps of purine biosynthesis. The AICAR transformylase inhibitors BW1540 and BW2315 are sulfamido-bridged 5,8-dideazafolate analogs with remarkably potent K(i) values of 8 and 6 nm, respectively, compared with most other antifolates. Crystal structures of ATIC at 2.55 and 2.60 A with each inhibitor, in the presence of substrate AICAR, revealed that the sulfonyl groups dominate inhibitor binding and orientation through interaction with the proposed oxyanion hole. These agents then appear to mimic the anionic transition state and now implicate Asn(431') in the reaction mechanism along with previously identified key catalytic residues Lys(266) and His(267). Potent and selective inhibition of the AICAR transformylase active site, compared with other folate-dependent enzymes, should therefore be pursued by further design of sulfonyl-containing antifolates.  相似文献   

5.
5-Amino-4-imidazolecarboxamide ribonucleotide transformylase/IMP cyclohydrolase (ATIC) is a bifunctional protein possessing two enzymatic activities that sequentially catalyze the last two steps in the pathway for de novo synthesis of inosine 5'-monophosphate. This bifunctional enzyme is of particular interest because of its potential as a chemotherapeutic target. Furthermore, these two catalytic activities reside on the same protein throughout all of nature, raising the question of whether there is some kinetic advantage to the bifunctionality. Rapid chemical quench, stopped-flow absorbance, and steady-state kinetic techniques were used to elucidate the complete kinetic mechanism of human ATIC. The kinetic simulation program KINSIM was used to model the kinetic data obtained in this study. The detailed kinetic analysis, in combination with kinetic simulations, provided the following key features of the enzyme reaction pathway. 1) The rate-limiting step in the overall reaction (2.9 +/- 0.4 s(-1)) is likely the release of tetrahydrofolate from the formyltransferase active site or a conformational change associated with tetrahydrofolate release. 2) The rate of the reverse transformylase reaction (6.7 s(-1)) is approximately 2-3-fold faster than the forward rate (2.9 s(-1)), whereas the cyclohydrolase reaction is essentially unidirectional in the forward sense. The cyclohydrolase reaction thus draws the overall bifunctional reaction toward the production of inosine monophosphate. 3) There was no kinetic evidence of substrate channeling of the intermediate, the formylaminoimidazole carboxamide ribonucleotide, between the formyltransferase and the cyclohydrolase active sites.  相似文献   

6.
The penultimate catalytic step of the purine de novo synthesis pathway is the conversion of aminoimidazole-4-carboxamide ribonucleotide (AICAR) to 5-formyl-AICAR that requires the cofactor N(10)-formyl-tetrahydrofolate as the formyl donor. This reaction is catalyzed by the AICAR transformylase domain of the bifunctional enzyme AICAR transformylase/inosine monophosphate cyclohydrolase (ATIC). Identification of the location of the AICAR transformylase active site was previously elucidated from the crystal structure of the avian ATIC with bound substrate AICAR; however, due to the absence of any bound folate, the folate binding region of the active site could not be identified. Here, we have determined the homodimeric crystal structure of avian ATIC in complex with the ATIC-specific multisubstrate adduct inhibitor beta-DADF to 2.5 A resolution. Beta-DADF encompasses both the AICAR and folate moieties into a single covalently linked entity, thereby allowing for the characterization of the folate binding pocket of the AICAR transformylase active site. Beta-DADF is intimately bound at the dimer interface of the transformylase domains with the majority of AICAR moiety interactions occurring within one subunit, whereas the primary interactions to the folate occur with the opposing subunit. The crystal structure suggests that a buried Lys(267) is transiently protonated during formyl transfer allowing for the stabilization of the oxyanion transition state and subsequent protonation of N10 on the tetrahydrofolate leaving group. Furthermore, the beta-DADF-bound structure provides a more optimal three-dimensional scaffold to improve the design of specific antineoplastic agents.  相似文献   

7.
Enzymes of the de novo purine biosynthetic pathway have been identified as essential for the growth and survival of Mycobacterium tuberculosis and thus have potential for the development of anti-tuberculosis drugs. The final two steps of this pathway are carried out by the bifunctional enzyme 5-aminoimidazole-4-carboxamide ribonucleotide transformylase/inosine monophosphate cyclohydrolase (ATIC), also known as PurH. This enzyme has already been the target of anti-cancer drug development. We have determined the crystal structures of the M. tuberculosis ATIC (Rv0957) both with and without the substrate 5-aminoimidazole-4-carboxamide ribonucleotide, at resolutions of 2.5 and 2.2 Å, respectively. As for other ATIC enzymes, the protein is folded into two domains, the N-terminal domain (residues 1–212) containing the cyclohydrolase active site and the C-terminal domain (residues 222–523) containing the formyltransferase active site. An adventitiously bound nucleotide was found in the cyclohydrolase active site in both structures and was identified by NMR and mass spectral analysis as a novel 5-formyl derivative of an earlier intermediate in the biosynthetic pathway 4-carboxy-5-aminoimidazole ribonucleotide. This result and other studies suggest that this novel nucleotide is a cyclohydrolase inhibitor. The dimer formed by M. tuberculosis ATIC is different from those seen for human and avian ATICs, but it has a similar ∼50-Å separation of the two active sites of the bifunctional enzyme. Evidence in M. tuberculosis ATIC for reactivity of half-the-sites in the cyclohydrolase domains can be attributed to ligand-induced movements that propagate across the dimer interface and may be a common feature of ATIC enzymes.  相似文献   

8.
Within de novo purine biosynthesis, the AICAR transformylase and IMP cyclohydrolase activities of the bifunctional enzyme ATIC convert the intermediate AICAR to the final product of the pathway, IMP. Identification of the AICAR transformylase active site and a proposed formyl transfer mechanism have already resulted from analysis of crystal structures of avian ATIC in complex with substrate and/or inhibitors. Herein, we focus on the IMPCH active site and the cyclohydrolase mechanism through comparison of crystal structures of XMP inhibitor complexes of human ATIC at 1.9 A resolution with the previously determined avian enzyme. This first human ATIC structure was also determined to ascertain whether any subtle structural differences, compared to the homologous avian enzyme, should be taken into account for structure-based inhibitor design. These structural comparisons, as well as comparative analyses with other IMP and XMP binding proteins, have enabled a catalytic mechanism to be formulated. The primary role of the IMPCH active site appears to be to induce a reconfiguration of the substrate FAICAR to a less energetically favorable, but more reactive, conformer. Backbone (Arg64 and Lys66) and side chain interactions (Thr67) in the IMPCH active site reorient the 4-carboxamide from the preferred conformer that binds to the AICAR Tfase active site to one that promotes intramolecular cyclization. Other backbone amides (Ile126 and Gly127) create an oxyanion hole that helps orient the formyl group for nucleophilic attack by the 4-carboxamide amine and then stabilize the anionic intermediate. Several other residues, including Lys66, Tyr104, Asp125, and Lys137', provide substrate specificity and likely enhance the catalytic rate through contributions to acid-base catalysis.  相似文献   

9.
1. The fluorescence polarization, P, of FAD increased on complex formation with the apoenzyme of D-amino acid oxidase [D-amino acid: O2 ocidoreductase (deaminating), EC 1.4.3.3]. The time course of the increase was monophasic. The values of P were extimated to be 0.04, 0.4, and 0.4 for FAD, the enzyme and the enzyme-benzoate complex, respectively. 2. The value of P of the enzyme is dependent on its concentration, indicating that the degrees of dissociation of FAD in the monomer and dimer are different. The dissociation constant was calculated to be 7 times 10-minus 7 M for the monomeric form of the enzyme. This value is far larger than the value for the dimeric form of the enzyme, 1 times 10-minus 8 M, calculated from equilibrium dialysis data. 3. Changes in fluorescence polarization of the enzyme due to changes in solution pH or temperature can be explained in terms of the monomer-dimer equilibrium.  相似文献   

10.
J S Lolkema  G T Robillard 《Biochemistry》1990,29(43):10120-10125
The original proposal of Saier stating that P-enolpyruvate-dependent mannitol phosphorylation is catalyzed by the monomeric form of the bacterial phosphotransferase enzyme IImtl, which would be the form predominantly existing in the phospholipid bilayer, whereas mannitol/mannitol-P exchange would depend on the transient formation of functional dimers, is refuted [Saier, M.H. (1980) J. Supramol. Struct. 14, 281-294]. The correct interpretation of the proportional relation between the rate of mannitol phosphorylation in the overall reaction and the enzyme concentration is that enzyme IImtl is dimeric under the conditions employed. Differences measured in the enzyme concentration dependency of the overall and exchange reactions were caused by different assay conditions. The dimer is favored over the monomer at high ionic strength and basic pH. Mg2+ ions bind specifically to enzyme IImtl, inducing dimerization. A complex formed by mixing inorganic phosphate, F-, and Mg2+ at sufficiently high concentrations inhibits enzyme IImtl, in part, by dissociation of the dimer. Enzyme IImtl was dimeric in 25 mM Tris, pH 7.6, and 5 mM Mg2+ over a large enzyme concentration range and under many different turnover conditions. The association/dissociation equilibrium was demonstrated in phosphate bufers, pH 6.3. The dimer was the most active form both in the overall and in the exchange reaction under the conditions assayed. The monomer was virtually inactive in mannitol/mannitol-P exchange but retained 25% of the activity in the overall reaction.  相似文献   

11.
Formation of a complex of D-amino acid oxidase (D-amino acid:O2 oxidoreductase (deaminating), EC 1.4.3.3) and benzoate, an enzyme-substrate complex model, was studied by measuring the fluorescence life-time of the coenzyme FAD of the complex by using a mode-locked Nd:YAG laser and a streak camera. The value of lifetime was 60 +/- 10 ps in the monomer of the complex and it was extremely short (much less than 5 ps) in the dimer of the complex. Since the values of fluorescence lifetime of the coenzyme are 130 ps in the monomeric form of free enzyme and 40 ps in the dimeric form of free enzyme, the decrease in the lifetime upon complex formation with benzoate is slight in the monomer (reduced to one-half) whereas marked in the dimer (reduced to less than 1/10). By analyzing the fluorescence decay curve, a dissociation constant of the monomer-dimer equilibrium of the complex was evaluated to be 0.4 +/- 0.3 microM, which is much smaller than that in free enzyme. Fluorescence analysis under steady state excitation revealed that the apparent dissociation constant (K) of FAD from the enzyme was decreased by 1:1000 upon the complex formation. Relative quantum yield of the fluorescence of FAD in the complex to that of free FAD exhibited appreciable dependence on the complex concentration: greater in the monomer and less in the dimer. These results suggest that a molecular interaction between FAD and amino acid residue(s) is strengthened by the complex formation, which contributes to a remarkable conformational change in the protein moiety of the complex.  相似文献   

12.
In a female infant with dysmorphic features, severe neurological defects, and congenital blindness, a positive urinary Bratton-Marshall test led to identification of a massive excretion of 5-amino-4-imidazolecarboxamide (AICA)-riboside, the dephosphorylated counterpart of AICAR (also termed "ZMP"), an intermediate of de novo purine biosynthesis. ZMP and its di- and triphosphate accumulated in the patient's erythrocytes. Incubation of her fibroblasts with AICA-riboside led to accumulation of AICAR, not observed in control cells, suggesting impairment of the final steps of purine biosynthesis, catalyzed by the bifunctional enzyme AICAR transformylase/IMP cyclohydrolase (ATIC). AICAR transformylase was profoundly deficient, whereas the IMP cyclohydrolase level was 40% of normal. Sequencing of ATIC showed a K426R change in the transformylase region in one allele and a frameshift in the other. Recombinant protein carrying mutation K426R completely lacks AICAR transformylase activity.  相似文献   

13.
The blood coagulation protein factor XI (FXI) consists of a pair of disulfide-linked chains each containing four apple domains and a catalytic domain. The apple 4 domain (A4; F272-E362) mediates non-covalent homodimer formation even when the cysteine involved in an intersubunit disulfide is mutated to serine (C321S). To understand the role of non-covalent interactions stabilizing the FXI dimer, equilibrium unfolding of wild-type A4 and its C321S variant was monitored by circular dichroism, intrinsic tyrosine fluorescence and dynamic light scattering measurements as a function of guanidine hydrochloride concentration. Global analysis of the unimolecular unfolding transition of wild-type A4 revealed a partially unfolded equilibrium intermediate at low to moderate denaturant concentrations. The optically detected equilibrium of C321S A4 also fits best to a three-state model in which the native dimer unfolds via a monomeric intermediate state. Dimer dissociation is characterized by a dissociation constant, K(d), of approximately 90 nM (in terms of monomer), which is in agreement with the dissociation constant measured independently using fluorescence anisotropy. The results imply that FXI folding occurs via a monomeric equilibrium intermediate. This observation sheds light on the effect of certain naturally occurring mutations, such as F283L, which lead to intracellular accumulation of non-native forms of FXI. To investigate the structural and energetic consequences of the F283L mutation, which perturbs a cluster of aromatic side-chains within the core of the A4 monomer, it was introduced into the dissociable dimer, C321S A4. NMR chemical shift analysis confirmed that the mutant can assume a native-like dimeric structure. However, equilibrium unfolding measurements show that the mutation causes a fourfold increase in the K(d) value for dissociation of the native dimer and a 1 kcal/mol stabilization of the monomer, resulting in a highly populated intermediate. Since the F283 side-chain does not directly participate in the dimer interface, we propose that the F283L mutation leads to increased dimer dissociation by stabilizing a monomeric state with altered side-chain packing that is unfavorable for homodimer formation.  相似文献   

14.
S100 proteins constitute a large subfamily of the EF-hand superfamily of calcium binding proteins. They possess one classical EF-hand Ca2+-binding domain and an atypical EF-hand domain. Most of the S100 proteins form stable symmetric homodimers. An analysis of literature data on S100 proteins showed that their physiological concentrations could be much lower than dissociation constants of their dimeric forms. It means that just monomeric forms of these proteins are important for their functioning. In the present work, thermal denaturation of apo-S100P protein monitored by intrinsic tyrosine fluorescence has been studied at various protein concentrations within the region from 0.04–10 μM. A transition from the dimeric to monomeric form results in a decrease in protein thermal stability shifting the mid-transition temperature from 85 to 75 °C. Monomeric S100P immobilized on the surface of a sensor chip of a surface plasmon resonance instrument forms calcium dependent 1 to 1 complexes with human interleukin-11 (equilibrium dissociation constant 1.2 nM). In contrast, immobilized interleukin-11 binds two molecules of dimeric S100P with dissociation constants of 32 nM and 288 nM. Since effective dissociation constant of dimeric S100P protein is very low (0.5 μM as evaluated from our data) the sensitivity of the existing physical methods does not allow carrying out a detailed study of S100P monomer properties. For this reason, we have used molecular dynamics methods to evaluate structural changes in S100P upon its transition from the dimeric to monomeric state. 80-ns molecular dynamics simulations of kinetics of formation of S100P, S100B and S100A11 monomers from the corresponding dimers have been carried out. It was found that during the transition from the homo-dimer to monomer form, the three S100 monomer structures undergo the following changes: (1) the helices in the four-helix bundles within each monomer rotate in order to shield the exposed non-polar residues; (2) almost all lost contacts at the dimer interface are substituted with equivalent and newly formed interactions inside each monomer, and new stabilizing interactions are formed; and (3) all monomers recreate functional hydrophobic cores. The results of the present study show that both dimeric and monomeric forms of S100 proteins can be functional.  相似文献   

15.
M Herold  K Kirschner 《Biochemistry》1990,29(7):1907-1913
The unfolding and dissociation of the dimeric enzyme aspartate aminotransferase (D) from Escherichia coli by guanidine hydrochloride have been investigated at equilibrium. The overall process was reversible, as judged from almost complete recovery of enzymic activity after dialysis of 0.7 mg of denatured protein/mL against buffer. Unfolding and dissociation were monitored by circular dichroism and fluorescence spectroscopy and occurred in three separate phases: D in equilibrium 2M in equilibrium 2M* in equilibrium 2U. The first transition at about 0.5 M guanidine hydrochloride coincided with loss of enzyme activity. It was displaced toward higher denaturant concentrations by the presence of either pyridoxal 5'-phosphate or pyridoxamine 5'-phosphate and toward lower denaturant concentrations by decreasing the protein concentration. Therefore, bound coenzyme stabilizes the dimeric state, and the monomer (M) is inactive because the shared active sites are destroyed by dissociation of the dimer. M was converted to M* and then to the fully unfolded monomer (U) in two subsequent transitions. M* was stable between 0.9 and 1.1 M guanidine hydrochloride and had the hydrodynamic radius, circular dichroism, and fluorescence of a monomeric, compact "molten globule" state.  相似文献   

16.
Low molecular weight protein tyrosine phosphatase (LMW-PTP) dimerizes in the phosphate-bound state in solution with a dissociation constant of K(d)=1.5(+/-0.1)mM and an off-rate on the order of 10(4)s(-1). 1H and 15N NMR chemical shifts identify the dimer interface, which is in excellent agreement with that observed in the crystal structure of the dimeric S19A mutant. Two tyrosine residues of each molecule interact with the active site of the other molecule, implying that the dimer may be taken as a model for a complex between LMW-PTP and a target protein. 15N relaxation rates for the monomeric and dimeric states were extrapolated from relaxation data acquired at four different protein concentrations. Relaxation data of satisfactory precision were extracted for the monomer, enabling model-free analyses of backbone fluctuations on pico- to nanosecond time scales. The dimer relaxation data are of lower quality due to extrapolation errors and the possible presence of higher-order oligomers at higher concentrations. A qualitative comparison of order parameters in the monomeric and apparent dimeric states shows that loops forming the dimer interface become rigidified upon dimerization. Qualitative information on monomer-dimer exchange and intramolecular conformational exchange was obtained from the concentration dependence of auto- and cross-correlated relaxation rates. The loop containing the catalytically important Asp129 fluctuates between different conformations in both the monomeric and dimeric (target bound) states. The exchange rate compares rather well with that of the catalyzed reaction step, supporting existing hypotheses that catalysis and enzyme dynamics may be coupled. The side-chain of Trp49, which is important for substrate specificity, exhibits conformational dynamics in the monomer that are largely quenched upon formation of the dimer, suggesting that binding is associated with the selection of a single side-chain conformer.  相似文献   

17.
The molecular weight of delta-5-3-ketosteroid isomerase from Pseudomonas testosteroni was determined by means of sedimentation equilibrium and exclusion chromatography over a wide range of enzyme concentrations in 0.2 M potassium phosphate buffer, pH 7.0. In addition, the sedimentation constant of the enzyme was determinded over an extended range of concentrations. The enzyme was found to have a molecular weight of 26,000 plus or equal to 1,000, suggesting that it is a dimer of identical or similar 13,400 molecular weight polypeptide chains. In the ultracentrifuge this dimeric species was found to undergo aggregation at enzyme concentrations above 2 mg per ml and dissociation at enzyme concentrations below 0.05 mg per ml. Exclusion chromatography studies indicate that under the conditions of chromatography the oligomeric enzyme is partially dissociated at enzyme concentrations in the range 0.2 to 0.002 mug per ml. These results suggest that under conditions of enzyme assay in 0.2 M potassium phosphate buffer, pH 7.0, isomerase is in a monomeric state of aggregation.  相似文献   

18.
The polymerization of aryl sulfatase A (aryl sulfate sulfohydrolase, EC 3.1.6.1) has been studied by frontal gel chromatography on Sephadex G-200 and Bio-Gel A-5m under various conditions of pH, ionic strength, and temperature. The aryl sulfatase A molecule exists as a monomer and as a dimer at pH 7.5 and pH 4.5, respectively. The extent of dissociation is markedly pH-, protein concentration-, and ionic strength-dependent. Only a small effect of temperature was observed. The enthalpy change (ΔHo) for the dissociation was ?2.5 ± 1 kcal/mol at pH 5.5–5.6, and the entropy change for dissociation of the enzyme dimer to two monomeric units was ?47 cal mol?1 deg?1. Sulfate ion has little effect on the extent of dissociation of the enzyme at pH 5.6. The present studies suggest that the dissociation of rabbit liver aryl sulfatase A is regulated by the ionization of amino acid residues whose apparent pK is between pH 5 and 6. The driving force for the association of the subunits of the enzyme is primarily ionic and/or ionic/hydrogen bond formation. The small enthalpy change and the fact that dissociation is strongly favored by an increase in the ionic strength suggest that hydrophobic interactions play only a minor role in stabilizing the dimeric quaternary structure relative to the monomeric state. The monomeric form of the enzyme exhibits the anomalous kinetics often observed with sulfatase A but the dimer does not show anomalous kinetics. Since aryl sulfatase A is probably in the dimeric form in the lysosome, the anomalous kinetics of the enzyme are unlikely to be of physiological importance in the intact lysosome.  相似文献   

19.
The 5,10-methenyltetrahydromethanopterin cyclohydrolase of Methanobacterium thermoautotrophicum was purified 128-fold to homogeneity. The enzyme had a subunit Mr of 41,000 as indicated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. From high-performance size exclusion chromatography of the native protein, an Mr of 82,000 was determined, suggesting a dimer of identical subunits. The enzyme was inhibited by 10-formyltetrahydromethanopterin and stimulated by Mg2+. Evaluation of the reaction equilibrium indicated that the methenyl derivative was favored over 5-formyltetrahydromethanopterin, with a much higher equilibrium constant than for the analogous reaction of tetrahydrofolate derivatives. Folate derivatives did not serve as substrates for this enzyme.  相似文献   

20.
R Tellam  J de Jersey  D J Winzor 《Biochemistry》1979,18(24):5316-5321
The binding of N-acetyl-tryptophan to the monomeric and dimeric forms of alpha-chymotrypsin in I = 0.2 acetate-chloride buffer, pH 3.86, has been studied quantitatively. Equilibrium sedimentation studies in the absence of inhibitor yielded a dimerization constant of 3.5 L/g. This value was confirmed by frontal gel chromatography of the enzyme on Bio-Gel P-30, which was also used to establish that N-acetyl-L-tryptophan binds preferentially to monomeric enzyme. From kinetic studies of competitive inhibition with N-acetyl-L-tryptophan ethyl ester as substrate, an equilibrium constant of 1300 M-1 was determined for the binding of N-acetyl-L-tryptophan to monomeric alpha-chymotrypsin. An intrinsic binding constant of 250 M-1 for the corresponding interaction with dimeric enzyme was calculated on the basis of these results and binding data obtained with concentrated (18.5 g/L) alpha-chymotrypsin. The present results refute earlier claims for exclusive binding of competitive inhibitors to monomer and also those for equivalence of inhibitor binding to monomeric and dimeric forms of alpha-chymotrypsin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号