首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The need for a rapid and definite diagnosis of the Armillaria spp. and Heterohasidion annosum root and butt rot diseases as well as general requirements expected of a test to detect the pathogens are reviewed. As a spin-off from more fundamental molecular biological research there has been a remarkable increase in new methods for diagnosis (i.e. detection and identification) in recent years. These new methods all have in comtnon that they use strtjctural elements of the target organisms such as proteins, polysaccharides, glycoproteins, nucleic acids, etc. for the construction of antibodies, probes and primers for detection, or to produce electrophoretic patterns to be used for classification and identification. This paper presents a short review of principles, advantages, disadvantages and some perspectives of the new methods developed for Armillaria spp. and H. annosum diagnosis compared with conventional ones, such as interfertility testing or visual inspection of the pathogens in situ and in vitro in pure culture. It will be noted that the specificity and reproducibility of the new techniques, which are closely linked with potential experimental error, lead to principal pitfalls which should be kept in mind when conclusions are drawn on data generated by them.
Even though PCR-based methods become increasingly more widespread it is likely that most diagnostic methods will continue to be used or co-exist in some form in the future.  相似文献   

2.
Antibodies highly specific to human immunoglobulin (Ig) E are capable of selectively blocking the IgE interaction or eliminating IgE-producing cells, thus providing valuable agents for diagnostics and treatment of various allergic illness. An example is omalizumab, a humanized monoclonal anti-IgE antibody that is approved for the treatment of patients with moderate-to-severe allergic diseases in the US, European Union and other countries. Here, we describe the generation and characterization of a novel human anti-IgE as a single-chain antibody fragment (scFv). The bacterially-synthesized scFv showed high affinity (86 nM) and specificity to the Fc region of human IgE. To our knowledge, this is the first report of the production of a human anti-IgE scFv in E. coli. Its further development as a potential candidate for medical applications is discussed.Key words: anti-IgE, E. coli expression, scFv, antibody engineering, human antibodies, allergy diseases, antibody therapeutics  相似文献   

3.
Passive immunization for the treatment and prevention of HIV infection.   总被引:1,自引:0,他引:1  
Passive immunization using serum or immunoglobulin preparations has been used in the prophylaxis and treatment of many bacterial and viral diseases. Preliminary attempts to use these methods to prevent HIV infection in chimpanzees have been promising. With the identification of polyclonal and monoclonal antibodies with protective activity against HIV in in vitro systems, the possibility of using these reagents in vivo takes on new relevance. The potential and problems of using passively administered anti-HIV antibodies for HIV prophylaxis and treatment are discussed, as well as the relative merits of polyclonal versus monoclonal reagents.  相似文献   

4.

Background

Tuberculosis (TB) is one of the most serious infectious diseases globally and has high mortality rates. A variety of diagnostic tests are available, yet none are wholly reliable. Serum cytokines, although significantly and frequently induced by different diseases and thus good biomarkers for disease diagnosis and prognosis, are not sufficiently disease-specific. TB-specific antibody detection, on the other hand, has been reported to be highly specific but not sufficiently sensitive. In this study, our aim was to improve the sensitivity and specificity of TB diagnosis by combining detection of TB-related cytokines and TB-specific antibodies in peripheral blood samples.

Methods

TB-related serum cytokines were screened using a human cytokine array. TB-related cytokines and TB-specific antibodies were detected in parallel with microarray technology. The diagnostic performance of the new protocol for active TB was systematically compared with other traditional methods.

Results

Here, we show that cytokines I-309, IL-8 and MIG are capable of distinguishing patients with active TB from healthy controls, patients with latent TB infection, and those with a range of other pulmonary diseases, and that these cytokines, and their presence alongside antibodies for TB-specific antigens Ag14-16kDa, Ag32kDa, Ag38kDa and Ag85B, are specific markers for active TB. The diagnostic protocol for active TB developed here, which combines the detection of three TB-related cytokines and TB-specific antibodies, is highly sensitive (91.03%), specific (90.77%) and accurate (90.87%).

Conclusions

Our results show that combining detection of TB-related cytokines and TB-specific antibodies significantly enhances diagnostic accuracy for active TB, providing greater accuracy than conventional diagnostic methods such as interferon gamma release assays (IGRAs), TB antibody Colloidal Gold Assays and microbiological culture, and suggest that this diagnostic protocol has potential for clinical application.  相似文献   

5.
The last 100years of enquiry into the fundamental basis of humoral immunity has resulted in the identification of antibodies as key molecular sentinels responsible for the in vivo surveillance, neutralization and clearance of foreign substances. Intense efforts aimed at understanding and exploiting their exquisite molecular specificity have positioned antibodies as a cornerstone supporting basic research, diagnostics and therapeutic applications [1]. More recently, efforts have aimed to circumvent the limitations of developing antibodies in animals by developing wholly in vitro techniques for designing antibodies of tailored specificity. This has been realized with the advent of synthetic antibody libraries that possess diversity outside the scope of natural immune repertoires and are thus capable of yielding specificities not otherwise attainable. This review examines the convergence of technologies that have contributed to the development of combinatorial phage-displayed antibody libraries. It further explores the practical concepts that underlie phage display, antibody diversity and the methods used in the generation of and selection from phage-displayed synthetic antibody libraries, highlighting specific applications in which design approaches gave rise to specificities that could not easily be obtained with libraries based upon natural immune repertories.  相似文献   

6.
Kohler and Milstein have shown that individual clones of normal antibody-secreting lymphocytes could be immortalized by fusion with myeloma cells. These investigators initiated a new era of technology with the successful in vitro production of monoclonal antibodies via somatic cell hybridization. With the use of monoclonal antibodies, many major problems arising from the limited specificity and reproducibility of conventional antisera can be solved. Some of the commonly employed methods for the production of monoclonal antibody are: (1) fusion of sensitized lymphocytes and myelomas from different sources to produce continuous antibody-producing cell lines; (2) in vitro viral transformation of sensitized lymphocytes to form continuous antibody-producing cells; (3) hybrid fusion of sensitized lymphocytes and continuous B lymphocyte cell lines. During the past few years, monoclonal antibody methodology has been used in almost every area of biological research. Monoclonal antibodies have been used as structural probes for proteins and hormones, and as highly specific agents for histocompatibility testing, tumor localization, immunotherapy, purification of molecules, identification of new surface antigens on lymphocytes and tumor cells, and detection of drug levels and microbial and parasitic diseases. In addition, several investigators have developed alternative methods for the production of human as well as mouse and rat monoclonal antibodies. The new technology of in vitro production of animal and human monoclonal antibodies will have many future applications in diagnosis and therapy in laboratory and clinical medicine.  相似文献   

7.
A key requirement for successful immunotherapeutic and immunodiagnostic applications is the availability of antibodies with high affinity and specificity. In the past, polyclonal antibodies from hyperimmunized animals or monoclonal antibodies from hybridoma cell lines were used extensively and profitably in medicine and immunotechnology. Antibody-based diagnostics, such as immunoassays, are also widely accepted because of their high sensitivity and ease of use as compared to conventional chromatographic techniques. While immunoassays have been used to monitor organic chemical contaminants such as pesticides, food preservatives, antibiotics in agricultural and food industries, hapten-specific antibodies with the desired affinity and specificity are generally difficult to obtain. With the advent of recombinant DNA technology, antibody genes can be amplified and selected through phage display, cell surface display, or cell-free display systems. A particularly useful feature common to all these display systems is the linking of the phenotype and genotype of antibodies during selection. This allows easy co-selection of the desired antibodies and their encoding genes based on the binding characteristics of the displayed antibodies. The selected antibody DNA can be further manipulated for high-level expression, post-translation modification, and/or affinity and specificity improvement to suit their particular applications. Several hapten-specific antibodies, which were successfully selected and engineered to high specificity and affinity using display technologies, have been found to be amenable to conventional immunoassay development. In this review, we will examine different formats of immunoassays designed for hapten identification and various display technologies available for antibody selection and improvement.  相似文献   

8.
The nanowire (NW) detection is one of the fast-acting and high-sensitive methods, which can recognize potentially relevant protein molecules. A NW-biosensor based on the silicon-on-insulator (SOI)-structures has been used for biospecific label-free real time detection of the NFATc1 (D-NFATc1) oncomarker. For this purpose, SOI-nanowires (NWs) were modified with aptamers against NFATc1 used as molecular probes. It was shown that using this biosensor it is possible to reach sensitivity of 10?15 M. This sensitivity was comparable to that of the NW-biosensor with immobilized antibodies used as macromolecular probes. The results demonstrate that approaches used in this study are promising for development of sensor elements for high-sensitive diagnostics of diseases.  相似文献   

9.
Information on the laboratory diagnostics of Campylobacter infections, carried out with the use of traditional method and molecular biology methods which based on the study of the genetic apparatus of infective agents, is summarized. Classical bacteriological analysis ensuring the isolation and biochemical identification of bacteria, up to the determination of their species, complex bacteriological analysis permitting their isolation and phenotypic identification, as well as genotypic diagnostics in reference laboratories (the detection and identification of infective agents by means of molecular hybridization or gene amplification), may be used.  相似文献   

10.
Aptamers are single-stranded DNA or RNA oligonucleotides selected in vitro from combinatorial libraries in a process called SELEX (Systematic Evolution of Ligands by EXponential Enrichment). Aptamers play a role of artificial nucleic acid ligands that can recognize and bind to various organic or inorganic target molecules with high specificity and affinity. They can discriminate even between closely related targets and can be easily chemically modified for radioactive, fluorescent and enzymatic labeling or biostability improvement. Aptamers can thus be considered as universal receptors that rival antibodies in diagnostics as a tool of molecular recognition. To date aptamers have been successively used instead of monoclonal antibodies in flow cytometry, immunochemical sandwich assays and in vivo imaging as well to detect wide range of small or large biomolecules.  相似文献   

11.
The discovery of novel biomarkers by means of advanced detection tools based on proteomic analysis technologies necessitates the development of improved diagnostic methods for application in clinical routine. On the basis of three different application examples, this review presents the limitations of conventional routine diagnostic assays and illustrates the advantages of immunoaffinity enrichment combined with MALDI‐TOF MS. Applying this approach increases the specificity of the analysis supporting a better diagnostic recognition, sensitivity, and differentiation of certain diseases. The use of MALDI‐TOF MS as detection method facilitates the identification of modified peptides and proteins providing additional information. Further, employing respective internal standard peptides allows for relative and absolute quantitation which is mandatory in the clinical context. Although MALDI‐TOF MS is not yet established for clinical routine diagnostics this technology has a high potential for improvement of clinical diagnostics and monitoring therapeutic efficacy.  相似文献   

12.
Immunosensors: sources of origin, achievements and perspectives   总被引:1,自引:0,他引:1  
The analysis of the recent data in the literature and results of investigations in the field of the development and study of function efficiency of different types of immune sensors, that are performed at the Department of Biochemistry Sensory and Regulatory Systems of the A. V. Palladin Institute of Biochemistry of Ukrainian National Academy of Sciences are presented. Sources of origination and perspectives of the devlopment of biosensors are discussed as well. The paper also gives an overview of main research projects at the Department, mainly in the filed of biosensors. They include development of the scientific bases for the creation of a new generation of chemo- and biosensors for their application in medicine and ecology. Multi-immune, multi-enzyme and combined multi-parametrical sensors can provide express analyses in laboratory and field conditions with the purpose to perform immune chemical diagnostics of diabet, kidney diseases, immune defficiencies, autoimmune, allergic, pre-infarction and pre-tumor states as well as to control total toxicity of the environment and identification of main types of toxic elements in it. The investigations are based on the latest achivements in the field of physics, chemistry, information technology and electronics with the use of different types of planar electrodes, ion sensitive field effect transistors (ISFETs), semiconductor capacitive structures, termistors, optrodes, piezocrystalls and application of such methods and effects as laser correlation spectroscopy, chemiluminescence, fluorescence, surface plasmon resonance, photoluminescence of porous silicon, interferometry, evanescent wave technique, nonemmiting energy transfer and holography.  相似文献   

13.
This review focuses on utilization of plant lectins as medical diagnostic reagents and tools. The lectin-related diagnostic is aimed at detection of several diseases connected to alteration of the glycosylation profiles of cells and at identification of microbial and viral agents in clinical microbiology. Certain lectins, proposed for or used as diagnostic tools could even recognize those cellular determinants, which are not detected by available antibodies. Broad information is presented on the lectinomics field, illustrating that lectin diagnostics might become practical alternative to antibody-based diagnostic products. In addition, the rising trend of lectin utilization in biomedical diagnostics might initiate a development of innovative methods based on better analytical technologies. Lectin microarray, a rapid and simple methodology, can be viewed as an example for such initiative. This technology could provide simple and efficient screening tools for analysis of glycosylation patterns in biological samples (cellular extracts, tissues and the whole cells), allowing thus personalized detection of changes associated with carbohydrate-related diseases.  相似文献   

14.
Rates of allergic diseases such as asthma and rhinitis are on the rise as important health problems in every country of the world. Allergen specific immunotherapy with natural allergenic extracts is a treatment directed to changing the natural course of these diseases, and is a treatment that has reported beneficial effects in a majority of allergic patients. However, this treatment is difficult because of the complex composition of the extracts. The composition is difficult to standardize and, consequently, the risk of anaphylactic shock is increased; furthermore, sensitization can occur to other antigens present in the extract. Therefore, new allergen specific immunotherapy approaches are needed. Chemically defined and standardized antigens are more easily managed and provide a safer and more efficient treatment. Vaccines for immunotherapy have already been designed, based on recombinant allergens, variants (or peptides derived from them), that can be administrated alone or in combination with adjutants. Some of these preparations are indicated for facilitating the uptake and antigenic presentation by dendritic cells, or by targeting the mast cells and basophiles. Studies in vitro, in animal models and clinical trials in allergic patients, indicate that these preparations may provide protection against the allergen exposure and improve the symptoms by inducing the production of blocking antibodies of the IgE mediated response, production of regulator T cells and cytokines of Th1 profile.  相似文献   

15.
The exquisite specificity of monoclonal antibodies (MAb) has long provided the potential for creating new reagents for the in vivo delivery of therapeutic drugs or toxins to defined cellular target sites or improved methods of diagnosis. However, many difficulties associated with their production, affinity, specificity, and use in vivo have largely confined their application to research or in vitro diagnostics. This situation is beginning to change with the recent developments in the applied molecular techniques that allow the engineering of the genes that encode antibodies rather than the manipulation of the intact antibodies themselves. Techniques, such as the polymerase chain reaction, have provided essential methods with which to generate and modify the genetic constituents of antibodies, allow their conjugation to toxins or drugs, provide ways of humanizing murine antibodies, and allow discrete modular antigen binding components to be produced. More recent developments of in vitro expression systems and powerful phage surface display technologies will without doubt play a major role in future antibody engineering and in the successful development of new diagnostic and therapeutic antibody-based reagents.  相似文献   

16.
Since its introduction, vaccinology has been very effective in preventing infectious diseases. However, in several cases, the conventional approach to identify protective antigens, based on biochemical, immunological and microbiological methods, has failed to deliver successful vaccine candidates against major bacterial pathogens. The recent development of powerful biotechnological tools applied to genome-based approaches has revolutionized vaccine development, biological research and clinical diagnostics. The availability of a genome provides an inclusive virtual catalogue of all the potential antigens from which it is possible to select the molecules that are likely to be more effective. Here, we describe the use of "reverse vaccinology", which has been successful in the identification of potential vaccines candidates against Neisseria meningitidis serogroup B and review the use of functional genomics approaches as DNA microarrays, proteomics and comparative genome analysis for the identification of virulence factors and novel vaccine candidates. In addition, we describe the potential of these powerful technologies in understanding the pathogenesis of various bacteria.  相似文献   

17.
Aptamers are short non-coding, single-stranded oligonucleotides (RNA or DNA) developed through Systematic Evolution of Ligands by Exponential enrichment (SELEX) in vitro. Similar to antibodies, aptamers can bind to specific targets with high affinity, and are considered promising therapeutic agents as they have several advantages over antibodies, including high specificity, stability, and non-immunogenicity. Furthermore, aptamers can be produced at a low cost and easily modified, and are, therefore, called “chemical antibodies”. In the past years, a variety of aptamers specifically bound to both breast cancer biomarkers and cells had been selected. Besides, taking advantage of nanomaterials, there were a number of aptamer-nanomaterial conjugates been developed and widely investigated for diagnostics and targeted therapy of breast cancer. In this short review, we first present a systematical review of various aptamer selection methods. Then, various aptamer-based diagnostic and therapeutic strategies of breast cancer were provided. Finally, the current problems, challenges, and future perspectives in the field were thoroughly discussed.  相似文献   

18.
Monoclonal antibodies are widely used in the treatment of many B cell lymphomas and certain solid tumors. All currently approved therapeutic monoclonal antibodies are of the immunoglobulin G (IgG) isotype. We hypothesized that tumor-specific monoclonal antibodies of the IgE isotype may serve as effective cancer therapeutics. To test this hypothesis, we produced mouse?Chuman chimeric IgE antibodies specific for the human B cell antigen CD20 and the epithelial antigen MUC1. We demonstrate here that anti-hCD20 IgE antibodies have in vitro cytotoxic activity when used with purified allergic effector cells derived from umbilical cord blood. At an effector-tumor ratio of 2:1, mast cells and tumor-specific IgE induced a 2.5-fold increase in tumor cell death, as compared to control IgE. Similar results were observed when eosinophils were used as effector cells. In an in vivo murine model of breast carcinoma, administration of anti-hMUC1 IgE reduced the growth of MUC1+ tumors by 25?C30?% in hFc??RI transgenic mice. In contrast, local production of IgE and cytokines chemotactic for macrophages, eosinophils and mast cells led to complete tumor eradication. These results suggest that allergic effector cells activated by IgE and cell surface antigens have the capacity to induce tumor cell death in vitro and in vivo. The use of chimeric antibodies and hFc??RI transgenic mice will greatly enhance investigations in the nascent field of allergo-oncology.  相似文献   

19.
Monoclonal antibodies are widely used for the treatment of cancer, inflammatory and infectious diseases and other disorders. Most of the marketed antibodies are monospecific and therefore capable of interacting and interfering with a single target. However, complex diseases are often multifactorial in nature, and involve redundant or synergistic action of disease mediators or upregulation of different receptors, including crosstalk between their signaling networks. Consequently, blockade of multiple, different pathological factors and pathways may result in improved therapeutic efficacy. This result can be achieved by combining different drugs, or use of the dual targeting strategies applying bispecific antibodies that have emerged as an alternative to combination therapy. This review discusses the various dual targeting strategies for which bispecific antibodies have been developed and provides an overview of the established bispecific antibody formats.Key words: bispecific antibodies, dual targeting, dual retargeting, cancer therapy, inflammatory diseases, allergic diseases  相似文献   

20.
Y Zhu  W Hua  M Xu  W He  X Wang  Y Dai  S Zhao  J Tang  S Wang  S Lu 《PloS one》2012,7(8):e44032

Background

Schistosomiasis japonica remains a real threat to public health in China. The currently used immunodiagnostic assays are sensitive and have a certain degree of specificity, however, they all use complex crude antigens, are based on detection of schistosome-specific antibodies, and have been shown to cross-react with other parasitic diseases. Therefore, these assays cannot be used to evaluate chemotherapy efficacy. The development of highly sensitive and highly specific immunodiagnostic techniques that can monitor the decline of antibodies specific for S. japonica will be extremely valuable as part of the ongoing strategy to control schistosomiasis in endemic areas. Here we report on the identification of unique fraction antigens of soluble egg antigen (SEA) to which the antibodies disappear 7 weeks after effective treatment. Furthermore, we use these SEA fractions to develop a modified assay with both high sensitivity and specificity.

Methodology/Principal Findings

SEA of S. japonicum was fractionated by electrophoresis using 7.5% SDS-PAGE under non-reducing conditions. The SEA fraction antigens to which antibodies were decreased soon after treatment were collected and used as the detection antigens to establish the FA-ELISA. Sera from patients with acute and chronic schistosomiasis infection, healthy people, and those with other parasitic diseases, were used to evaluate their sensitivity and specificity. Furthermore, sera from patients with chronic schistosomiasis infection were evaluated before and after treatment at different time points to evaluate their chemotherapeutic efficacy.

Conclusion/Significance

We demonstrated that this novel FA-ELISA provided high sensitivity and specificity, with very low cross-reactivity, and can serve as an effective tool to determine the efficacy of chemotherapy against S. japonicum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号