首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Site-directed mutagenesis was performed on Glu143, an essential amino acid in Lactobacillus casei folylpolyglutamate synthetase (FPGS) and the structurally equivalent residue, Glu146, in Escherichia coli FPGS. Glu143 is positioned near the P-loop and interacts with the Mg(2+) of Mg NTP-binding proteins. We have solved the structure of the E143A mutant of L. casei FPGS in the presence of AMPPCP and Mg(2+). The structure showed a water molecule at the place where Mg(2+) bound to the wild type enzyme. Mutant proteins E143A, and even E143D and E143Q with conservative mutations, lacked enzyme activity and failed to complement the methionine auxotrophy of the E. coli folC mutant SF4, showing that Glu143 is an essential residue. Both the L. casei and the E. coli FPGS mutant proteins bound methylene-tetrahydrofolate diglutamate and dihydropteroate normally. The E. coli E146Q mutant FPGS bound ADP with the same affinity as the wild type enzyme but bound ATP with much lower affinity and had higher ATPase activity than the wild type enzyme. The mutant enzyme was defective in forming the acyl-phosphate reaction intermediate from ATP and dihydropteroate. The E. coli FPGS requires activation by dihydropteroate or tetrahydrofolate binding to allow full activity. In the absence of a pteroate substrate, only 30% of the total enzyme binds ATP. We suggest that dihydropteroate causes a conformational change to allow increased ATP binding. The mutant enzyme was similarly activated by dihydropteroate resulting in increased ADP binding.  相似文献   

2.
In some bacteria, such as Escherichia coli, the addition of L-glutamate to dihydropteroate (dihydrofolate synthetase activity) and the subsequent additions of L-glutamate to tetrahydrofolate (folylpolyglutamate synthetase (FPGS) activity) are catalyzed by the same enzyme, FolC. The crystal structure of E. coli FolC is described in this paper. It showed strong similarities to that of the FPGS enzyme of Lactobacillus casei within the ATP binding site and the catalytic site, as do all other members of the Mur synthethase superfamily. FolC structure revealed an unexpected dihydropteroate binding site very different from the folate site identified previously in the FPGS structure. The relevance of this site is exemplified by the presence of phosphorylated dihydropteroate, a reaction intermediate in the DHFS reaction. L. casei FPGS is considered a relevant model for human FPGS. As such, the presence of a folate binding site in E. coli FolC, which is different from the one seen in FPGS enzymes, provides avenues for the design of specific inhibitors of this enzyme in antimicrobial therapy.  相似文献   

3.
4.
Sheng Y  Ip H  Liu J  Davidson A  Bognar AL 《Biochemistry》2003,42(6):1537-1543
Folylpolyglutamate synthetase (FPGS) catalyzes the addition of glutamate to folate derivatives to form folate polyglutamates. FPGS is essential for folate biosynthesis in bacteria and retention of folate pools in eukaryotes. X-ray crystallographic analyses of binary and ternary complexes of Lactobacillus casei FPGS suggest that binding of folate triggers a conformational change that activates FPGS. We used EPR and CD spectroscopy to further characterize the conformational change in the FPGS reaction. For EPR spectroscopy, two cysteine residues were introduced into FPGS by site-directed mutagenesis, K172C in the N-terminal domain and D345C in the C-terminal domain. The mutant protein was expressed, purified, and labeled with methanethiosulfonate. Addition of ATP, tetrahydrofolate, or 5,10-methylenetetrahydrofolate but not glutamate to FPGS showed broadening of EPR spectra, which is due to stronger spin-spin interactions, suggesting that both ATP and tetrahydrofolates cause a conformational change. ATP binding had an EPR spectrum distinct from that of tetrahydrofolate binding, indicating that it caused a different conformational change. When both ATP and THF were bound, the spectrum was identical to that seen when THF alone bound to the enzyme, showing that the THF-induced conformation was dominant. The spectral broadening suggests that the conformation change involves the two domains moving closer together, which is consistent with the rigid-body rotation of the C-terminal domain observed in the FPGS crystal structure with AMPPCP and 5,10-methylenetetrahydrofolate bound. No changes in the CD spectra were observed with the addition of FPGS substrates, suggesting that the conformational changes did not affect the secondary structure elements of the enzyme. These studies confirm the conformational change seen in the crystal structure by an independent method but also show that ATP binds to the free enzyme and affects its conformation.  相似文献   

5.
Four L1210 murine leukemia cell lines resistant to 5, 10-dideazatetrahydrofolate (DDATHF) and other folate analogs, but sensitive to continuous exposure to methotrexate, were developed by chemical mutagenesis followed by DDATHF selective pressure. Endogenous folate pools were modestly reduced but polyglutamate derivatives of DDATHF and ALIMTA (LY231514, MTA) were markedly decreased in these mutant cell lines. Membrane transport was not a factor in drug resistance; rather, folypolyglutamate synthetase (FPGS) activity was decreased by >98%. In each cell line, FPGS mRNA expression was unchanged but both alleles of the FPGS gene bore a point mutation in highly conserved domains of the coding region. Four mutations were in the predicted ATP-, folate-, and/or glutamate-binding sites of FPGS, and two others were clustered in a peptide predicted to be beta sheet 5, based on the crystal structure of the Lactobacillus casei enzyme. Transfection of cDNAs for three mutant enzymes into FPGS-null Chinese hamster ovary cells restored a reduced level of clonal growth, whereas a T339I mutant supported growth at a level comparable to that of the wild-type enzyme. The two mutations predicted to be in beta sheet 5, and one in the loop between NH(2)- and COOH-terminal domains did not support cell growth. When sets of mutated cDNAs were co-transfected into FPGS-null cells to mimic the genotype of drug-selected resistant cells, clonal growth was restored. These results demonstrate for the first time that single amino acid substitutions in several critical regions of FPGS can cause marked resistance to tetrahydrofolate antimetabolites, while still allowing cell survival.  相似文献   

6.
The transfer of 17O and/or 18O from (COOH-17O or -18O) enriched substrates to inorganic phosphate (Pi) has been demonstrated for two enzyme-catalyzed reactions involved in folate biosynthesis and glutamylation. COOH-18O-labeled folate, methotrexate, and dihydropteroate, in addition to [17O]-glutamate, were synthesized and used as substrates for folylpolyglutamate synthetase (FPGS) isolated from Escherichia coli, hog liver, and rat liver and for dihydrofolate synthetase (DHFS) isolated from E. coli. Pi was purified from the reaction mixtures and converted to trimethyl phosphate (TMP), which was then analyzed for 17O and 18O enrichment by nuclear magnetic resonance (NMR) spectroscopy and/or mass spectroscopy. In the reactions catalyzed by the E. coli enzymes, both NMR and quantitative mass spectral analyses established that transfer of the oxygen isotope from the substrate 18O-enriched carboxyl group to Pi occurred, thereby providing strong evidence for an acyl phosphate intermediate in both the FPGS- and DHFS-catalyzed reactions. Similar oxygen-transfer experiments were carried out by use of two mammalian enzymes. The small amounts of Pi obtained from reactions catalyzed by these less abundant FPGS proteins precluded the use of NMR techniques. However, mass spectral analysis of the TMP derived from the mammalian FPGS-catalyzed reactions showed clearly that 18O transfer had occurred.  相似文献   

7.
Comparison of the three-dimensional structures of folylpolyglutamate synthetase (FPGS) and the bacterial cell wall ligase UDP-N-acetylmuramoyl-l-alanine:d-glutamate ligase (MurD) reveals that these two enzymes have a remarkable structural similarity despite a low level of sequence identity. Both enzymes have a modular, multi-domain structure and catalyse a similar ATP-dependent reaction involving the addition of a glutamate residue to a carboxylate-containing substrate, tetrahydrofolate in the case of FPGS, and UDP-N-acetylmuramoyl-l-alanine in the case of MurD. Site-directed mutations of selected residues in the active site of Lactobacillus casei FPGS (P74A, E143A, E143D, E143Q, K185A, D313A, H316A, G411A and S412A) showed that most of these changes resulted in an almost complete loss of activity. Several of these amino acid residues in FPGS are found in structurally equivalent positions to active-site residues in MurD. Some insights into the function of these residues in FPGS activity are proposed, based on the roles surmised from the structures of two MurD. UDP-N-acetylmuramoyl-l-alanine.ADP complexes and a MurD. UDP-N-acetylmuramoyl-l-alanine-d-glutamate complex. Furthermore, the comparison has led us to propose that conformational changes induced by substrate binding in the reaction mechanism of FPGS result in a movement of the domains towards each other to more closely resemble the orientation of the corresponding domains in MurD. This relative domain movement may be a key feature of this new family of ADP-forming amide bond ligases.  相似文献   

8.
Folic acid is an essential vitamin for normal cell growth, primarily through its central role in one-carbon metabolism. Folate analogs (antifolates) are targeted at the same reactions and are widely used as therapeutic drugs for cancer and bacterial infections. Effective retention of folates in cells and the efficacy of antifolate drugs both depend upon the addition of a polyglutamate tail to the folate or antifolate molecule by the enzyme folylpolyglutamate synthetase (FPGS). The reaction mechanism involves the ATP-dependent activation of the free carboxylate group on the folate molecule to give an acyl phosphate intermediate, followed by attack by the incoming L-glutamate substrate. FPGS shares a number of structural and mechanistic details with the bacterial cell wall ligases MurD, MurE and MurF, and these enzymes, along with FPGS, form a subfamily of the ADP-forming amide bond ligase family. High-resolution crystallographic analyses of binary and ternary complexes of Lactobacillus casei FPGS reveal that binding of the first substrate (ATP) is not sufficient to generate an active enzyme. However, binding of folate as the second substrate triggers a large conformational change that activates FPGS and allows the enzyme to adopt a form that is then able to bind the third substrate, L-glutamate, and effect the addition of a polyglutamate tail to the folate.  相似文献   

9.
An assay for folylpolyglutamate synthetase activity in extracts of uninfected and bacteriophage T4D-infected Escherichia coli B has been developed. T4D infection induced the formation of a new synthetase raising the total synthetase activity three-fold. Extracts obtained after infection with T4 gene 51, 27 or 28 amber mutants showed increased synthetase activities while extracts obtained from cells infected with a T4D gene 29 amber mutant did not show any increase in synthetase activity. The phage-induced synthetase was found to copurify with the gene 29 product and a 100-fold purified synthetase of molecular size of 74,000 daltons has been obtained. The purified synthetase has a folate substrate specificity different from the host synthetase since it added glutamate residues to dihydrofolate as well as to the usual tetrahydrofolate substrate.  相似文献   

10.
Extracts of Escherichia coli contained an enzymatic activity which catalyzed the addition of L-glutamate to the alpha-carboxyl of various polyglutamate substrates, including folylpolyglutamates. Much of the enzyme activity was separated by DE52 chromatography and gel filtration from the enzyme which adds the first three glutamates in the biosynthesis of folylpolyglutamates, dihydrofolate synthetase-folylpolyglutamate synthetase. The two enzyme activities differed in many properties. Whereas dihydrofolate synthetase-folylpolyglutamate synthetase preferred pteroate or pteroylmonoglutamate substrates, the folylpoly-alpha-glutamate synthetase preparations effectively utilized tetrahydropteroylpolyglutamates, pteroylpolyglutamates, p-aminobenzoylpolyglutamates (pAB(Glu)n), and even a polyglutamate tripeptide. Several di- and triglutamyl peptides were inhibitory to folylpoly-alpha-glutamate synthetase activity, but not to dihydrofolate synthetase-folylpolyglutamate synthetase. Conversely, dihydropteroate noncompetitively inhibits the folylpolyglutamate synthetase reaction of the dihydrofolate synthetase-folylpolyglutamate synthetase protein, but did not inhibit the folylpoly-alpha-glutamate synthetase reaction. Potassium chloride was inhibitory to folylpoly-alpha-glutamate synthetase activity (as were other salts and several polyanions), in contrast to the absolute requirement of dihydrofolate synthetase-folylpolyglutamate synthetase activity for a monovalent cation such as K+. Incubation of a folylpoly-alpha-glutamate synthetase preparation with (6S)-tetrahydropteroyltri(gamma)glutamate generated products which after chemical cleavage to pAB(Glu)n were identical to those from growing E. coli, in high performance liquid chromatography retention times and in pattern of digestion by alpha-COOH bond-specific carboxypeptidase Y. High performance liquid chromatography and mass spectral analysis of the products of the in vitro reactions of folylpoly-alpha-glutamate synthetase with several substrates also demonstrated the addition of glutamate residues via alpha-COOH linkages. Thus, there appear to be two folylpolyglutamate synthetase activities in E. coli, dihydrofolate synthetase-folylpolyglutamate synthetase which adds the first three glutamate residues by gamma-COOH linkages and the folylpoly-alpha-glutamate synthetase activity which extends the folylpolyglutamate chain via gamma-COOH peptide bonds.  相似文献   

11.
Escherichia coli dihydrofolate reductase (DHFR) has several flexible loops surrounding the active site that play a functional role in substrate and cofactor binding and in catalysis. We have used heteronuclear NMR methods to probe the loop conformations in solution in complexes of DHFR formed during the catalytic cycle. To facilitate the NMR analysis, the enzyme was labeled selectively with [(15)N]alanine. The 13 alanine resonances provide a fingerprint of the protein structure and report on the active site loop conformations and binding of substrate, product, and cofactor. Spectra were recorded for binary and ternary complexes of wild-type DHFR bound to the substrate dihydrofolate (DHF), the product tetrahydrofolate (THF), the pseudosubstrate folate, reduced and oxidized NADPH cofactor, and the inactive cofactor analogue 5,6-dihydroNADPH. The data show that DHFR exists in solution in two dominant conformational states, with the active site loops adopting conformations that closely approximate the occluded or closed conformations identified in earlier X-ray crystallographic analyses. A minor population of a third conformer of unknown structure was observed for the apoenzyme and for the disordered binary complex with 5,6-dihydroNADPH. The reactive Michaelis complex, with both DHF and NADPH bound to the enzyme, could not be studied directly but was modeled by the ternary folate:NADP(+) and dihydrofolate:NADP(+) complexes. From the NMR data, we are able to characterize the active site loop conformation and the occupancy of the substrate and cofactor binding sites in all intermediates formed in the extended catalytic cycle. In the dominant kinetic pathway under steady-state conditions, only the holoenzyme (the binary NADPH complex) and the Michaelis complex adopt the closed loop conformation, and all product complexes are occluded. The catalytic cycle thus involves obligatory conformational transitions between the closed and occluded states. Parallel studies on the catalytically impaired G121V mutant DHFR show that formation of the closed state, in which the nicotinamide ring of the cofactor is inserted into the active site, is energetically disfavored. The G121V mutation, at a position distant from the active site, interferes with coupled loop movements and appears to impair catalysis by destabilizing the closed Michaelis complex and introducing an extra step into the kinetic pathway.  相似文献   

12.
The complex of Lactobacillus casei dihydrofolate reductase with the substrate folate and the coenzyme NADP+ has been shown to exist in solution as a mixture of three slowly interconverting conformations whose proportions are pH-dependent and which differ in the orientation of the pteridine ring of the substrate in the binding site. The Asp26----Asn mutant of L. casei dihydrofolate reductase has been prepared by oligonucleotide-directed mutagenesis and studied by one- and two-dimensional 1H-NMR spectroscopy. NMR studies of the mutant enzyme--folate--NADP+ complex show that this exists to greater than 90% in a single conformation over the pH* range 5-7.1. The single conformation observed corresponds to conformation I (the 'methotrexate-like' conformation) of the wild-type enzyme--folate--NADP+ complex. These observations demonstrate that Asp26 is the ionizable group controlling the pH-dependence of the conformational equilibrium seen in the wild-type enzyme.  相似文献   

13.
To address the effects of ligand binding on the structural fluctuations of Escherichia coli dihydrofolate reductase (DHFR), the hydrogen/deuterium (H/D) exchange kinetics of its binary and ternary complexes formed with various ligands (folate, dihydrofolate, tetrahydrofolate, NADPH, NADP(+), and methotrexate) were examined using electrospray ionization mass spectrometry. The kinetic parameters of H/D exchange reactions, which consisted of two phases with fast and slow rates, were sensitively influenced by ligand binding, indicating that changes in the structural fluctuation of the DHFR molecule are associated with the alternating binding and release of the cofactor and substrate. No additivity was observed in the kinetic parameters between a ternary complex and its constitutive binary complexes, indicating that ligand binding cooperatively affects the structural fluctuation of the DHFR molecule via long-range interactions. The local H/D exchange profile of pepsin digestion fragments was determined by matrix-assisted laser desorption/ionization mass spectrometry, and the helix and loop regions that appear to participate in substrate binding, largely fluctuating in the apo-form, are dominantly influenced by ligand binding. These results demonstrate that the structural fluctuation of kinetic intermediates plays an important role in enzyme function, and that mass spectrometry on H/D exchange coupled with ligand binding and protease digestion provide new insight into the structure-fluctuation-function relationship of enzymes.  相似文献   

14.
Glutathione synthetase from Escherichia coli B showed amino acid sequence homology with mammalian and bacterial dihydrofolate reductases over 40 residues, although these two enzymes are different in their reaction mechanisms and ligand requirements. The effects of ligands of dihydrofolate reductase on the reaction of E. coli B glutathione synthetase were examined to find resemblances in catalytic function to dihydrofolate reductase. The E. coli B enzyme was potently inhibited by 7,8-dihydrofolate, methotrexate, and trimethoprim. Methotrexate was studied in detail and proved to bind to an ATP binding site of the E. coli B enzyme with K1 value of 0.1 mM. The homologous portion of the amino acid sequence in dihydrofolate reductases, which corresponds to the portion coded by exon 3 of mammalian dihydrofolate reductase genes, provided a binding site of the adenosine diphosphate moiety of NADPH in the crystal structure of dihydrofolate reductase. These analyses would indicate that the homologous portion of the amino acid sequence of the E. coli B enzyme provides the ATP binding site. This report gives experimental evidence that amino acid sequences related by sequence homology conserve functional similarity even in enzymes which differ in their catalytic mechanisms.  相似文献   

15.
The enzyme folylpolyglutamate synthetase (FPGS) catalyzes the conversion of folate (pteroylmonoglutamate) to the polyglutamate forms (pteroylpolyglutamates) that are required for folate retention by mammalian cells. A rapid in situ autoradiographic assay for FPGS was developed which is based on the folate cofactor requirement of thymidylate synthase. Chinese hamster AUX B1 mutant cells lack FPGS activity and are unable to accumulate folate. As a result, the conversion of [6-3H]deoxyuridine to thymidine via the thymidylate synthase reaction is impaired in AUX B1 cells and no detectable label is incorporated into DNA. In contrast, FPGS in wild-type Chinese hamster CHO cells causes folate retention and enables the incorporation of [6-3H]deoxyuridine into DNA. Incorporation may be detected by autoradiography of monolayer cultures or of colonies replica plated onto polyester discs. Introduction of Escherichia coli FPGS into AUX B1 cells restores the activity of the thymidylate synthase pathway and demonstrates that the E. coli FPGS enzyme can provide pteroylpolyglutamates which function in mammalian cells.  相似文献   

16.
One-carbon metabolism is essential to provide activated one-carbon units in the biosynthesis of methionine, purines, and thymidylate. The major forms of folates in vivo are polyglutamylated derivatives. In organisms that synthesize folate coenzymes de novo, the addition of the glutamyl side chains is achieved by the action of two enzymes, dihydrofolate synthetase and folylpolyglutamate synthetase. We report here the characterization and molecular analysis of the two glutamate-adding enzymes of Saccharomyces cerevisiae. We show that dihydrofolate synthetase catalyzing the binding of the first glutamyl side chain to dihydropteroate yielding dihydrofolate is encoded by the YMR113w gene that we propose to rename FOL3. Mutant cells bearing a fol3 mutation require folinic acid for growth and have no dihydrofolate synthetase activity. We show also that folylpolyglutamate synthetase, which catalyzes the extension of the glutamate chains of the folate coenzymes, is encoded by the MET7 gene. Folylpolyglutamate synthetase activity is required for methionine synthesis and for maintenance of mitochondrial DNA. We have tested whether two folylpolyglutamate synthetases could be encoded by the MET7 gene, by the use of alternative initiation codons. Our results show that the loss of mitochondrial functions in met7 mutant cells is not because of the absence of a mitochondrial folylpolyglutamate synthetase.  相似文献   

17.
Histidine 228 at the active site of Escherichia coli serine hydroxymethyltransferase was replaced with an asparagine. The mutant enzyme was expressed in a strain of E. coli that lacks wild type enzyme. Absorption spectra, circular dichroism spectra, and differential scanning calorimetry thermograms suggest that the amino acid change at the active site causes no detectable change in the tertiary structure of the enzyme. Kinetic studies demonstrated that kcat for the mutant enzyme is about 25% of the value for the wild type enzyme with either L-serine or allothreonine as substrate. Km or Kd values for amino acid substrates and reduced folate compounds were 2-10-fold larger with the mutant enzyme. The rate of interconversion of several enzyme-glycine complexes showed that the conversion of the external aldimine to the quinoid complex is not the rate-determining step for either the mutant or wild type enzyme in the presence of tetrahydrofolate. The binding of L-serine to the wild type enzyme gives a more thermally stable enzyme and increases its affinity for tetrahydrofolate. These effects are not found when L-serine binds to the mutant enzyme. The studies demonstrate that histidine 228 is not a catalytically essential residue and suggest that it is involved in interacting with either the amino acid substrate or the enzyme-bound pyridoxal phosphate.  相似文献   

18.
A unique group of mutations (amer) in the dihydrofolate reductase (5,6,7,8-tetrahydrofolate:NADP+ oxidoreductase, EC 1.5.1.3.) structural gene of Diplococcus pneumoniae determine a marked overproduction of the corresponding enzyme protein. Since findings with these mutations relate to a key metabolic function and may be important to the regulation of folate coenzyme synthesis in general, the same group of multations were also examined for their effects on a number of related enzymic activities. Mutant and wild-type cell-free extracts, in addition to dihydrofolate reductase activity, exhibited both dihydropteroate and dihydrofolate synthetic activities under the conditions employed. Four folate coenzyme-related enzyme activities could also be demonstrated with the same preparations. These are mediated by the following enzymes, serine hydroxymethyl transferase (l-serine: tetrahydrofolate 10-hydroxymethyl tranferase, EC 2.1.2.1), 5, 10-methylenetetrahydrofolate dehydrogenase (5,10-methylenetetrahydrofolate: NADP+ oxidoreductase, EC 1.5.1.5), 10-formyltetrahydrofolate synthetase (formate: tetrahydrofolate ligase (ADP-forming), EC 6.3.4.3) and glutamate formiminotransferase (N-formimino-l-glutamate: tetrahydrofolate 5-formiminotransferase, EC 2.1.2.5). The amer mutations examined in the current study determined 3–80-fold increases in dihydrofolate reductase in comparison to the wild type. However, none of the other folate-related enzyme activities were altered. The possible significance of these findings in light of previous results is discussed.  相似文献   

19.
The folylpolyglutamate synthetase-dihydrofolate synthetase gene (folC) in Escherichia coli was deleted from the bacterial chromosome and replaced by a selectable Kmr marker. The deletion strain required a complementing gene expressing folylpolyglutamate synthetase encoded on a plasmid for viability, indicating that folC is an essential gene in E. coli. The complementing folC gene was cloned into the vector pPM103 (pSC101, temperature sensitive for replication), which segregated spontaneously at 42 degrees C in the absence of selection. This complementing plasmid was replaced in the folC deletion strain by compatible pUC plasmids containing folC genes with mutations generated in vitro, producing strains which express only mutant folylpolyglutamate synthetase. Mutant folC genes expressing insufficient enzyme activity could not complement the chromosomal deletion, resulting in retention of the pPM103 plasmid. Some mutant genes expressing low levels of enzyme activity replaced the complementing plasmid, but the strains produced were auxotrophic for products of folate-dependent pathways. The folylpolyglutamate synthetase gene from Lactobacillus casei, which may lack dihydrofolate synthetase activity, replaced the complementing plasmid, but the strain was auxotrophic for all folate end products.  相似文献   

20.
Lactobacillus casei cells contain a 25 kDa, membrane-associated, folate-binding protein (fbp), which is a component of the folate transport system. Polyclonal antibody to fbp (anti-fbp) has been prepared, and conditions have been established for detection and quantitation of the protein. Anti-fbp did not block [3H]folate transport or binding in L. casei cells. As judged by Western blots, the antibody reacted only with fbp on sodium dodecyl sulfate electrophoretograms of Triton X-100 extracts of L. casei membranes. Anti-fbp showed no cross-reactivity with L. casei dihydrofolate reductase, L. casei 5,10-methenyltetrahydrofolate synthetase, L1210 dihydrofolate reductase, rat liver dihydrofolate reductase, or L1210 folate-binding protein. Enzyme-linked immunosorbent assay measurements indicated the presence of an fbp in membranes of Lactobacillus salivarius and two transport-defective sublines of L. casei. Anti-fbp was used to demonstrate selective extraction, with n-butanol, of fbp from a mixture of Triton-solubilized L. casei membrane proteins; repression of fbp in membranes of L. casei cells grown on high levels of folate; and localization of fbp by electron microscopy, using anti-fbp in conjunction with goat anti-rabbit IgG gold conjugate, in L. casei membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号